
HAL Id: hal-00498771
https://hal.science/hal-00498771

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NFRs-aware architectural evolution of component-based
software

Chouki Tibermacine, Régis Fleurquin, Salah Sadou

To cite this version:
Chouki Tibermacine, Régis Fleurquin, Salah Sadou. NFRs-aware architectural evolution of
component-based software. 20th IEEE/ACM international Conference on Automated software en-
gineering, Nov 2005, Long Beach, United States. pp.388-391. �hal-00498771�

https://hal.science/hal-00498771
https://hal.archives-ouvertes.fr


NFRs-Aware Architectural Evolution of Component-Based
Software∗

Chouki Tibermacine
VALORIA Lab.

Université de Bretagne Sud
F-56000 Vannes, France
tibermac@univ-ubs.fr

Régis Fleurquin
VALORIA Lab.

Université de Bretagne Sud
F-56000 Vannes, France
fleurqui@univ-ubs.fr

Salah Sadou
VALORIA Lab.

Université de Bretagne Sud
F-56000 Vannes, France
sadou@univ-ubs.fr

ABSTRACT
During software maintenance, some non-functional proper-
ties may be lost. This is due to the lack of an explicit def-
inition of their links with the corresponding architectural
choices. In this paper, we present a solution that automates
the checking of non-functional properties after the evolution
of a component-based software. Our approach emphasizes
the interest of formally documenting the links binding non-
functional requirements to architectural choices. The pro-
posed formalism is based on the Object Constraint Language
(OCL) applied to a software component metamodel. We
also present a prototype tool which uses this documentation
to warn the developer of possible effects of an architectural
change on non-functional requirements.

1. INTRODUCTION
Among the maintenance activities, regression testing is

one of the most expensive. When problems are found dur-
ing this activity, corrections on the software architecture
are required. This involves a sequence of iterations of these
maintenance activities, which increases undoubtedly its cost
more and more. Often, the problems are caused by the
lack of knowledge, during maintenance, of the reasons which
had led, the initial architects, to make some architectural
choices. Indeed, without this knowledge, it is easy to lose
some properties by a simple change on a specific architec-
tural choice.

In this paper, we present an approach which helps reduce
the number of the necessary iterations, in the context of
component-based software. It consists of warning the soft-
ware developer of the possible loss of certain non-functional
properties during an evolution, well before starting regres-
sion tests. Under the assumption that the architecture of
an application is determined by the non-functional require-

∗This material is based upon work supported by the Brit-
tany Region Council under contract number 20046839.

.

ments (NFRs) [1] –mainly the quality attributes, such as,
maintainability, portability, availability–, we propose to for-
mally document the links binding non-functional properties
to their realizing architectural choices. Thus, we automate
the checking of these non-functional properties after an ar-
chitectural change has been made.

In the next section, we present the principles of our ap-
proach which resolves the problem pointed above. In sec-
tion 3, we present an implementation of our approach, which
is based on a constraint language and an association mech-
anism. Before concluding and presenting the perspectives,
we discuss some related works in section 4.

2. PRINCIPLES OF OUR APPROACH
Our approach aims at solving the problems mentionned

in the previous section, by expliciting, in a formal way, the
reasons behind the architectural choices. Based on the as-
sumption that architectural choices are determined by non-
functional requirements, we propose to maintain the knowl-
edge of the links binding non-functional properties to archi-
tectural choices. Thus, it becomes possible to automatically
warn the developer, at each architectural evolution stage, of
the potential deterioration of some non-functional proper-
ties.

In the remaining of this paper, we use the following defi-
nitions:

Non-Functional Property (NFP): a statement of the soft-
ware non-functional specification;

Architectural Choice (AC): a part of the software ar-
chitecture that targets one or several NFPs;

Non-Functional Tactic (NFT): a couple composed of an
AC and an NFP defining the link binding one archi-
tectural choice to one non-functional property;

Non-Functional Strategy (NFS): a set of all the NFTs
defined for a software;

The NFS is elaborated during the development of the first
version of the architecture. NFTs appear in each develop-
ment stage where a motivated AC is made. Thus, the NFS
is built gradually and enriched as the project evolves. NFTs
can even be inherited from a Software Quality Plan and,
thus, can emerge even before the beginning of the software
development. During the maintenance, the NFS may be
modified along the following three rules:



P/AC1 P/AC1
Q/AC3

P/AC1
Q/AC3
R/AC4

P/AC1
Q/AC3
R/AC4

PQ/AC2

P/AC1
Q/AC3
R/AC4

PQ/AC2
PR/AC5

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5

P
Q
R

P
Q
R

AC1 AC2
AC2 AC3
AC4

AC2
AC4

AC3
AC2 P

Q
R

P
Q
R

P
Q
R

P
Q
R

AC2
AC4

AC3
AC2

AC2 AC3
AC2

AC3 AC3
AC5

AC5

Figure 1: Assisting the evolution activity with NFS specifications

• Rule 1: ”a consistent system is a system where all its
NFPs are involved in at least one NFT”. This condi-
tion ensures that, at the end of the maintenance pro-
cess, there is no dangling NFP (i.e. with no associated
AC). The breach of this condition implies de facto the
obligation to modify the non-functional specification;

• Rule 2: ”we should not prohibit an evolution stage.
We simply notify the attempt of breaking an AC and
we specify the affected NFPs stated in the NFS”. It is
of the developer’s responsibility, fully aware of the con-
sequences, to maintain or not the modification. If this
modification is maintained, the corresponding NFTs
are discarded. Indeed, The substitution of an architec-
tural choice by another may be done without affecting
the targeted non-functional properties. Moreover, we
can be brought to invalidate, temporarily, a choice to
perform a specific modification;

• Rule 3: ”we can add new NFTs to the NFS”. Thus,
during an evolution, new architectural choices can com-
plete, improve or replace old ones.

On the basis of these rules, we illustrate a maintenance
scenario in figure 1. Let us suppose that in step 0 of a main-
tenance process, there are three NFPs: P, Q and R. During
development, each one has been associated to a number of
ACs. Choices AC1 and AC2 guarantee the property P; AC2
and AC3 target the property Q; and R is achieved by AC4.
Thus, the NFS is composed of five NFTs. These are shown
in the table at the top left of figure 1. In the first step,
the maintainer of the system modifies the architecture. The
result does not anymore hold the choice AC1. In this case,
the maintainer is notified that the property P could be af-
fected. He decides to continue his activity, aware of what he
is doing and what the consequences are. The NFS is consid-
ered valid (the table on the bottom of the figure), while the
first rule is satisfied (there is still a choice (AC2) associated
to the property P). In step 2, the choice AC3 associated to
the property Q is affected. After notification, the developer
does not maintain his decision this time, and undoes the
changes made on the architecture. Thus, choice AC3 is still
present in the architecture. Later (in step 3), he modifies the
system and affects choice AC4. He is warned that the prop-
erty R will not hold anymore, because only AC4 guarantees
it. Nevertheless, he decides to carry on. But this time, the
NFS becomes invalid because there is a dangling property
(R) with no associated choices. In step 4, the maintainer
does the same with AC2. For one reason or another, he
decides to continue and the NFS specification remains in-
valid. This time, it contains also another property (P) with

no associated architectural choices. In step 5, rule 1 is satis-
fied again by adding a new AC (AC5) which guarantees the
properties P and R. The NFS becomes valid since there is,
at least, one architectural choice associated to each initial
property.

We have shown through this scenario that our approach
helps to obtain an architecture satisfying the initial non-
functional requirements.

3. NFS IMPLEMENTATION
As stated previously, our approach requires the use of a

formal language to describe an AC [9], an association mecan-
ism to express an NFT, and a support tool for NFS evalua-
tion.

3.1 AC Description Language
In this implementation, an AC is perceived as an archi-

tectural constraint. It is difficult to enumerate all types of
constraints which the developers could be led to express.
Nevertheless, it is obvious that constraints of the following
kinds should be expressible: i) general rules of an organiza-
tion’s Software Quality Manual and Quality Plan; ii) con-
straints for respecting a particular architectural or design
pattern.

These different types of constraints are seen as invariants
and purely atemporal. From a temporal perspective, an-
other type of constraints should be expressible. These rules
have a temporal dimension and thus involve two consecutive
versions of the architecture. For example, ”we cannot add
more than one provided interface to a component from one
version to another”. This type of constraints can be found
in the general evolution rules of an organization, as stated
in [10].

We chose a two-level solution to manage this diversity.
The first level is based on OCL. Usually, OCL is used to
constrain a model by navigating on it, whereas, we use it
to constrain a model by navigating on a metamodel. We
propose to slightly modify the syntax and semantics of the
context part in OCL. At the syntactic level, we impose that
every context introduces an identifier. Furthermore, this
identifier must be the name of a particular instance of the
metaclass cited in the context. At the semantic level, we
interpret the constraint with the meaning it would have in
the context of the metaclass but limiting its scope only to
the instance cited in the context.

The second level takes the form of a generic MOF-compliant
metamodel ArchMM (see figure 2). It contains abstrac-
tions present in analysis/design models, such as those pro-
vided by Architecture Description Languages (ADLs, like



Component
+id: String
+name: String

Connector
+id: String
+name: String

Port
+id: String
+name: String
+kind: PortKind

Role
+id: String
+name: String
+kind: RoleKind

PrimitiveComponent CompositeComponent PrimitiveConnectorCompositeConnector

Configuration
+id: String

Binding
+id: String

+interface
1..*

+interface
2..*

1

1 1
+configuration+configuration

1 1

1

*

Interface
+id: String
+name: String
+kind: InterfaceKind

1 1..*

0..2 0..2

*
*

+port

+superComponent 1

+subComponent*

+connector

*

0..2

Service
+id: String
+name: String

1

*

1

1..*
+service

Property
+id: String
+name: String
+type: String
+value: String

1

*

1

*

<<enumeration>>

PortKind
+Input
+InputOutput
+Output

<<enumeration>>

InterfaceKind
+Consumed
+Emitted
+Home
+Provided
+Published
+Required

<<enumeration>>

RoleKind
+Adapted
+Adaptee
+Callee
+Caller
+Listener
+Sink
+Source
+Trigger

Figure 2: ArchMM: A generic metamodel representing architectural abstractions

Acme [4] and xADL 2.0 [2]) or UML 2, and implementation
models, such as those provided by component technologies,
like Enterprise JavaBeans and CORBA components. This
metamodel enables us to adapt OCL, without making major
changes on its syntax, to express constraints on architectures
of component-based systems. This second level also allows,
by a simple enrichment of the metamodel, to extend the list
of the available operators without changing the syntax of
the first-level language (i.e. OCL syntax). This two-level
structure, called ACL –Architecture Constraint Language-,
guarantees the extensibility of our formalism’s expressive-
ness1.

Let us consider a constraint which states that only one
provided interface can be added to a primitive component,
named DataRetrievalService, between two consecutive ver-
sions [10]. This is a typical evolution constraint because it
involves two consecutive versions of the system. It fulfills
the non-functional requirement stating that each component
version should be evolved safely. It can be expressed as fol-
lows:

context DataRetrievalService:PrimitiveComponent inv:
DataRetrievalService.port.interface
->select(i:Interface|i.kind = ’Provided’)@old
->comparedTo(DataRetrievalService.port.interface
->select(i:Interface|i.kind = ’Provided’))
->size() <= 1

Note that we have introduced a new syntactic construct
to ACL so that we can reference old versions of architecture
descriptions: the @old mark. The @old returns the descrip-
tions of the former version of an architecture. In this exam-
ple, it returns a collection of the provided interfaces descrip-
tions of the DataRetrievalService component version be-
fore evolution. Note that we have also added a collection op-
eration: comparedTo(c2:collection(T)):Collection(T). It
returns a collection which represents the difference between
the collection to which it is applied and the parameter col-
lection (c2). We introduced this new operation in order
to not affect OCL semantics of the set difference opera-
tor (-). Indeed, traditionally in OCL, the set difference
operator compares references of object collections, whereas

1More details about ArchMM and ACL can be found in [9]

comparedTo(...) uses the value of the id attribute. In our
situation, we are confronted to a comparison of collections of
architecture descriptions. The elements of these collections
are objects which have different references from one version
to another, but the same value of the id attribute.

3.2 Association Mecanism
An association mechanism allows the binding of an ar-

chitectural constraint (AC) described with ACL to a list
of NFPs. Thus it merges several NFTs, sharing the same
AC, in one structure. The mechanism we propose follows
a structure inspired by the ISO 9126 quality standard [5].
A binding associates an AC to an external quality charac-
teristic with its comment extracted from the specification
document. These characteristics are organized in the form
of a forest, which counts 6 trees. The roots of these trees
are, at the moment, the 6 higher-level external characteris-
tics stated by the standard: maintainability, portability, re-
liability, efficiency, functionality and usability. The second
level of each tree contains the external sub-characteristics
detailed by the standard. Concretely, an NFS specification
starts by announcing the different NFPs associated to an
AC; then the AC is described. It is illustrated in the form
of the following XML structure:

<nfs id="000005">
<nft id="000193">
<nfp id="001043" characteristic="Portability">
The software system should be portable
over different environments. It can
serve different applications for museum
supervision or access control
data administration

</nfp>
<ac id="010116" name="FacadePattern">
<!--Here we edit the ACL constraint-->

</ac>
</nft>

</nfs>

Each nfp element has an attribute that specifies the ex-
ternal characteristic which represents the NFP. The prop-
erty, as stated in the non-functional specification, is then
introduced in this XML element. Each NFS specification is
associated to the architecture description to which it applies.



3.3 Support Tool
We developed a prototype tool, which allows the edition,

the validation and the evaluation of NFS specifications, and
the assistance of a software developer during an evolution
operation. It is composed of an:

• NFS Editor: It uses the XMI format of the meta-
model (ArchMM), to guide the developer in editing
its architectural constraints (ACs) and their binds to
NFPs.

• NFS Validator: This module validates the NFS of
the initial version of the component by checking all its
ACs. Then, it produces an archive file composed of the
architecture description file and the NFS specification
file.

• Evolution Assistant: During an evolution, the new
version of the component’s architecture is proposed to
the tool. It evaluates the NFS using the old and the
new architectural descriptions. If the NFS is valid,
the new architecture description may be associated to
the NFS specification and then it may be saved; else
the architecture evolver is warned that some ACs may
be altered and consequently that the associated NFPs
may be affected.

The presented prototype takes into account only architec-
ture descriptors defined in the Fractal model or xAcme ADL,
but, was conceived to easily support other ADLs or compo-
nent models.

4. RELATED WORK
In the literature, non-functional properties has been sup-

ported on the software development through two approaches.
The first one is process-oriented, while the second is product-
centric. In the first approach, methods for software devel-
opment driven by NFRs are proposed. They support NFRs
refinement to obtain a software product which is compli-
ant with the initial NFRs [7]. In the second approach,
the non-functional information is embedded within the soft-
ware product. This is also the case in our approach, where
NFS specifications are associated to architectural descrip-
tions. Using the same approach, Franch and Botella [3] pro-
pose to formalize non-functional requirement specifications.
These are encapsulated in modules, which are associated to
a component definition and to its implementations. They
also propose an algorithm, which allows the selection of the
best implementation for a given component definition. This
selection method can be used when a new implementation
is proposed to ensure that the best one is used. The au-
thors mean by ”best” the implementation that better fits
to its non-functional requirements. Compared to our work,
components are seen differently. We focus on an architec-
tural aspect of components, while they consider the abstract
data type view of components. In addition, in our case,
the maintenance is performed on architectural descriptions
while changes in their approach are at an implementation
level. Furthermore, in our work we deal at the moment only
with static quality attributes, like maintainability. In their
work, dynamic quality attributes (like, performance and re-
liability) are taken into account.

5. CONCLUSION AND FUTURE WORK
Perry and Wolf [8] modeled software architectures as a

set of Elements, Form and Rationale. Elements are archi-
tectural entities responsible for processing and storing data
or encapsulating interactions. Form consists of properties
–constraints on the choice of elements, and relationships –
constraints on the topology of the elements. The rationale
captures the motivation for the choice of an architectural
style, the choice of elements and the form. While the de-
scription of the two first aspects have received a lot of atten-
tion by the software architecture community [6], there has
been a little effort devoted to the last aspect. In this paper,
we presented NFS specifications, as a contribution to the
description of the last element in Perry’s model. This al-
lows us to assist the architectural maintenance activity and,
thus, prevent the loss of non-functional properties. In addi-
tion, it is, as we think best, a good practice for documenting
software architectures and, thus, facilitating software com-
prehension in maintenance activities.

On the conceptual level, we plan: i) to associate metrics to
the NFPs. This makes for a better assistance in the mainte-
nance activity; ii) the definition of a library of architectural
styles and design patterns, in order to facilitate the descrip-
tion of architectural constraints. On the tool level, we are
working on its extension to support architectures described
in UML 2 and in CORBA Component Model;

For more information about the project, on which depends
this work, the reader is invited to follow the link:
http://www-valoria.univ-ubs.fr/Composants/se/current/Cell

6. REFERENCES
[1] L. Bass, P. Clements, and R. Kazman. Software Architecture

in Practice, 2nd Edition. Addison-Wesley, 2003.

[2] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A
comprehensive approach for the development of modular
software architecture description languages. ACM TOSEM,
14(2):199-245, 2005.

[3] X. Franch and P. Botella. Supporting Software Maintenance
with Non-Functional Information. In Proceedings of
CSMR’97, pages 10-16, Berlin, Germany, March 1997. IEEE
Computer Society.

[4] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural
Description of Component-Based Systems. In Gary T. Leavens
and Murali Sitaraman, editors, Foundations of
Component-Based Systems, pages 47-68, Cambridge
University Press, 2000.

[5] ISO. Software Engineering - Product quality - Part 1: Quality
model. International Organization for Standardization web
site. ISO/IEC 9126-1. http://www.iso.org, 2001.

[6] N. Medvidovic and N. R. Taylor. A Classification and
Comparison Framework for Software Architecture Description
Languages. IEEE TSE, 26(1):70-93, 2000.

[7] J. Mylopoulos, L. Chung, and B. Nixon. Representing and
Using Nonfunctional Requirements: A Process-Oriented
Approach. IEEE TSE, 18(6):483-497, 1992.

[8] D. E. Perry and A. L. Wolf. Foundations for the Study of
Software Architecture. Software Engineering Notes,
17(4):40-52, 1992.

[9] C. Tibermacine, R. Fleurquin, and S. Sadou. Preserving
Architectural Choices throughout the Component-based
Software Development Process. In Proceedings of WICSA’05,
Pittsburgh, Pennsylvania, USA, November 2005.

[10] R. van Ommering, F. van der Linden, J. Kramer, and J.
Magee. The Koala Component Model for Consumer
Electronics Software. IEEE Computer, 33(3):78-85, 2000.


