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ABSTRACT
The heterogeneity of architectural constraint languages makes
difficult the transformation of architectural constraints through-
out the development process. Indeed they have significantly
different metamodels, which make the definition of mapping
rules complex. In this paper, we present an approach that
aims at simplifying transformations of architectural con-
straints. It is based on an architectural constraint language
(ACL), which includes one core constraint expression lan-
guage and different profiles. Each profile is defined upon a
metamodel, which represents the architectural abstractions
manipulated at each stage in the development process.
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1. INTRODUCTION
Software architecture models define the global structure

of a software. It is argued that these models should be
associated with a documentation that explains the archi-
tectural decisions made (called Rationale in Perry’s archi-
tectural model [12]). This documentation aims at better
understanding the architecture of the system, and at con-
trolling its future evolution [15]. It is often defined using a
formal constraint language. The constraints composing this
documentation relate on the structural aspect of a model
and stipulate that only certain architectures (i.e. models)
are allowed (for instance, in an architectural model all com-
ponents should have less than 10 provided interfaces). They
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have a different concern than traditional constraints, which
serve as guards on instances of a model, like OCL invariants
on a UML model. The latter constraints are of model-level,
while architectural constraints are of metamodel-level. In
general, architectural constraints define some architectural
styles in order to meet non-functional requirements. We
notice that only structural constraints are discussed in this
paper, the behavioral aspect of software architecture will
not be dealt with.

Let us consider the component-based software develop-
ment (CBSD) process. In an MDE approach a software
architecture model can be transformed into another archi-
tecture model (for instance a design-level model into an
implementation-level one). It is important that we trans-
form not only the software architecture model, but also its
associated documentation (architectural constraints). This
makes the documentation available and consistent through-
out the different stages of the CBSD process. In addi-
tion, constraints can be checked not only when evolving the
design-level model, but also when evolving the implementation-
level model [14]. However, transformation of architectural
constraints is complex due to the fact that constraint lan-
guages, used at different stages in the CBSD process, are
based on metamodels which are completely different (see
section 2). In this paper, we present an approach which aims
at simplifying architectural constraint transformation. This
approach introduces a bicephalous architectural constraint
language, named ACL (section 3). It is based on OCL, as
a core constraint language, and on a set of MOF architec-
ture metamodels. We show how we can use this language
to describe uniformly architectural constraints throughout
the CBSD process in order to facilitate the description of
transformation (section 4).

2. IDENTIFIED PROBLEM
Consider that at design-level, we describe a software archi-

tecture of a system using xAcme [16], an XML representa-
tion of Acme Architecture Language [6]. The corresponding
architectural constraints are specified using the constraint
language of this ADL, namely Armani [9]. For example, let
us suppose a simple architectural constraint that ensures in
a given architecture model the existence of less than 5 pro-
vided (in) interfaces for all subcomponents of a specific com-
ponent. This constraint is the translation of a rule stating
that the quality measure CBM1 (Coupling Between Mod-

1CBM metric is the equivalent of CBO (Coupling Between
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Figure 1: The xArch metamodel

ules) should be less than 5 [8]. This constraint helps to
guarantee the maintainability of the architecture and can
be formalized as following:

invariant forall com:Component in self.Components|
forall p:Port in com.Ports
size(select p:Port in com.Ports |

satisfiesType(p,inputT)) < 5

Suppose that we want to transform this architecture model,
which conforms to the xAcme metamodel, into a model
which conforms to another metamodel. There are two pos-
sible cases: i) the targeted technology does not provide a
constraint language (CORBA Component Metamodel [10],
for example2); ii) the target technology provide a constraint
language (for example the WRIGHT language [2]).

In the first case, a new language should be provided in
order to maintain the architectural decisions throughout
the CBSD process. This language should be designed in
a way to minimize the transformation cost. In the second,
metamodels of constraint languages at different stages of the
CBSD process are often different. This is logically due to
the distinct nature of concerns at each stage of the develop-
ment process. Because constraint languages include in their
grammars the architectural abstractions to be constrained
(for example, Component and Ports, which are keywords of
Armani language), the definition of transformation rules be-
tween languages at different stages is made complex. But
even at the same stage constraint languages can be signifi-
cantly different. For example, consider the same constraint
written using WRIGHT constraint language:

∀c : Components; p : Port|
p ∈ Ports(c) • Type(p) = DataInput ∧ #Ports(c) < 5

It is clear that although the two languages have several
similar architectural concepts, they differ in the predicate
language they use. Transformation of architecture constraints

Objects) [4], which is used for object-oriented applications.
2In the best of our knowledge, there is no implementation-
level architectural constraint language.

is more difficult than architecture model transformation be-
cause we have not only to deal with architectural concepts
mapping3 (as in architecture models transformation) but
also with predicate language mappings. Consequently, we
propose an approach based on a family of architecural con-
straint languages, which facilitates the transformation of ar-
chitectural constraint.

3. ACL AS A CONSTRAINT LANGUAGE
To resolve the problem mentioned above, we propose a

new architectural constraint language, named ACL. This
language is structured on two levels: the first level takes the
form of a predicate language, and the second represents the
manipulated architectural concepts.

The predicate language chosen is OCL [11]. We slightly
modified it to achieve our goals. This part of ACL has been
called, the Core Constraint Language (CCL). The second
level is represented by a set of MOF-compliant metamod-
els. Each metamodel defines the architectural abstractions
manipulated at a given stage and the relationships between
these abstractions. At each stage in the development pro-
cess a couple composed of CCL and a metamodel, called
an ACL profile, can be used. For example, we defined an
ACL profile for xAcme, UML 2 and CCM.

In the following subsections, first we present CCL and
its differences with OCL. Next, we introduce ACL profiles.
At last, we illustrate the example specified previously in
Armani, in the ACL profile for xAcme.

3.1 Core Constraint Language
Like OCL, CCL is a FOL4-based language. It supports

set and graph operations, and provides capabilities for spec-
ifying navigations in structures. In addition and at the dif-
ference of OCL, CCL is characterized by:

• Context declarations with mandatory identifiers. These

3In this parer, the word mapping is used to stipulate a re-
lationship between two entities.
4First-Order Logic
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Figure 2: A CCM structural metamodel

identifiers represent the names of specific instances of
an architectural abstraction.

• Only invariants can be specified using ACL. Pre- or
post-conditions are not supported because not neces-
sary.

• Additional operations and marks have been introduced
in order to facilitate the description of certain types of
constraints. For example, in order to describe con-
straints comparing different versions, we have intro-
duced the @old mark.

• Constraints navigate on the metamodel, but are eval-
uated on a specific instance specified in the context.

To better understand the first and last items, it is neces-
sary to go back over the usual mode of expression of OCL
constraints in a class diagram. In this type of diagrams,
OCL is generally used to specify class invariants, pre/post
conditions of operations, constraints on cycles between as-
sociations, etc. These constraints restrict the number of
the valid object diagrams instanciable from a class diagram.
They mitigate the lack of expressivity of the UML graph-
ical notation which, employed alone, can authorize in cer-
tain cases the instanciation of object diagrams incompatible
with reality that we wish to model. OCL constraints are
described relative to a context. This context is an element
of the class diagram, generally a class, an operation or an
association present on this diagram. The following are two
examples of OCL constraints.

context MTProceedingsPaper inv:
self.size <= 8
context paper:MTProceedingsPaper inv:
paper.writtenBy->size() >= 1

In both cases, the context is a class (MTProceedingsPaper).
The two constraints concern any instance of the context
(here, an object instance of the class MTProceedingsPaper).
It is the approach adopted for every OCL constraint. The
first constraint references this instance using the keyword
self, while the second one introduces an ad-hoc identifier
paper. These two modes for referencing instances allowed by

OCL are semantically equivalent. Every OCL constraint is
made up of elements present either in the OCL language (->,
size(), etc), or in the class diagram reachable from the con-
text (the attribute size and the association-end writtenBy).

It is interesting to consider what might be the meaning
of OCL constraints written not on a model, but on a meta-
model. A metamodel exposes the concepts of a language
and the links between them. It describes an abstract gram-
mar. Thus, a constraint having for context a metaclass lim-
its the expression power of the grammar’s production rules
and thus the number of the derived phrases (i.e. models).
Certain phrase structures are dismissed. If this metamodel
describes the abstract grammar of a language dedicated to
architecture description, a constraint expresses, then, that
only certain architectures (i.e. models) are derivable (i.e.
can be instanciated) in this language. The language is re-
stricted voluntarily in its expressiveness because we do not
allow the description of certain types of architectures. For
example, we can impose that every component in the model
must have less than 10 required interfaces, by putting this
constraint in the context of the metaclass Component. This
constraint is exactly of the type we wish to express. Unfortu-
nately it has a global scope. It applies to all components and
not to a particular one, as we would wish it to be. To limit
the scope of such a constraint to a particular component,
we propose to slightly modify the syntax and semantics of
the context part in OCL. At the syntactic level, we impose
that every context introduces an identifier. Furthermore,
this identifier must be the name of a particular instance of
the metaclass cited in the context. At the semantic level,
we interpret the constraint with the meaning it would have
in the context of the metaclass but by limiting its scope to
the instance cited in the context. Illustrative examples are
presented in the next subsection.

3.2 ACL profiles
As mentioned previously, ACL has several profiles. Each

profile has two levels of expressiveness. The first level is
defined by CCL and the second by a specific MOF meta-
model. Each metamodel represents architectural abstrac-
tions present in a given Architecture Description Language
(ADL) or a component technology, and relationships be-
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Figure 3: Shifting from whole to partial transformations

tween these abstractions. Each profile can be used, at a
given stage in the CBSD process with the corresponding de-
veloper’s language or technology to describe architectural
decisions.

Among the ACL profiles, we present here the profile for
xAcme ADL. As stated previously, this ACL profile is com-
posed of CCL and the xAcme metamodel. Note that in
our approach, only the structural aspect is represented in
the metamodels. That is why we illustrate in figure 1 an
xArch metamodel, which contains only the primitive struc-
tural elements that compose an xAcme architecture descrip-
tion5. An xAcme architecture instance is composed of a set
of component instances, connector instances, link instances
and logical groups of the previous architectural elements.
Component or connector instances define a set of interface
instances and optionally a subarchitecture for a hierarchical
description. The subarchitecture defines a set of architecture
instances and a list of mappings between inner and outer in-
terface instances. Link instances bind two end points, each
one references an interface instance.

The constraint presented in the previous section can be
specified using xAcme profile as following:

context ACS:ComponentInstance inv:
ACS.subArchitecture.archInstance.componentInstance
.interfaceInstance->select(i:InterfaceInstance|
i.direction = ’in’)->size() < 5

4. PROFILE TRANSFORMATIONS
Let us consider that we transform the xAcme architecture

model, to which is associated the previous constraint, into
a component description in CCM. Following the proposed
approach, the constraint will be transformed to the ACL
profile for CCM. As for the other ACL profiles, the CCM one
is composed of CCL and the CCM metamodel (see figure 2).
The constraint above becomes as follows:

5More details about xArch can be found in
http://www.isr.uci.edu/architecture/xarch/

context ACS:ComponentAssembly inv:
ACS.connection.port.component.port
.interface->select(i:Interface|
i.kind =’Provided’)->size() < 5

Having CCL in common, the two previous constraints
have the same structure and basic predicate constructs with
the same semantics (like, context, inv, select() or size().
However it navigates in different metamodels.

When transforming xAcme profile to the CCM one, only
the part of the constraint related to the architectural aspect
needs to be transformed. This is illustrated by the right side
of figure 3.

Now that we identified clearly the different parts between
the constraints written in the two profiles, the transforma-
tion problem can be restricted to translation of the archi-
tectural part. In order to resolve this problem, we can use
transformation languages, like MTL [13] or TRL [1]. For
example, in order to perform the transformation of the con-
straint defined with the xAcme profile into the CCM profile,
we need to have the following mappings:

ComponentInstance . ComponentAssembly
ComponentInstance.subArchitecture

. ComponentAssembly.connection.port.component
ComponentInstance.interfaceInstance

. Component.port.interface
InterfaceInstance . Interface
InterfaceInstance.direction . Interface.kind
Direction.in . InterfaceKind.Provided

This information can be derived from possible existing
mappings between metamodels. These mappings are sup-
posed to have been used in transforming models and not
specially defined for constraint transformation. For exam-
ple, the first mapping can be deduced from the MTL relation
below.

Relation ComponentInstance2ComponentAssembly{
domain {
(ComponentInstance)
[id = i, subArchitecture = s]
when s->notEmpty()



}
domain {
(ComponentAssembly)
[id = i,connection = (Connection)

[port ={(Port)[// ...
]}]

]
}

}

We have not detailed here all transformations, because of
the size of the two metamodels and the paper’s page limi-
tations. However, what we showed through this example is
that once a constraint transformation is restricted to equiv-
alences between elements of two different metamodels, it
exists several means to elaborate a solution.

5. RELATED WORK
In the literature, it exists several works on software archi-

tecture transformation [3, 5], whose focus was on architec-
ture refactoring. In these works, transformation of architec-
tural constraints has not been dealt with. In [7], the pro-
posed approach consists in transforming OCL constraints in
order to remove redundancies and simplify them. We think
that their approach is complementary to ours. It can be
used once the constraints are generated in the target ACL
profile, in order to simplify them.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a bicephalous architectural

constraint language, which clearly separates the invariable
part from the variable one in order to simplify constraint
transformations. Thus, in an architectural constraint ex-
pression we isolated the part that concerns architectural as-
pect in order to perform the transformation only on this
part.

We think that the proposed approach promotes the reuse
of mappings between metamodels established for architec-
tural model transformation. Indeed it becomes possible
to transform architectural constraints at the same time we
transform the concerned models.

Our objective in the short run is to define MTL relations
between xAcme, UML 2 and CCM metamodels. Then, we
apply our architectural constraint transformation approach
between different couples of metamodels. This will validates
the proposed approach.
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