
HAL Id: hal-00498776
https://hal.science/hal-00498776

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preserving Architectural Choices throughout the
Component-based Software Development Process

Chouki Tibermacine, Régis Fleurquin, Salah Sadou

To cite this version:
Chouki Tibermacine, Régis Fleurquin, Salah Sadou. Preserving Architectural Choices throughout the
Component-based Software Development Process. 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05), Nov 2005, pittsburgh, United States. pp.121 - 130. �hal-00498776�

https://hal.science/hal-00498776
https://hal.archives-ouvertes.fr

Preserving Architectural Choices throughout the Component-based Software
Development Process

Chouki Tibermacine, Régis Fleurquin and Salah Sadou
VALORIA Lab, University of South Brittany

F-56000 Vannes, France
{Chouki.Tibermacine,Regis.Fleurquin,Salah.Sadou}@univ-ubs.fr

Abstract

It is argued that architecture comprehension and regres-
sion testing of a software system are the most expensive
maintenance activities. This is mainly due to the fact that
architectural choices are either not explicit, at every stage
of the software development process, or not preserved from
one stage to another. In this paper, we present an Ar-
chitectural Constraint Language (ACL) as a means to for-
mally describe architectural choices at all the stages. This
language is based on the UML’s Object Constraint Lan-
guage and on a set of MOF-compliant metamodels. We also
present a prototype which validates the proposed approach.
It allows the evaluation of ACL expressions at two stages
and ensures, by using a transformation mechanism, that the
constraints stated at one stage are subsequently preserved.

1 Introduction

Software architectures need to be well documented, so
that maintenance activities could be performed easily and
safely. Indeed, among the maintenance activities, under-
standing the software architecture before its evolution, and
regression testing after it has evolved, are by far the most
expensive. By making explicit and formal all architectural
choices, we facilitate on the one hand, the program compre-
hension and on the other, the automatic regression testing.
These architectural choices are often expressed using a con-
straint language. Many existing Architecture Description
Languages (ADLs) provide such languages [8]. However,
in the following stages of the software development process,
there is often no mean neither to express the new choices
nor to preserve those expressed previously. For instance, in
component-based software, none of the existing implemen-
tation models, e.g. SUN’s Enterprise JavaBeans (EJB) [17],
OMG’s CORBA Component Model (CCM) [11] or Mi-

crosoft Component Object Model (COM+) [9], provide
such features. The architectural choices are thus often em-
bedded into code and then become implicit at this level.
Consequently, if an evolution is made on this level, the ar-
chitectural choices may be affected (see section 2 for a de-
tailed example).

To resolve this problem, architectural choices made at
each stage of the software development process should, not
only be explicit but they should be preserved in the follow-
ing stages as well. In this paper, we present an Architecture
Constraint Language (ACL). This predicate language serves
to formally document component-based software architec-
tures throughout the different stages of the development
process (see section 3). ACL is based on the UML’s Object
Constraint Language (OCL), associated to several MOF-
compliant metamodels. Each metamodel meets the needs
of one stage of the software development. The software de-
signer can thus continue to use concepts from his favourite
(usual) ADL or component technology. To preserve the ar-
chitectural choices, from one stage to the others, we use
a generic metamodel (ArchMM). This pivot metamodel is
the basis of a constraint transformation mechanism. ACL
expressions are interpreted by an Architectural Constraint
Evaluator (ACE). This tool, presented in section 4, makes
possible to evaluate the compliance of the implementation
models with the constraints stated during the component de-
sign stage.

2 Illustrative Example

Let us consider a simple example of an Access Control
System (ACS). The different parts of figure 1 provide an
overview of its architecture. This architecture is mainly or-
ganized as a pipeline [15]. The system receives as input the
necessary data for user authentication (Authenticator com-
ponent). After identification, the data is sent to the Access-
Controller component. The latter checks whether the user is
authorized to enter to the controlled area or not. If the access

Controller LoggerAccess TransmitterAuthenticator

AccessControlSystem

Authenticator Access
Controller Logger Transmitter

AccessControlSystem
AccessControlSystem

Authenticator AccessController Logger Transmitter

CS3 = CS2’ [+CSS3]

CS2

CS1 CS3

CS2 = CS1’ [+CSS2]

Component Implementation Stage: CCM Representation of ACSArchitecture Design Stage: Acme Representation of ACS

Component Design Stage: UML 2 Representation of ACS

Figure 1. Constraint preservation in a component-based software development process

is authorized, the Logger component adds to the data the en-
trance date and hour, and stores it locally for the controlled
area. Then, it sends these logs to the Transmitter compo-
nent, which adds information about the controlled area and
transmits them for global archival storage.

To illustrate our purpose, we briefly describe the devel-
opment process of ACS, from architectural design to imple-
mentation. Then, we describe the raised problems.

2.1 Architectural Design Stage

The architecture designer of this system chooses the
pipeline style aiming at a high level of maintainability of
the software. Suppose that the architecture of this system
was described using xAcme [19]. Using graph theory, we
enumerate the structural constraints that guarantee this ar-
chitectural style. These constraints are defined using the
Armani predicate language [10] as follows1:

1. The first constraint implies the definition of vertices
and arcs, and that each arc must be connected to two
vertices:

(a) A vertex stands for a component with input or
output ports:

i n v a r i a n t f o r a l l comp : Component
i n s e l f . Components |

f o r a l l p : P o r t i n comp . P o r t s |
s a t i s f i e s T y p e (p , i n p u t T)
o r s a t i s f i e s T y p e (p , o u t p u t T)

(b) An arc represents a connector with exactly two
roles (one sink and one source):

1Concretely in xAcme constraint descriptions are decomposed in many
XML elements. For the sake of brevity, we present the constraints as they
are described traditionally in the Armani Language.

i n v a r i a n t f o r a l l conn : Connec to r
i n s e l f . C o n n e c t o r s |

s i z e (conn . Ro les) = = 2
and e x i s t s r : Role i n conn . Ro les |
s a t i s f i e s T y p e (r , s inkT)
and e x i s t s r : Role i n conn . Ro les |
s a t i s f i e s T y p e (r , sou rceT)

(c) Each connector (arc) binds two components (ver-
tices). the input port to a sink role and the output
port to a source role:

i n v a r i a n t f o r a l l conn : Connec to r
i n s e l f . C o n n e c t o r s |

f o r a l l r : Role i n conn . Ro les |
e x i s t s comp : Component
i n s e l f . Components |

e x i s t s p : P o r t i n comp . P o r t s |
a t t a c h e d (p , r)
and ((s a t i s f i e s T y p e (p , i n p u t T)
and s a t i s f i e s T y p e (r , s inkT))
o r (s a t i s f i e s T y p e (p , o u t p u t T)
and s a t i s f i e s T y p e (r , sou rceT)))

2. The second constraint implies two sub-constraints:
(a) The graph should be connected:

i n v a r i a n t f o r a l l c1 , c2 : Component
i n s e l f . Components |

c1 ! = c2 −> r e a c h a b l e (c1 , c2)

(b) And, it contains n-1 arcs (connectors), n being
the number of vertices (components):

i n v a r i a n t s i z e (s e l f . C o n n e c t o r s)
== s i z e (s e l f . Components)−1

3. The last constraint stipulates that the tree must be a list.
It may be expressed as following:

i n v a r i a n t f o r a l l comp : Component
i n s e l f . Components |

s i z e (comp . P o r t s) = = 2

2

and e x i s t s p : P o r t i n comp . P o r t s |
s a t i s f i e s T y p e (p , i n p u t T)
and e x i s t s p : P o r t i n comp . P o r t s |
s a t i s f i e s T y p e (p , o u t p u t T)

The constraints, described above, guarantee the struc-
tural compliance with the pipeline style at this stage. Dur-
ing the following stages, we should also be able to check
whether this style is still respected.

2.2 Component Design Stage

Before implementing ACS, using CORBA components,
we decided to establish an intermediate UML model for a
smooth transition2. In this case, the constraint specification
CS1 should be transformed into CS1’ (see figure 1). Ad-
ditional constraints specific to this UML diagram may be
added (CSS2, in figure 1). For example, to meet a maintain-
ability requirement, we may specify in CSS2 that the ACS
component should provide no more than two interfaces. At
this stage, the overall constraint specification (noted CS2 in
the figure) consists of CS1’ union CSS2. Unfortunately, nei-
ther the CSS2 constraint nor those expressed at the previous
stage (CS1’) can be specified and checked using the UML
language. This is due to the fact that its predicate language
(OCL) cannot express this type of constraints, which imply
restrictions on UML meta-classes, such as Component or
Interface. Consequently, there is no means: i) to guarantee
that CS1’ is respected and ii) to document CSS2, in order to
be explicit and checkable.

2.3 Component Implementation Stage

At this stage, we should also be able to transform CS2
into CS2’ and possibly add other constraints (CSS3). CS2’
represents here the mapping of the CS2 constraints into the
CORBA Component Model. The overall constraint spec-
ification (noted CS3 in the figure) consists of CS2’ union
CSS3. As in the previous stage, there is no constraint lan-
guage in this technology which allows the definition of
CSS3. In addition, there is no means to transform CS2 into
CS2’.

2.4 An Evolution Scenario

Let us suppose the following evolution scenario:
To gain performance in the application processing, we

decide to send directly some data, which are not useful for
local logging, to the central server.

2Recent experiments [14] showed also that some ADLs and the UML
can be used in a complementary fashion, in order to make better analysis
of software architectures.

One solution to meet the requirement above is to add
a direct connection between the components AccessCon-
troller and Transmitter. Unfortunately, this change breaks
the pipeline structure of the system architecture and conse-
quently weakens its level of maintainability. If this change
is made on the architecture design, the system maintainer is
notified of the consequences, because the pipeline style was
formally described (CS1 specification) and thus checkable.
However, if it is made on the UML diagrams, or on imple-
mentation models, which is often the case, there is no mean
to notify the system maintainer.

The next section introduces ACL, a constraint language
which allows the specification of structural constraints at
each stage of a component-based software development
process (CS1, CSS2 and CSS3 in the previous example).
In addition to the specification of architectural constraints,
ACL associated to its interpreter (ACE) allows a transfor-
mation process of constraints from one stage to another (in
the example above, transform CS1 into CS1’ and CS2 into
CS2’). This implies the persistence of architectural choices.

3 Architectural Constraint Language

Because many aspects of a software might be of inter-
est, we can use various modeling languages to highlight one
or more particular perspectives or views of that system de-
pending on what is relevant at every point of the develop-
ment process. A language is used during such or such stage
of the process for its effectiveness at solving the problems
arising at this particular stage. Each language uses concepts
defined in its metamodel. Because two languages can be
based on different concepts, it is frequent to have to manage
many concepts during the software development process.

In order to propose a constraint language usable at all the
stages of the software development process and to support
this diversity, we chose a two-level solution. The first level
is based on a constraint language, easy to grasp and stan-
dardized by the OMG, namely OCL [13]. The second level
takes the form of a set of metamodels. Each metamodel
enables us to adapt ACL, without making changes on its
grammatical part, to express predicates on models written
in a specific language. For instance, we propose a meta-
model for xAcme architecture descriptions, UML 2 compo-
nent models or CCM component descriptions. To specify a
constraint on an xAcme model, we write an OCL statement
in the context of the proposed xAcme metamodel (see fig-
ure 2). This two-level structure guarantees that at each stage
of the software development process, the designer uses the
same notation (OCL), but applied to the concepts that he is
accustomed to handle usually at this stage.

Transforming an architectural constraint from one model
to another in order to check it, is often difficult because there
is not a one-to-one concept mapping between two meta-

3

ArchInstance
+id[1]: Identifier
+description[1]: Description

ComponentInstance
+id[1]: Identifier
+description[1]: Description

ConnectorInstance
+id[1]: Identifier
+description[1]: Description

LinkInstance
+id[1]: Identifier
+description[1]: Description

Group
+id[1]: Identifer
+description[1]: Description
+member[*]: ArchInstance

* * * *

InterfaceInstance
+id[1]: Identifier
+description[1]: Description
+direction[1]: Direction

SubArchitecture

InterfaceInstanceMapping
+outerInterfaceInstance[1]: InterfaceInstance
+innerInterfaceInstance[1]: InterfaceInstance

* 0..1

*

Point
+anchorOnInterface[1]: InterfaceInstance

2

+componentInstance +connectorInstance +linkInstance +group

1 +ownedArchInstance

+endPoint+subArchitecture+interfaceInstance

+interfaceInstanceMapping

+archInstance

1

1

Direction
+none
+in
+out
+inout

Figure 2. The xArch metamodel

models. For example, xAcme connectors or component hi-
erarchical descriptions have not direct equivalents in CCM.
To solve this problem we proposed a two-step transforma-
tion process using an intermediate representation. We intro-
duced a generic metamodel, called ArchMM. Expressions
written on a given metamodel are systematically translated
internally into their equivalents defined on ArchMM. The
latter plays the role of a pivot between the different meta-
models.

In the sequel, we will describe the OCL part of ACL, the
different metamodels that enable us to cover the develop-
ment process, how ArchMM was designed and finally how
it is used to translate constraints written from one meta-
model to another.

3.1 Constraint Language

OCL is originally used to add more semantics to UML
semi-formal diagrams. It has been standardized by the
OMG as version 1.5 and is currently available as the UML 2
final adopted specification [12]. In addition, Briand et al. [2]
has recently experimented the OCL language in the main-
tenance of UML models. They concluded that it improves
significantly the comprehension and the maintainability of
these models.

Usually OCL is used to express constraints on a UML
model, whereas, we use it to express constraints on a meta-
model. Thus, constraints such as ”components in the model
must have less than 10 required interfaces” can be ex-
pressed. Unfortunately they have a global scope. They
apply to all components and not to a particular one as we
would like it to be. To limit the scope of such constraints
to a particular component, we propose to slightly modify
the syntax and semantics of the context part in OCL. At the

syntactic level, every constraint context should introduce an
identifier. This identifier must be the name of a particular
instance of the meta-class cited in the context. At the se-
mantic level, we interpret a constraint with the meaning it
would have in the context of the metaclass but limiting its
scope only to the instance cited in the context.

According to this principle, the following constraint, ap-
plied to the UML metamodel (see figure 3), states that the
required interface ArchivalStorage, of the primitive com-
ponent of name Logger (introduced in the example of sec-
tion 2), must be bound to one and only one component.
c o n t e x t Logger : Component i n v :
Logger . ownedPort−>s e l e c t (p : P o r t |
p . r e q u i r e d . name = ’ A r c h i v a l S t o r a g e ’)
. end−>s i z e () = 1

Thus, with a tiny modification of OCL syntax and se-
mantics, we succeed in describing constraints that present
an introspection mechanism, by using a ’bicephalous’ lin-
guistic structure OCL/Metamodel. A component is able to
define a constraint on its own structure. Note that only in-
variants can be expressed in ACL. Pre- and post-conditions
are dismissed.

3.2 Architecture Metamodels

In order to cover the development process, we propose
different metamodels.

3.2.1 Architectural Abstractions in the ADLs.

In the literature, there exists a plethora of domain-specific
and general purpose ADLs. We studied many languages
and we established a MOF metamodel for each one. For the
sake of brevity, we focus only on those of general purpose,

4

Classifier

StructuredClassifier

EncapsulatedClassifier

Class

Component
+isIndirectlyInstantiated: Boolean

Connector
+kind: ConnectorKind

ConnectorEndConnectableElement Association

Property

Interface
+name: String [0..1]

StructuralFeature

+/role
*

*0..1

+ownedAttribute
*+/part

* 0..1

+/required

+/provided

**

*

*
*

* +redefinedPort

+ownedPort

*

0..1

0..1 +ownedConnector

*

*
+redefinedConnector

1

2..* +end

0..1

+role +end

*

+type0..1

*

*

<<enumeration>>

ConnectorKind
+assembly
+delegation

Realization Classifier
+abstraction

0..1
*

+realization

1

+realizingClasifier

Port

Figure 3. A flattened excerpt of the UML 2 component metamodel

like xAcme and xADL 2.0 [5]. xAcme and xADL 2.0 share
the same core representation, namely xArch. xArch is a
common representation for architecture description which
can be extended to provide XML notation for other existing
ADLs. It contains the primitive elements that compose an
architecture description from a structural perspective.

In figure 2, we present a metamodel illustrating xArch.
An xArch architecture instance is composed of a set of
component instances, connector instances, link instances
and logical groups of the previous architectural elements.
Component or connector instances define a set of interface
instances and optionally a subarchitecture for a hierarchi-
cal description. The subarchitecture defines a set of ar-
chitecture instances and a list of mappings between inner
and outer interface instances. Link instances bind two end
points, each one references an interface instance.

xAcme adds to these elements, properties which can be
associated to component instances, connector instances and
interface instances. It distinguishes also type definitions of
the architectural elements from instance descriptions. In ad-
dition, it introduces constraints to the different elements.

xADL 2.0 extends the xArch metamodel with some con-
figuration management concepts, like guards for architec-
tural constraints, optional architectural elements, variants
of architectural elements which can be used as alternatives,
versions of architecture descriptions, and differences in de-
scriptions.

3.2.2 Architectural Abstractions in the UML 2 Meta-
model.

Unlike in the version 1.5 of the UML specification, in the
final adopted specification of the UML 2 a component is
considered as a first-class modelling element. It inherits

from the metaclass Class, thus it can participate in asso-
ciations and in generalizations. It also specializes Encapsu-
latedClassifier and StructuredClassifier. So, it can declare
ports that group provided and required interfaces, and can
be assembled with other components through assembly and
delegation (hierarchical) connectors.

3.2.3 Architectural Abstractions in the Component
Technologies.

Among existing component technologies, we studied the
Enterprise JavaBeans, Microsoft COM+ and CORBA Com-
ponent Model (CCM). We present only the latter as it is the
OMG standard, but also because it aims at synthesising the
concepts found in the other technologies. Through the fig-
ure 4 we illustrate these concepts.

A CORBA component defines a set of ports. Each one
declares either, emitted, published or consumed events, or
used or provided interfaces. A component can be derived
from existing components, declare many supported inter-
faces, may declare a set of attributes and should define one
home interface. An interface is characterized by a set of
operations. A component assembly defines a set of connec-
tions. Each one links a consumed port to a published or
emitted port, a provided to a used port or two home inter-
faces together.

3.2.4 ArchMM: A Generic Architecture Metamodel

This metamodel represents a support for all architectural
elements that can be constrained. Because constraints
should be expressed throughout the software life cycle, the
metamodel should contain abstractions present at the same
time in analysis/design models (architecture descriptions or

5

Component
+id
+kind: ComponentKind

Port
+kind: PortKind

+component

+port
*

1

Interface
+id
+name

+used +provided0..1 0..1
+home
1

+derivedComponent*1

<<enumeration>>

PortKind
+Facet
+Receptacle
+Event

ComponentAssembly
+id
+derivedFrom

Connection
*

+connection

1

2+connection
1

1 1

+emitted

Event
+name
+type
+policy

+published

+consumed

0..1
0..1

<<enumeration>>

ComponentKind
+Session
+Service
+Process
+Entity
+Unclassified

Operation
+id
+name

*

+operation 1

+interface

+ports

+supported
*

11

0..1

1 1 1

2
+interfaces

+connection 1

Attribute
+name
+type
+value

*+attribute

1

Figure 4. The CORBA component structural metamodel

UML component diagrams) and in component-based imple-
mentation models.

Starting from the previous metamodels, we designed a
generic MOF-compliant metamodel ArchMM which is il-
lustrated in figure 5. It supports the structural description of
components, which correspond in the previous metamodels
to component instances in xArch metamodel and compo-
nents in CCM. These are described as a set of ports. These
ports define a set of interfaces of different kinds: required
(used interfaces in CCM and in interfaces in xArch), pro-
vided (provided in CCM and out interfaces in xArch), etc.
Events in CCM and in many other ADLs are considered in
ArchMM as interfaces. So, ArchMM interfaces can also be
of various kinds: emitted, published or consumed like in
CCM. Interfaces define a set of services, which correspond
to CCM operations.

ArchMM supports also connectors as first class entities.
They are described as a set of roles, which correspond to
connector interfaces in xArch. The metamodel abstracts hi-
erarchical models of components and connectors. Compos-
ite components or connectors have configurations, which
correspond to subarchitectures in xArch metamodel. Each
configuration defines a set of bindings. A binding, corre-
sponding to a connection in CCM and to a link instance or
an interface instance mapping in xArch, links: i) two com-
ponent interfaces together, ii) a component interface to a
connector role, iii) the port of a composite component to the
interface of one of its subcomponents, iv) or, two connector
roles together.

Properties are associated to components, to connectors
and to interfaces. They are named and have a typed value.
They correspond to CCM component attributes or xAcme
properties.

Note that CCM is a flat component model. That is, no
hierarchical descriptions of components or connectors are
possible. In order to perform transformations of hierarchi-

cal descriptions into CCM, component assemblies are used.
These allow us to define flattened hierarchical descriptions.

Some abstractions exist in all the metamodels, such as
component and required or provided interface. However,
some concepts present in ArchMM do not exist in some
other metamodels. These concepts, such as port, binding,
connector or role, may be inferred during the transformation
to ArchMM. For example, in CCM there are no connectors.
When transforming CCM descriptions into ArchMM, con-
nectors are generated with two roles. Depending on the port
kind of the connected components Facet, Receptacle and
Event, the generated roles are, respectively, Callee, Caller
and Listener or Trigger. The distinction between events of
kind Published and Emitted of the CCM metamodel is made
at Interface level in ArchMM.

3.3 Examples of Constraints

In this section, we present some examples of architec-
tural constraints using ACL applied to ArchMM. We start
with a simple example which states that no more than two
provided interfaces can be described by a component. De-
spite its simplicity, this constraint is not of less importance.
Such constraints can be found in the quality manuals of cer-
tain software development organizations. This kind of con-
straints can be described on all the subcomponents3 of the
component ACS as following:
c o n t e x t ACS: CompositeComponent i n v :
ACS. subComponent−>f o r A l l (C : Component |C . p o r t
. i n t e r f a c e −>s e l e c t (i : I n t e r f a c e |
i . k ind = ’ Prov ided ’)−> s i z e () <= 2)

Another type of constraints can be expressed with ACL.
In the constraint below, we describe a rule using a quality
measure for components, which are cited modules by its

3For the moment, we suppose that only direct subcomponents can be
accessible from a composite component.

6

Component
+id: String
+name: String

Connector
+id: String
+name: String

Port
+id: String
+name: String
+kind: PortKind

Role
+id: String
+name: String
+kind: RoleKind

PrimitiveComponent CompositeComponent PrimitiveConnectorCompositeConnector

Configuration
+id: String

Binding
+id: String

+interface

1..*
1 +interface

2..*

1

1 1
+configuration+configuration

1 1

1

*

Interface
+id: String
+name: String
+kind: InterfaceKind

1 1..*

0..2 0..2

*
*

+port

+superComponent 1

+subComponent*

+connector

*

0..2

Service
+id: String
+name: String

1

*
+attribute

1

1..*
+service

Property
+id: String
+name: String
+type: String
+value: String

1

* +attribute

1

*
+attribute

<<enumeration>>

PortKind
+Input
+InputOutput
+Output

<<enumeration>>

InterfaceKind
+Consumed
+Emitted
+Home
+Provided
+Published
+Required

<<enumeration>>

RoleKind
+Adapted
+Adaptee
+Callee
+Caller
+Listener
+Sink
+Source
+Trigger

Figure 5. ArchMM: A generic metamodel representing architectural abstractions

authors [6]. This quality measure is CBM, which stands for
Coupling Between Modules.
c o n t e x t ACS: CompositeComponent i n v :
ACS. p o r t . i n t e r f a c e . b ind ing −>s i z e () < 5

This metric is the equivalent of CBO (Coupling Between
Objects) [4] for object-oriented applications. It represents
the number of non-directional, distinct inter-component ref-
erences. In order to preserve a certain level of maintainabil-
ity of the ACS component and to limit its dependencies with
the other components, we described a constraint stating that
CBM should be low (CBM < 5) [6].

The third example introduces a general architectural con-
straint which prevents the existence of a connector binding
ACS subcomponents to an external component.
c o n t e x t ACS: CompositeComponent i n v :
ACS. c o n f i g u r a t i o n . b i n d i n g
−>f o r A l l (b : B ind ing |ACS . subComponent . p o r t . i n t e r f a c e
−>i n c l u d e s (b . i n t e r f a c e))

The following example addresses a typical evolution
constraint involving two consecutive versions. This con-
straint states that only one provided interface can be added
to a component between two consecutive versions [18] of
the architecture. It can be expressed as follows:
c o n t e x t ACS: CompositeComponent i n v :
ACS. p o r t . i n t e r f a c e
−>s e l e c t (i : I n t e r f a c e | i . k ind = ’ Prov ided ’) @old
−>comparedTo (ACS . p o r t . i n t e r f a c e
−>s e l e c t (i : I n t e r f a c e | i . k ind = ’ Prov ided ’))
−>s i z e () <= 1

Note that we introduced a new syntactic construct to
OCL so that we can reference old versions of architec-
ture descriptions: the @old mark. Unlike @pre which is
used, traditionally in OCL, only in postconditions, the @old

can be used in invariants. The @old returns the descrip-
tions of the former version of an architecture. In this ex-
ample, it returns a collection of the provided interface de-
scriptions of the ACS component version before evolution.
Note that we have also added a collection operation: com-
paredTo(c2:Collection(T)):Collection(T). It returns a col-
lection which represents the difference between the collec-
tion to which it is applied and the parameter collection (c2).
We introduced this new operation in order to not affect OCL
semantics of the set difference operator (-). Indeed, tradi-
tionally in OCL, the set difference operator compares ref-
erences of object collections, whereas comparedTo(...) uses
the value of the id attribute. In our situation, we are con-
fronted to a comparison of collections of architectural de-
scriptions. The elements of these collections are objects
which have different references from one version to another,
but the same value of the id attribute.

As stated in section 2, ACS subcomponents are orga-
nized as a pipeline. This pattern can be structurally de-
scribed using ACL as following:

−− Each subcomponent s h o u l d have
−− i n p u t and o u t p u t p o r t s
c o n t e x t ACS: CompositeComponent i n v :
ACS. subComponent . p o r t
−>f o r A l l (p : P o r t | (p . k ind = ’ Inpu t ’)
o r (p . k ind = ’ Output ’))
and
−− Each c o n n e c t o r s h o u l d d e f i n e two r o l e s
−− (one s i n k and one s o u r c e)
ACS. c o n f i g u r a t i o n . b i n d i n g . r o l e . c o n n e c t o r−>AsSet ()
−>f o r A l l (con : Connec to r | (con . r o l e −>s i z e () = 2)
and ((con . r o l e . k ind = ’ Source ’)
o r (con . r o l e . k ind = ’ Sink ’)))
and
−− Each c o n n e c t o r b i n d s two components
−− (i n p u t bound t o s i n k and o u t p u t t o s o u r c e)

7

ACS . c o n f i g u r a t i o n . b i n d i n g . r o l e . c o n n e c t o r−>AsSet ()
−>f o r A l l (con : Connec to r | con . r o l e
−>f o r A l l (r : Role |ACS. subComponent
−>e x i s t s (com : Component | com . p o r t
−>e x i s t s (p : P o r t | (r i n ACS. c o n f i g u r a t i o n . b i n d i n g)
and ((p . k ind = ’ Inpu t ’) and (r . k ind = ’ Sink ’))
o r ((p . k ind = ’ Output ’) and (r . k ind = ’ Source ’))
))))
and
−− The graph s h o u l d be c o n n e c t e d
ACS . c o n f i g u r a t i o n . i s C o n n e c t e d
and
−− The graph s h o u l d c o n t a i n t h e number
−− of v e r t i c e s − 1 , a r c s
ACS . c o n f i g u r a t i o n . b i n d i n g . r o l e . c o n n e c t o r
−>AsSet()−> s i z e () = ACS . subComponent−>s i z e ()−1
and
−− The graph r e p r e s e n t s a l i s t
ACS . subComponent−>f o r A l l (com : Component |
(com . p o r t−>s i z e () = 2)
and (com . p o r t−>e x i s t s (p : P o r t | p . k ind = ’ Inpu t ’))
and (com . p o r t−>e x i s t s (p : P o r t | p . k ind = ’ Output ’)))

The Configuration meta-class of ArchMM contains
some attributes and operations that allow the expression of
constraints involving certain graph properties, such as con-
nected graphs (in the constraints above), regular graphs,
simple graphs, etc. In addition, we are able to query, for
example, for the predecessors and the successors of a ver-
tex (component), the in- and out-degrees of a vertex, the
distance between two vertexes or the graph diameter.

3.4 Use Scenario of ACL

As stated previously, the constraint language that we pro-
posed (ACL) is not exclusively associated to ArchMM. In
fact, it is associated to many metamodels. Each association
ACL/metamodel constitutes an ACL profile. So, there are as
many profiles as ADLs and component technologies. Each
developer uses the profile that corresponds to the language
or the technology that he usually uses. In this way, he is not
bound to manipulate some concepts, present in ArchMM,
and that he is not familiar with, like for example, connec-
tors or composite components for a CCM developer.

For the existing ADLs, having a constraint language, for
example xAcme’s Armani, ACL can be used as a comple-
mentary predicate language. It can describe, in addition
to general structural constraints, constraints of pure evo-
lution, stated previously, or constraints using graph oper-
ations. However, for the existing specifications written in
xAcme, the architect is requested to translate manually the
constraints written in Armani into ACL profile for xAcme.
Consider the example presented in section 2. The pipeline
structural constraints defined in Armani can be expressed in
ACL profile for xAcme as follows:

c o n t e x t ACS: Componen t Ins t ance i n v :
ACS. s u b A r c h i t e c t u r e . a r c h I n s t a n c e
. c o m p o n e n t I n s t a n c e . i n t e r f a c e I n s t a n c e
−>f o r A l l (i : I n t e r f a c e I n s t a n c e | (i . d i r e c t i o n = ’ in ’)
o r (i . d i r e c t i o n = ’ out ’))
and
ACS. s u b A r c h i t e c t u r e . a r c h I n s t a n c e
. c o n n e c t o r I n s t a n c e −>f o r A l l (con : C o n n e c t o r I n s t a n c e |
(con . i n t e r f a c e I n s t a n c e −>s i z e () = = 2)
and ((con . i n t e r f a c e I n s t a n c e . d i r e c t i o n = ’ in ’)
o r (con . i n t e r f a c e I n s t a n c e . d i r e c t i o n = ’ out ’)))
and
ACS. s u b A r c h i t e c t u r e . a r c h I n s t a n c e
. c o n n e c t o r I n s t a n c e −>f o r A l l (con : C o n n e c t o r I n s t a n c e |
con . i n t e r f a c e I n s t a n c e
−>f o r A l l (iCon : I n t e r f a c e I n s t a n c e |
ACS. s u b A r c h i t e c t u r e . a r c h I n s t a n c e
. componen t In s t a n c e −>e x i s t s (com : Componen t Ins t ance |
com . i n t e r f a c e I n s t a n c e
−>e x i s t s (iCom : I n t e r f a c e I n s t a n c e | (iCon i n ACS
. s u b A r c h i t e c t u r e . a r c h I n s t a n c e . l i n k I n s t a n c e
. p o i n t . a n c h o r O n I n t e r f a c e)
and ((iCom . d i r e c t i o n = ’ in ’)
and (iCon . d i r e c t i o n = ’ out ’))
o r ((iCom . d i r e c t i o n = ’ out ’)
and (iCon . d i r e c t i o n = ’ in ’))))))
and
ACS. s u b A r c h i t e c t u r e . i s C o n n e c t e d ()
and
ACS. s u b A r c h i t e c t u r e . a r c h I n s t a n c e . c o n n e c t o r I n s t a n c e
−>s i z e () = ACS. s u b A r c h i t e c t u r e . a r c h I n s t a n c e
. componen t In s t a n c e −>s i z e () − 1
and
ACS. s u b A r c h i t e c t u r e . a r c h I n s t a n c e . c o m p o n e n t I n s t a n c e
−>f o r A l l (comp : Componen t Ins t ance |
(comp . i n t e r f a c e I n s t a n c e −>s i z e () = 2)
and (comp . i n t e r f a c e I n s t a n c e
−>e x i s t s (i : I n t e r f a c e I n s t a n c e | i . d i r e c t i o n = ’ in ’))
and (comp . i n t e r f a c e I n s t a n c e
−>e x i s t s (i : I n t e r f a c e I n s t a n c e |
i . d i r e c t i o n = ’ out ’)))

In one of the invariants, we make use of the operation
isConnected(). This attribute is associated, in this ACL pro-
file, to the type SubArchitecture. It has the same semantics
as for the type Configuration in ACL profile for ArchMM.
All graph operations are associated to the SubArchitecture
type.

As we remark through this example, the syntaxes of Ar-
mani and of ACL profile for xAcme are quite similar. We
believe that the manual translation could be performed eas-
ily. The advantage of translating constraints into the ACL
profile is to have a homogeneous constraint specification
throughout the software development process. In addition,
transformations can be done automatically to obtain con-
straints that apply to implementation models, as shown be-
low. However, the expression of constraints dealing with
the behavioral aspect is not yet taken into account in ACL.

The constraints are evaluated each time new changes
are made on the architecture or the component descrip-
tion. Upon their evaluation, these constraints are first trans-
formed into constraints expressed in the standard ACL pro-

8

file for ArchMM. The architecture or the component de-
scription is also transformed into a pivot description, which
is ArchMM-compliant. This transformation to the standard
ACL profile is also used to make transformations from one
profile to another (different from the standard one). For ex-
ample, the pipeline constraints are transformed into the fol-
lowing when implementing the system in CCM.
c o n t e x t ACS: ComponentAssembly i n v :
ACS. c o n n e c t i o n . p o r t−>f o r A l l (p : P o r t |
(p . p rov ided −>s i z e () = 1)
o r (p . used−>s i z e () = 1))
and
ACS. c o n n e c t i o n −>f o r A l l (con : Connec t ion |
(con . p o r t . p rov ided −>s i z e () = 1)
and (con . p o r t . used−>s i z e () = 1))
and
ACS. i s C o n n e c t e d ()
and
ACS. c o n n e c t i o n −>s i z e ()
= ACS. c o n n e c t i o n . p o r t . component
−>AsSet()−> s i z e () − 1
and
ACS. c o n n e c t i o n . p o r t . component−>a s S e t ()
−>f o r A l l (com : Component |
com . p o r t−>s i z e () = 2
and com . p o r t−>e x i s t s (p : P o r t | p . p r o v i d e d
−>s i z e () = 1)
and com . p o r t−>e x i s t s (p : P o r t | p . used−>s i z e () = 1)

Note that the invariant that checks for the existence of
only two roles per connector has not been maintained in
this constraint specification, because the connector abstrac-
tion does not exist in CCM metamodel. Note also that in this
ACL profile, graph operations are associated to the Compo-
nentAssembly type. This is the case for the operation isCon-
nected() in one of the invariants.

As in the previous case, this constraint is first trans-
formed so a constraint which conforms to ArchMM before
evaluation.

In the example presented in section 2, we established a
UML model before implementing the system in CCM. Note
that the transformation from the ACL profile for xAcme to
the one for UML is done in the same manner as if we di-
rectly implemented the system in CCM.

4 Prototype Tool

In order to validate our approach, we developed ACE:
Architectural Constraint Evaluator. This prototype allows
the edition and the evaluation of architectural constraints
specified in different stages. In its current version, it inter-
prets ACL profile for xAcme at the architecture design stage
and ACL profile for the Fractal Component Model [3] at the
implementation stage.

ACE uses the XMI format of the metamodel to guide
the developer in editing his architectural constraints. Con-
straints are transformed to be compliant with ArchMM, in

order to be evaluated. This transformation is performed on
the basis of a list of mappings between xAcme or Frac-
tal metamodel and ArchMM. The generated constraints are
evaluated on an intermediate model, which is obtained by a
transformation of xAcme or Fractal descriptions. This pivot
model is a specific instance of ArchMM which is defined as
a set of XML schemas. The module performing constraint
evaluation has been built upon a slightly modified version
of OCL Compiler 4.

Suppose a constraint defined at design stage using the
ACL profile for xAcme. In order to evaluate this constraint
at implementation stage (in this case, on Fractal descrip-
tions), the following steps will be performed: i) transform
the constraint specified using ACL profile for xAcme into
the standard profile; ii) transform the Fractal architecture
description into the pivot model; iii) and evaluate the trans-
formed constraint on the pivot model.

During a maintenance process, a new version of an ar-
chitecture or a component description can be introduced to
ACE. The constraints are evaluated for the new description,
which is then transformed into the pivot model.

ACE was designed in order to be easily extended to sup-
port other ADLs or component technologies, like those pre-
sented in this paper (CCM or UML 2). For each new added
ADL or component technology, a new metamodel should be
established, which would generate a new ACL profile. Only
the model and constraint transformers should be enhanced.

5 Related Work

Some existing ADLs provide constraint languages [8].
In WRIGHT [1], the constraint language used is a subset
of the Z specification language [16]. In xAcme, architec-
tural constraints are expressed using the Armani predicate
language. All these languages have in common the same
basis as with OCL. They are based on FOL (First Order
Logic), manipulate collections of architectural elements and
provide collection operations. In these languages, the archi-
tectural elements, to be constrained, are part of the language
and are defined as keywords. The approach that we pro-
posed disconnects these elements through the generic archi-
tecture metamodel, ArchMM. Thus, it becomes possible to
cover all the development process with the same constraint
language. ACL allows also the specification of pure evo-
lution constraints, whereas the ADLs focus only on design
constraints.

In [7], Medvidovic et al. propose three approaches to
support modeling software architectures in UML 1.5. In
the second approach, the authors suggest to extend UML
through stereotypes, tagged values and OCL constraints in
order to define architectural styles. In this work, the con-

4Available at http://dresden-ocl.sourceforge.net/

9

straints are considered as general rules that apply to all mod-
elled architectural elements. However, in our approach the
constraints are considered as specific rules that apply only to
a component of the current model. They stipulate particular
choices of the developer. We think that the two approaches
are complementary. The first provides capabilities to define
common rules for several projects, while the second can be
used to specify rules for a specific project.

6 Conclusion and Future Work

In this paper, we presented a constraint language which
allows to make explicit architectural choices at every stage
of the component-based development process. This lan-
guage was designed in such a manner to be extended easily
in order to support other design or implementation models.
The originality of this language is the separation between
the basic constraint expression mode and the manipulated
architectural concepts.

Throughout development process, various concepts are
handled. The separation that we propose, enables us to use
the same syntax to express constraints at different stages of
the development process. Moreover, it is easier to identify
the mappings between concepts from different metamodels,
when they are not embedded into the language. Thus, it
becomes easier to define constraint transformation mecha-
nisms. We think that our approach may be helpful in the
context of Model Driven Engineering.

The next step of our work will be the extension of our
approach on behavioral aspect of architecture descriptions.
Thus, we project to enhance ACL to provide such capa-
bilities, by extending ArchMM with behavioral represen-
tations.

Acknowledgment

This material is based upon work supported by the Brit-
tany Region Council under contract number 20046839.

References

[1] R. Allen. A Formal Approach to Software Architecture. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA,
May 1997.

[2] L. C. Briand, Y. Labiche, H. D. Yan, and M. Di Penta.
A controlled experiment on the impact of the object con-
straint language in UML-based maintenance. In Proceed-
ings of the International Conference on Software Mainte-
nance (ICSM’04), pages 380–389, Chicago, Illinois, USA,
2004.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quma, and
J. B. Stefani. An open component model and its support
in Java. In Proceedings of the International Symposium on

Component-based Software Engineering. Held in conjunc-
tion with ICSE’04, Edinburgh, Scotland, may 2004.

[4] S. R. Chidamber and C. F. Kemerer. Towards a metrics suite
for object-oriented design. IEEE Transactions on Software
Engineering, 20(6):476–493, 1994.

[5] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A com-
prehensive approach for the development of modular soft-
ware architecture description languages. ACM Transactions
On Software Engineering and Methodology, 14(2):199–245,
2005.

[6] M. Lindvall, R. Tesoriero, and P. Costa. Avoiding architec-
tural degeneration: An evaluation process for software ar-
chitecture. In Proceedings of the Eighth IEEE Symposium
on Software Metrics (METRICS’02), pages 77–86, Ottawa,
Ontario, Canada, June 2002.

[7] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E.
Robbins. Modeling software architectures in the unified
modeling language. ACM Transactions On Software Engi-
neering and Methodology, 11(1):2–57, 2002.

[8] N. Medvidovic and N. R. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000.

[9] Microsoft. COM: Component object model technologies.
http://www.microsoft.com/com/, 2005.

[10] R. T. Monroe. Capturing software architecture design ex-
pertise with Armani. Technical report, School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, USA, 2001.

[11] OMG. Corba components, v3.0, adpoted specification, doc-
ument formal/2002-06-65. Object Management Group Web
Site: http://www.omg.org/docs/formal/02-06-65.pdf, June
2002.

[12] OMG. Meta Object Facility (MOF) 2.0 final adopted
specification, document ptc/03-10-04. Object Manage-
ment Group Web Site: http://www.omg.org/docs/ptc/03-10-
04.pdf, 2003.

[13] OMG. UML 2.0 OCL final adopted specification, docu-
ment ptc/03-10-14. Object Management Group Web Site:
http://www.omg.org/docs/ptc/03-10-14.pdf, 2003.

[14] R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan, and
D. Zhang. Understanding tradeoffs among different archi-
tectural modeling approaches. In Proceedings of the Fourth
Working IEEE/IFIP Conference on Software Architecture
(WICSA’04), pages 47–56, June 2004.

[15] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[16] J. Spivey. The Z Notation: A Reference Manual. Prentice
Hall, 2nd edition, 1992.

[17] Sun-Microsystems. Enterprise JavaBeans(TM) specifica-
tion, version 2.1. http://java.sun.com/products/ejb, Novem-
ber 2003.

[18] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala component model for consumer elec-
tronics software. IEEE Computer, 33(3):78–85, March
2000.

[19] xAcme: Acme Extensions to xArch. School of Computer
Science Web Site: http://www-2.cs.cmu.edu/ acme/pub/x-
Acme/, 2001.

10

	Introduction
	Illustrative Example
	Architectural Design Stage
	Component Design Stage
	Component Implementation Stage
	An Evolution Scenario

	Architectural Constraint Language
	Constraint Language
	Architecture Metamodels
	Architectural Abstractions in the ADLs.
	Architectural Abstractions in the UML 2 Metamodel.
	Architectural Abstractions in the Component Technologies.
	ArchMM: A Generic Architecture Metamodel

	Examples of Constraints
	Use Scenario of ACL

	Prototype Tool
	Related Work
	Conclusion and Future Work

