
HAL Id: hal-00498782
https://hal.science/hal-00498782

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Good Architecture = Good (ADL + Practices)
Vincent Le Gloahec, Régis Fleurquin, Salah Sadou

To cite this version:
Vincent Le Gloahec, Régis Fleurquin, Salah Sadou. Good Architecture = Good (ADL + Practices).
6th International Conference on the Quality of Software Architectures (QoSA’10), Jun 2010, Prague,
Czech Republic. pp.167-182. �hal-00498782�

https://hal.science/hal-00498782
https://hal.archives-ouvertes.fr

Good Architecture = Good (ADL + Practices)

Vincent Le Gloahec1,3, Regis Fleurquin2, and Salah Sadou3

1 Alkante SAS, Rennes, France
v.legloahec@alkante.com

2 IRISA/Triskell, Campus Universitaire de Beaulieu, Rennes, France
regis.fleurquin@irisa.fr

3 Valoria, Université de Bretagne-Sud, Vannes, France
salah.sadou@univ-ubs.fr

Abstract. In order to ensure the quality of their software develop-
ment, companies incorporate best practices from recognized repositories
or from their own experiences. These best practices are often described
in software quality manuals which does not guarantee their implemen-
tation. In this paper, we propose a framework for the implementation
of best practices concerning the design of the software architecture. We
treat �rst the case of architecture design activity because it's the basis
of the software development process. Our framework enables on the one
hand to describe best practices and on the other hand to check their ap-
plication by designers. We present an implementation of our framework
in the Eclipse platform and for an ADL dedicated to Web applications.
Finally, we give an example of use taken from the context of our indus-
trial partner.

Key words: Best Practices, Design, Software Architecture Quality

1 Introduction

The software architecture plays a fundamental role in modern development pro-
cesses. Throughout a project, it can serve as a baseline against which the various
stakeholders analyze, understand, build their decisions and evaluate the soft-
ware [1]. The languages (Acme [2], xADL [3], ByADL [4], UML as an ADL [5])
used to elaborate architectures highlight concepts (such as connectors, compo-
nents, etc.) that meet two requirements: i) be enough expressive to represent all
targeted systems. ii) allow the architect to focus her/his attention on key issues
such as information hiding, coupling, cohesion, precision, etc. Architecture Des-
cription Languages (ADL) direct and sometimes compel the architect to comply
with certain relevant rules and universally recognized in the target area. Thus,
they restrict the form of representable architectures by excluding undesirable
ones. The aim is to produce architectures with good quality properties.

However, these languages are designed to allow the representation of archi-
tectures that answer a variety type of needs. Thus, some architectural motifs
can be considered useful in some contexts and avoided in others. The quality of

architecture is not absolute but is estimated according to each project's require-
ments (cost, schedule, quality of service, etc.) [6] that sometimes are con�icting.
So, the quality of an architecture is the result of a compromise. The language
must be tolerant and not unduly restrict the range of possibilities, in order to
let free the creativity of architects. Consequently, the use of an ADL alone, as
elegant as it may be, can not guarantee obtaining an architecture that meets the
quality requirements desired for a given project.

Best language Practices (BPs) found in the literature, such as modeling pro-
cesses [7] [8], styles [9], patterns [10] and metrics can then provide an essential
complementary tool. Based on the speci�c context of the project, they will help
to direct the architect toward the subset of relevant models among those allowed
by the language. In this sense, BPs help the architect to limit the area of choice
thanks to a language restriction adapted to the project. They help to increase
the e�ectiveness of development in terms of quality and productivity. Additional
BPs speci�c to an application domain, a technology or a managerial and cul-
tural context may also emerge from projects within companies. Properly used in
a project, these best language practices constitute the expertise and the value-
added of a company. This valuable capital of knowledge guarantees to a company
the quality of its architectural models and thus satisfy its customers, to stand
out, to solicit labels and certi�cates [11]. In other words, to be competitive.

Unfortunately, we show in section 2 of this paper that due to a lack of an
adequate formalism to document this knowledge, companies that try to capitalize
on this knowledge use informal documents, often incomplete, poorly referenced
and sometimes scattered. This leads to an inadequate and an ine�ective use
and sometimes loss of best language practices. This loss decrease the quality
of the designed architectures. We rely for that on a study conducted with an
industrial partner that uses a dedicated ADL for web applications. We propose a
language (section 3) and a software platform (section 4) that allow respectively
to document and to enact these BPs for any graphical ADL. In this way, we
ensure the durability and reuse of knowledge, as well as a constant veri�cation
of the application of best language practices. We then show, in section 5, how this
language can be used to document some BPs for web applications coming from
our industrial partner. In the same section, we show also how these practices can
be integrated in their ADL tool (AlCoWeb-Builder). Thus, this helps developers
to respect the best language practices de�ned in their own companies, without
changing their working habits. Finally, we describe related work in section 6
before concluding in section 7.

2 Problem Statement

In this section, we show the interest for a company to make productive its lan-
guage practices. We rely on a study undertaken in one of our industrial partners:
the Alkante company4. We begin by presenting the development environment

4 Alkante is a company that develops Web applications (www.alkante.com).

(language, tool, best practices) developed by this company for designing the ar-
chitecture of its applications. Then, we present the di�culties it faces in some
of its developments. The analysis of the causes of these di�culties highlights the
interest to capitalize and automate best language practices.

2.1 Development Environment

In the context of rich Web application development, Alkante has de�ned an ADL
(referred to as AlCoWeb) to help design the architecture of its applications [12].
This ADL is an UML pro�le. The UML language has been chosen mainly because
the version 2.0 of the UML speci�cation contains most of the abstractions needed
in modeling rich Web applications with hierarchical entities. Alkante develops
mainly Geographical Information Systems (GIS) with the help of a component-
oriented framework composed of PHP and Javascript code artifacts. Thus, when
designers de�ne the architecture of their applications, they need to deal with
entities such as modules, pages, forms, html controls and raw PHP scripts. In
order to manipulate those speci�c entities in the AlCoWeb ADL, they have
been de�ned as stereotypes dedicated to the speci�c Alkante's architecture. In
this pro�le, we can found stereotypes such as �AlkModule�, �AlkHtmlForm�,
�AlkHtmlButton�, etc.

Based on the AlCoWeb ADL, Alkante has developed a complete model-driven
architecture platform called AlCoWeb-Builder. This tool allows the designers to
model and assemble web-components to create large applications. Components
are designed hierarchically and incrementally using component assemblies and
connectors. Once atomic and hierarchical components have been designed, they
are made available as components o�-the-shelf and can be reused to build larger
artifacts, like an authentication form or a geographical web service for exam-
ple. AlCoWeb-Builder is a graphical editor, build upon several frameworks of
the Eclipse platform. It also comes with a code generation facility. Based on
a template system, this tool allows generating the code of the designed Web
applications, as illustrated in Fig. 1.

Using this ADL in many projects, the company has identi�ed over the years
some language practices. For instance, to ensure a complete code generation,
the architecture of Web applications should be very speci�c. Thus, the quality
assurance manager (QAM) of the company has de�ned a dedicated BP in the
form of a complete process, documented in a quality manual.

The core of this BP consists of the following steps:

1. Create one and only one module: a module represents the root container of
an architecture. At the implementation level, it corresponds to a physical
folder that will embeds the code artifacts of the designed Web application;

2. Create one and only one application container in the module: the module
component must contain a single application container. This component is
the central piece that represents the business logic of the Web application
and also provides services for inter-application communications;

Fig. 1. Design example with AlCoWeb-Builder and the resulting Web interface

3. Create pages in the application container: a page component directly maps
to a Web page. In the AlCoWeb ADL, pages are considered �rst class en-
tities for building the presentation tier of Web applications. Consequently,
the application container must contain at least one page component for the
architecture to be valid. At runtime, pages are responsible for the general
layout of their sub-components;

4. Create forms in pages: each page must contain at least one HTML form com-
ponent. This component is always required to build a valid Web page. This
architectural decision has been made because dynamic web pages intensely
use forms to submit user's data to a web server;

5. Create HTML controls associated with forms: basic and advanced HTML
controls (buttons, lists, calendars) must belong to a form component. For
the sake of simplicity in the design of Web application, all HTML controls,
without exception, must be systematically placed in a form;

6. Create scripts: �nally, script components represent code artifacts in charge
of the rendering of dynamic Web pages. Scripts can be connected directly
to page components, and also use the application container to call services
from external applications. Without those components, even if the rest of
the architecture is valid, the Web application could not be rendered in a
client browser.

The QAM in charge of the de�nition has added some other BPs in the quality
manual. Many of them take the form of modeling rules that needs to be checked
to ensure the quality of a �nal architecture. These BPs ensure things such as
naming conventions or the way components can be put together.

2.2 Recurrent Problems

The MDA approach allows Alkante's team to ease their development e�ort,
through components reuse at the model level and to automate, as possible, code
generation and deployment. Although this approach reduces development costs,

they observed on occasion that some architectures had not been properly de-
signed.

Some architectures led to errors in the generated code. But, a major drawback
of code generation is that it is di�cult to �nd, from the generated code, the
origin of the errors in an architecture. Consequently, developers take a long
time to repair. A causal analysis has showed that these errors result from faults
made during the component assembly stages when building large applications,
while atomic and small hierarchical components are mostly modeled correctly.
As AlCoWeb is an hierarchical language, the code generation engine expects the
architecture to be designed hierarchically, where HTML forms must be contained
in a page, pages must be contained in the root application component, and
so on. If this constraint is not respected, the generated application won't be
usable. Nevertheless, the BP cited above should have guarantee the respect of
this constraint. Clearly, this BP has not been correctly applied or not applied at
all.

Another recurrent problem concerns the way that components must be as-
sembled. All basic and some more advanced HTML controls � more than 30
components, such as buttons, expanded lists, tabs, calendars, etc. � are available
as components o� the shelf. By default, all those components are designed to
provide the service getHtml(), which returns the HTML code of the component.
At runtime, stacked calls of this service on a hierarchical component allows to
produce the complete HTML code of a complex and rich Web page. However,
structural components that form the basis of the architecture � e.g. modules,
application containers and scripts � must be designed from scratch by the devel-
opers. To design a valid architecture, each getHtml() services of �AlkHtmlPage�
components must be delegated to the parent application container (using a dele-
gate connector from a page's provided port to one provided port of the applica-
tion component). Then, those provided services must be connected to a required
port of a script component using an assembly connector. As for the composition
of hierarchical components, the non respect of this speci�c assembly leads to a
poor quality of the architecture that results in the generation of unusable Web
applications. Again, this problem results from the non-application or misappli-
cation of a BP, yet documented in the quality manual.

2.3 Discussion

The source of the two problems cited above is the non-compliance with some of
the BPs outlined in the quality manual. Further causal analysis shown that the
root cause has always been one of the followings:

1. Involvement of new designers who did not know when and how the docu-
mented practices should be applied. This problem occurs because most of
the documented practices do not describe precisely their application context
and some are ambiguous;

2. Some BP become fastidious when the architecture complexity grows (for
instance, inducing the same manual veri�cation but on numerous model
elements) thus developers have ignored or partially applied them;

3. Some BP are complex and consequently manually error prone (for instance,
inducing many veri�cations on several model elements);

4. When a project is subject to signi�cant time constraints, developers have
chosen to ignore some BP in order to respect the deadline.

To remedy this, we must make productive the BPs. They must be enforced
in the used tools (editor, transformations and code generator). We can try to
�hard-code� the BP in the tools suite (if possible by the tool). But, we believe it
would not be a good solution. Firstly, tools change over time. We do not want to
have to re-code all the BPs each time a tool change. Secondly, BPs evolved too.
Each time a BP change, we have to do the corresponding changes in the tool's
code. Thus, we must separate the BP de�nition from the tools.

We advocate that the BPs become �rst class entities when using an ADL
language. Thus, the language will be adapted to �t a particular context (devel-
oper, project, company, application domain, etc.). In this way, each company
can contextualize a general purpose language to its own needs.

Consequently, to produce quality products, a language should not be reduced
solely to its three components (abstract syntax, semantics and concrete syntax).
Indeed, as we emphasized throughout this section, companies often de�ne their
own best practices which enrich the language to �t a speci�c context. The re-
maining of the paper introduces our approach for the de�nition and application
of best language practices at the early stage of design of software architectures.

3 Best Practices Description Language

The language we introduce in this section, called GooMod, contains some pro-
perties needed for the description of best design practices. In this section we
show how we have done to identify these properties and then we describe the
abstract syntax and semantic of the GooMod language.

3.1 Identi�ed Properties

Architectural design is a particular case of modeling activity. However, there is a
rich literature on best practices for modeling activity. Thus, we made a survey on
best practices in modeling activity in order to identify their characteristics and
forms. Through literature we observed three types of best modeling practices:
those that are concerned only with the form (style) of produced models, those
that describe the process of their design, and those that combine both. As the
third type is only a combination of the �rst two, we limited our study to examples
covering the former types. For the �rst type we found that the best practices
for Agile Modeling given in [9] are good examples. In [13], Ramsin and Paige
give a detailed review of object-oriented software development methods. From
this review we extracted properties concerning the process aspect of BP. For the
sake of brevity, we can't go further on this study in this paper. But interested
reader may found more detail on the dedicated web page5.

5 http://www-valoria.univ-ubs.fr/SE/AMGP

Thus, we have identi�ed the following properties:

Identi�cation of the context: to identify the context of a BP, the language
must be able to check the state of the model in order to determine whether
it is a valid candidate for the BP or not.

Goal checking: to check that a BP has been correctly applied on a model, we
must be able to check that the status of the latter conforms to the objective
targeted by the BP. On the BP description language level, this property
highlights the same need as the one before.

Description of collaborations: we have seen that some BP cannot be checked
automatically. Even if the system alone achieves some parts of the checking,
it would need the designer's opinion in order to make a decision. In case of
alternative paths, sometimes the system is in a situation where it cannot
determine the right path automatically. Thus, a BP description language
should allow interactions with the designer.

Process de�nition: as the process de�nes a sequence of steps with possible it-
erations, optional steps, and alternative paths, the targeted language should
allow processes to be de�ned with such constructions.

Restriction of the design language: several best practices based on mode-
ling methodologies suggest a gradual increase in the number of manipulated
concepts (e.g., each step concerns only a subset of the modeling language's
concepts). Thus, the BP description language should allow the de�nition of
this subset for each step.

The documentation of a BP associated with a design language requires a
description that is independent of any tool; indeed, a BP is speci�c only to
the language. It describes a particular use of its concepts. It should not assume
modes of interaction (buttons, menus, etc.) used by an editor in order to pro-
vide access to these concepts. Therefore, a BP must be described in a way that
can be quali�ed as a Platform Independent Model (PIM) in Model-Driven Engi-
neering (MDE) terminology (see next section). Ignoring this rule leads QAM to
re-document the BP at each new version or tool change. The GooMod language
contains all properties described above and o�ers a way to document the BP
independently of any editor. To introduce the GooMod language we will present
its abstract syntax then its semantic. In the next section we will present an
example of use of this language.

3.2 Abstract syntax of the GooMod Language

The abstract syntax of the GooMod language is given in Fig. 2. The process
part of a BP is described as a weakly-connected directed graph. In this graph,
each vertex represents a coherent modeling activity that we call a step. Arcs
(identi�ed by Bind in our meta-model) connect pairs of vertices. Loops (arcs
whose head and tail coincide) are allowed, but not multi-arcs (arcs with the
same tail and same head).

A step is associated with four elements: its context, its associated design
style, the set of language concepts usable during its execution, and a set of

Fig. 2. GooMod Meta-model

actions. The context is a �rst-order formula evaluated on the abstract syntax
graph of the input model before the beginning of the step. We call this formula
a pre-condition. The design style is a �rst-order formula that is evaluated on
the abstract syntax graph of the current model in order to allow designer to
exit from the step. We call this formula a post-condition. The set of the usable
language concepts is a subset of the non-abstract meta-class of the abstract
syntax (described in a MOF Model) of the targeted design language.

Because some BP require the establishment of a collaboration between the
system and the designer, we have included the ability to integrate some actions
at the beginning (entry) and/or at the end (exit) of a step. The possible actions
are: output a message, an input of a value, and the assignment of a value to a
local variable. Indeed, at each step it is sometimes necessary to have additional
information on the model that only the designer can provide (goal of Input
action). Conversely, it is sometimes useful to provide designers information that
they can not deduce easily from the visible aspect of the model, but the system
can calculate (goal of Output action). This concerns introspection operations
that can be achieved with MOF operators at pre- and post-conditions level.
Hence, the usefulness of variables associated with steps to hold results. Thus,
actions allow interaction with the designer using messages composed of strings
and calculated values.

Steps are also de�ned by two boolean properties: isInitial and IsFinal. At
least one step is marked as initial and one as �nal in a graph. Finally, an arc can
be marked as optional, meaning that its head step is optional.

3.3 Semantic of the GooMod Language

Semantically the graph of a BP is a behavior model composed of a �nite num-
ber of states, transitions between those states, and some Entry/Exit actions.
Thus, a BP is described as a �nite and deterministic state machine with states
corresponding to the steps of the BP's process.

At each step, the elements which constitute it are used as follows:

1. Before entering the step, the pre-conditions are checked to ensure that the
current model is in a valid state compared with the given step. Failure implies
that the step is not yet allowed;

2. If the checking succeeds, then before starting model edits a list of actions
(Entry Action), possibly empty, is launched. These actions initialize the en-
vironment associated with the step. This may correspond to the initializing
of some local variables or simply interactions with the designer;

3. A given step can use only its associated language concepts. In fact, each
concept is associated with use type (create, delete or update).

4. When the designer indicates that the work related to the step is completed,
a list of actions (Exit Action) will be launched to prepare the step's environ-
ment to this end. With these actions the system interacts with the designer
to gain information that it can not extract from the model's state;

5. Before leaving the step, the post-conditions are checked to ensure that the
current model is in a valid state according to the BP rules.

Leaving a step, several transitions are sometimes possible. These transitions
are de�ned by the Binds whose tail is this step. A transition is possible only
if the pre-condition of the head step of the concerned Bind is veri�ed by the
current state of the model. If several next steps are possible, this means that
the choice is left to the designer. A Bind can also be de�ned as optional. In this
case, its tail step becomes optional through the transition it de�nes. Thus, the
possible transitions of the tail step are added to those of the optional step, and
so on.

4 Implementation of GooMod

In order to implement the GooMod language, we developed a complete platform
for the management of BP, starting from their de�nition at the platform inde-
pendent model (PIM) level up to their enactment at the platform speci�c model
(PSM) level. Figure 3 illustrates the platform and its PIM-PSM separation. This
section will describe both levels and their associated tools.

4.1 PIM level: Modeling BP

The PIM level of the GooMod language allows description of BP independently of
the used design tool. This level is implemented thanks to the BP De�nition tool
(see top of Fig. 3). This tool is designed for QAM in charge of the de�nition of BP

Fig. 3. GooMod platform general architecture

which should be observed in a company. Our �rst graphical editor, designed using
the Eclipse Graphical Modeling Framework6 (GMF), allows the representation
of BP in the form of a process. Such a process is represented by a path in a graph.
Each node of the path is a step. The BP De�nition tool uses the meta-model of
the target language as its input. At each step of the process, the BP De�nition
tool allows for the selection of a subset of manipulated concepts from the target
language, as well as the de�nition of a set of OCL pre- and postconditions, and
actions before entering and exiting the step.

4.2 PSM level: BP enactment

The PSM level aims to attach the de�nition which is done at the PIM level with
a speci�c design tool. For that, our platform is composed of two parts:

BP Activation Tool: that aims to link a BP model de�ned with the BP De-
�nition tool to a target design tool. It controls the enforcement of the BP
process.

Targeted Design Tool: which is the end-user design tool where the BP will
be performed. This tool is not intended to be modi�ed or altered directly,
but will be controlled by an external plugin, which in our case is the BP
Activation Tool.

A targeted design tool can be, for instance, the AlCoWeb-Builder tool (see
bottom-left of Fig. 3), which allows Alkante's designers to model the architecture

6 See Eclipse Modeling Project (http://www.eclipse.org/modeling)

of their Web applications. However, our approach is not limited to this design
tool. Indeed, the BP Activation tool has been designed to interact with any
Eclipse GMF-generated editors. If the �rst feature of BP Activation is to enact
a process and check the elaboration of models, the second feature consists of con-
trolling some parts of the targeted design tool. At each step of modeling, only
the editable concepts of the current step are active. Right now, a technical solu-
tion has been used, based on the extension capabilities of the GMF framework.
During a given step, we dynamically activate/deactivate GMF creation tools ac-
cording to the editable concepts allowed for this step. With this approach, we
are able to control any GMF editor within the Eclipse platform. To tackle the
problem of how to interact with other design tools, we plan to elaborate a map-
ping meta-model so that QAM could map editable concepts with the creation
features (buttons, actions, items) of the design tool.

5 Case Study: Alkante's BP

In the following we present how to de�ne the BP presented in section 2 and how
to apply them during a design process.

5.1 Formal Description of BP

The GooMod language allows to represent the di�erent steps of this BP in the
form of a process. The steps are described with the help of the BP De�nition
tool as depicted in Fig 4.

Fig. 4. Process part of Alkante's BP for building Web applications architectural models

The process de�nes an iteration that allows to create multiple pages and
their content. Indeed, once a script has been added, the designer will either
be able to continue through the process or to iterate by adding new pages. The
dashed arrow between �Add Form� and �Add HTML Controls� represents an op-
tional transition, thus making the latter step optional. This indicates that adding
HTML controls to forms is not necessary to produce a valid Web application in
this speci�c context.

The QAM in charge of the de�nition of this BP is able to detail each step
of the process by adding some rules that need to be checked to ensure the
quality of the �nal architecture. For each step, the QAM can de�ne both pre-
and post-conditions that will ensure that models will be well-constructed. Those

constraints are given using the OCL language. Besides de�ning constraints, the
QAM can add entry and exit actions that will allow the designer to collaborate
with the system by means of inputs and/or outputs. Those actions are described
using a script-like syntax, where it is possible to declare variables and input/out-
put operations. In addition, each step comes with a list of editable concepts that
will be used to follow the de�ned process. In the Alkante's BP, each step is asso-
ciated with a list of meta-classes of the AlCoWeb language: Component and Port
for each step except the last one, and the meta-class Connector for the last step
(Connect Components), thus allowing to connect components with each other.

For example, here is a complete description of the step �Add Form�:

Pre description: at least one page must be present
context: Component
inv: Component.allInstances()->select(c:Component |

c.stereotype='AlkHtmlPage ')->notEmpty ()

Entry output("You have to create at least one form per page.")
output("Make sure to respect the graphical guidelines.")

Concepts [{"Component","cud"}, {"Port","cud"}]

Exit input($response , boolean , "Did you respect the graphical guidelines?")

Post description: each form must be contained in a parent page
context: Component
inv: Component.allInstances()->select(c:Component |

c.stereotype='AlkHtmlForm ')->notEmpty ()
and
Component.allInstances()->select(c:Component |

c.stereotype='AlkHtmlForm '). owner.stereotype='AlkHtmlPage '
and
Component.allInstances()->select(c:Component |

c.stereotype='AlkHtmlPage ')->forAll(page |
page.ownedForms ->size() >= 1)

and OclQuery_graphicalCheck () = true

The pre-condition checks that before entering the step, the model contains
at least one page. The entry action is used to inform the designer about the
constraint related to this step (at least one form per page) and recommendation
about graphical guidelines. The syntax used to describe editable concepts is
given in the form of two strings: the �rst is the name of the concept, the second
is composed of the �rst letters of the authorized behaviors. In our case, �cud�
means �create, update and delete�. In the above example, the exit action is used
to ask the designer to check whether the graphical guidelines are respected. The
post-condition is used to check that the model contains at least one form per
page and that the graphical guidelines were respected. In the BP De�nition
tool, all the rules listed above are editable using advanced editors and content
assistants, so that designers don't have to manipulate the syntax given in this
example.

Fig. 5. Applying best practices in AlCoWeb-Builder

5.2 BP in Action

When developers starts designing architecture models with AlCoWeb-Builder,
they �rst load the GooMod model de�ned by the QAM, and then launch the
controlled editing process. The bottom of Fig. 5 shows the current state of the
BP Activation tool: the current design step is �Add Script� (on the left), allowed
editable concepts for this steps are Component and Port (in the middle), and
the right part shows the next available steps. As we can see, the BP indicates
that we have the choice to go back to the �Add Page� step, or to go ahead to
the last step of the process to �nish the design of the Web application.

In the company, the GooMod platform is used di�erently depending on skills
and experience of developers. Novice developers systematically use the platform,
whereas experts prefer to make veri�cations at key steps of the design process.
Indeed, novices are not fully aware of all the practices that have to be respected
to produce a quality architecture, therefore they prefer to be guided through
the whole design process. This reinforces our idea that a tool must be �exible
enough to adapt to the most users. The GooMod platform has been designed
accordingly.

The reader may have other examples of use of the GooMod platform through
screencasts at http://www-valoria.univ-ubs.fr/SE/goomod.

6 Related Work

In business, best practices management is a particular case of Knowledge Mana-
gement. This domain aims to identify, gather and capitalize on all used knowledge
(including BP) to improve companies performance [14]. Thus, in the domain of

BP for software development, there are three types of works: those interested
in BP archiving, those interested in their modeling, and those who seek their
implementation directly in the development tools.

Several works suggest introducing processes and tools that facilitate storage,
sharing, and dissemination of BP within companies (e.g. [15], [16]). They advo-
cate in particular the use of real repositories allowing various forms of consulta-
tion, thus facilitating research and discovery of BPs. However, the BP referred
to by these systems are documented and available only through textual and in-
formal. It is therefore impossible to make them productive in order to control
the use within CASE tools. To our knowledge, there is no other work on the de�-
nition of rigorous languages for documenting BPs. However this �eld can bene�t
from works concerned with method engineering ([7], [8]) and software develop-
ment process ([17]). Indeed, a BP is a particular form of development method.
It imposes a way to run an activity, a process, and also imposes a number of
constraints on the proper use of language concepts. Language engineering and
its de�nition tools are therefore very useful.

With CASE tools, several works suggest encouraging, even requiring, the
respect of certain BP. The domain that had produced good results in recent
years is the one that focuses on the automation of BP concerning detection and
correction of inconsistencies. These include, in particular, the work presented in
[18], [19], [20] and [21]. They propose adding extensions to modeling tools, such
as Eclipse or Rational, that are able to intercept the actions of designers and
inspect the information system of the tools in order to detect the occurrence
of certain types of inconsistency. The inconsistencies treated by these works are
various, but they remain on the analysis of syntactical consistency of models
expressed in one or more languages, which is already quite complex. Sometimes
they address the problem of what they call methodological inconsistencies; i.e.,
the detection of non-compliance with guidelines relating to how the language
should be used. But it involves BP with a much smaller granularity than those
we are dealing with.

In the domain of software architectural modeling, Acme has been proposed
as a generic ADL that provides an extensible infrastructure for describing, ge-
nerating and analysing software architectures descriptions [2]. This language is
supported by the AcmeStudio tool [22], a graphical editing environment for soft-
ware architecture design implemented as an Eclipse Plug-in. AcmeStudio o�ers
the possibility to de�ne rules (invariants and heuristics) to check whether an
architectural model is well formed. However, rules are to be de�ned directly at
the design stage and are embedded in the architectural model. This limits the
portability of the solution to another tool and the expressiveness of BP. In our
approach, we prefer the de�nition of such rules to be at the PIM level, so that
they can be reused and remain independent of any tool. The GooMod platform
can be easily adapted to work with AcmeStudio, since this tool is an Eclipse-
based graphical editor. In this way, it could propose features not available in
AcmeStudio: support for a process representation of the design activity, better

understanding of the ADL through the manipulation of only valuable concepts
at each design steps, and ways to collaborate dynamically with designers.

7 conclusion

To produce softwares with high quality, a company must �rst ensure that their
architecture is of high quality. To achieve a desired level of quality the use of an
ADL alone, as elegant as it is, is not enough. It should be used with best practices
to get good solutions depending on the context of use. Through the use of best
practices, designers avoid reproducing well-known errors and follow a proven
process. But the quality has a cost related to two aspects: the capitalization of
these best practices and roll-backs in case of non compliance with them.

With our approach, quality assurance manager are able to de�ne, in a for-
mal description, their own design practices based on books, standards and/or
their own gained experience. Since these descriptions are formal, they become
productive in tools. They can be automatically applied by designers in order to
produce high quality architectures. Thus, we provide not only a way to capitalize
best practices, but also a means to check their compliance throughout the design
process to avoid costly roll-backs.

Our approach provides to architects, directly in editing tools, a collection of
BPs. This automation relieves the architects of much of manual veri�cations.
Consequently, they do not hesitate to activate them when needed. They can also
choose the BPs to use, depending on the given context, their own skills and type
of the project.

As a continuation of this work, we plan to provide a best practice management
tool that allows the quality assurance manager to optimize BPs use. In addition
of de�ning BPs, this tool should help to involve them in projects (process +
human) with management of the access rights and the temporary permissions
of violation. Finally, it must allow the generalization of individual BP to make
them usable by all designers. This last point will enable the company to go up
from the level of individual know-how to the level of collective know-how.

References

1. Erdogmus, H.: Architecture meets agility. IEEE Softw. 26(5) (2009) 2�4
2. Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural description of component-

based systems. (2000) 47�67
3. Dashofy, E.M., Hoek, A.v.d., Taylor, R.N.: A comprehensive approach for the

development of modular software architecture description languages. ACM Trans.
Softw. Eng. Methodol. 14(2) (2005) 199�245

4. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: De-
veloping next generation adls through mde techniques. In: 32nd International
Conference on Software Engineering (ICSE 2010) to appear. (2010)

5. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.: Modeling soft-
ware architectures in the uni�ed modeling language. ACM Trans. Softw. Eng.
Methodol. 11(1) (2002) 2�57

6. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1998)

7. Henderson-Sellers, B.: Method engineering for oo systems development. Commun.
ACM 46(10) (2003) 73�78

8. Gonzalez-Perez, C., Henderson-Sellers, B.: Modelling software development
methodologies: A conceptual foundation. Journal of Systems and Software 80(11)
(2007) 1778 � 1796

9. Ambler, S.W.: The Elements of UML(TM) 2.0 Style. Cambridge University Press,
New York, NY, USA (2005)

10. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented software architecture: a system of patterns. John Wiley & Sons, Inc.,
New York, NY, USA (1996)

11. Gratton, L., Ghoshal, S.: Beyond best practices. Sloan Management Review (3)
(2005) 49�57

12. Kadri, R., Tibermacine, C., Le Gloahec, V.: Building the Presentation-Tier of Rich
Web Applications with Hierarchical Components. In: International Conference on
Web Information Systems Engineering (WISE'07), Springer (2007) 123�134

13. Ramsin, R., Paige, R.F.: Process-centered review of object oriented software de-
velopment methodologies. ACM Comput. Surv. 40(1) (2008) 1�89

14. Stewart, T.A.: The Wealth of Knowledge: Intellectual Capital and the Twenty-�rst
Century Organization. Doubleday, New York, NY, USA (2001)

15. Fragidis, G., Tarabanis, K.: From repositories of best practices to networks of best
practices. Management of Innovation and Technology, 2006 IEEE International
Conference on (2006) 370�374

16. Zhu, L., Staples, M., Gorton, I.: An infrastructure for indexing and organizing best
practices. In: REBSE '07: Proceedings of the Second International Workshop on
Realising Evidence-Based Software Engineering, IEEE Computer Society (2007)

17. OMG: Software Process Engineering Meta-Model, version 2.0 (SPEM2.0). Tech-
nical report, Object Management Group (2008)

18. Biehl, M., Löwe, W.: Automated architecture consistency checking for model driven
software development. In: QoSA '09: Proceedings of the 5th International Confer-
ence on the Quality of Software Architectures, Springer-Verlag (2009) 36�51

19. Egyed, A.: Uml/analyzer: A tool for the instant consistency checking of uml mod-
els. Software Engineering. ICSE 2007. 29th International Conference on (2007)
793�796

20. Hessellund, A., Czarnecki, K., Wasowski, A.: Guided development with multiple
domain-speci�c languages. In: MoDELS. (2007) 46�60

21. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: ICSE '08: Proceedings of the 30th
international conference on Software engineering, ACM (2008) 511�520

22. Schmerl, B., Garlan, D.: Acmestudio: Supporting style-centered architecture de-
velopment. In: ICSE '04: Proceedings of the 26th International Conference on Soft-
ware Engineering, Washington, DC, USA, IEEE Computer Society (2004) 704�705

