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Introduction

Let σ be a random permutation uniformly distributed on the symmetric group S n . Define for p, q ≤ n X (n) p,q = #{1 ≤ i ≤ p , σ(i) ≤ q}.

In [START_REF] Chapuy | Random permutations and their discrepancy process[END_REF], G. Chapuy proved that a suitable normalization of X

p,q converges in distribution to the bivariate tied-down Brownian bridge. Note that X (n) p,q = Tr(Σ p,q Σ ⋆ p,q ) where Σ p,q is the truncated matrix of size p × q of Σ, the permutation matrix associated with σ, and ⋆ means adjoint. In this paper, we prove a similar result when the symmetric group is replaced by the unitary group or the orthogonal group, equipped with the Haar measure.

Let U be a Haar unitary, resp. orthogonal, matrix in U(n), resp. in O(n). We consider, for p ≤ n and q ≤ n, the upper-left p × q submatrix V p,q and the p × p Hermitian matrix H p,q = V p,q V ⋆ p,q . We are interested in the asymptotic behavior of

T p,q = Tr H p,q = i≤p,j≤q |U i,j | 2 .
(1.1) Setting Y (n) p,q = T p,q -ET p,q , we define a sequence of two-parameter processes W (n) by

W (n) := Y (n) ⌊ns⌋,⌊nt⌋ , s, t ∈ [0, 1]
Chapuy used the space C([0, 1] 2 ) completing its process in such a way that it is continuous and affine on each closed "lattice triangle". We prefer using the multidimensional generalization of Skorokhod space D([0, 1] 2 ) given by [START_REF] Bickel | Convergence criteria for multiparameter stochastic processes and some applications[END_REF]. It consists of functions from [0, 1] 2 to R which are at each point right continuous (with respect to the natural partial order of [0, 1] 2 ) and admit limits in all "orthants". The space D([0, 1] 2 ) is endowed with the topology of Skorokhod (see [START_REF] Bickel | Convergence criteria for multiparameter stochastic processes and some applications[END_REF] for the definition). Our main result is the following Theorem 1.1. The process W (n) converges in distribution in D([0, 1] 2 ) to a tied-down Brownian bridge 2 β W (∞) where W (∞) is a centered continuous Gaussian process on [0, 1] 2 of covariance

E[W (∞) (s, t)W (∞) (s ′ , t ′ )] = (s ∧ s ′ -ss ′ )(t ∧ t ′ -tt ′ ),
β = 2 in the unitary case and β = 1 in the orthogonal case.

Previous works are related to our problem. First, Borel in 1906 shows that for a uniformly distributed point on the (n -1)-dimensional (real) sphere, the scaled first coordinate converges in distribution to the standard normal. Since that time, many authors studied the entries and partial traces of matrices from the orthogonal and unitary group. In particular Diaconis and d'Aristotile ( [START_REF] D'aristotile | An invariance principle for triangular arrays[END_REF][START_REF] D'aristotile | Brownian motion and the classical groups, Probability, statistics and their applications: papers in honor of Rabi Bhattacharya[END_REF]) proved that the sequence of one-parameter processes

   ⌊ns⌋ i=1 U ii , s ∈ [0, 1]
   n converges in distribution to the complex Brownian motion. Besides, Silverstein [START_REF] Silverstein | Describing the behavior of eigenvectors of random matrices using sequences of measures on orthogonal groups[END_REF] proved that for q fixed, the sequence of one-parameter processes

   n 1/2 ( ⌊ns⌋ i=1 |U iq | 2 -s) , s ∈ [0, 1]    n (1.2)
converges in distribution to the Brownian bridge.

In the paper [START_REF] Silverstein | Weak convergence of random functions defined by the eigenvectors of sample covariance matrices[END_REF], Silverstein discussed the similarity between the matrix of eigenvectors of a (real) sample covariance matrix and a Haar distributed orthogonal matrix, with a one-parameter parameter process analogous to (1.2). We also refer to [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF]Chapter 10] for the behavior of eigenvectors of sample covariance matrices and universality conjectures. To extend this study and after reading a first draft of our result, Djalil Chafai conjectured that if M is a n × n matrix with i.i.d. entries having the same four first moments as the complex Gaussian standard and if U denotes the matrix of eigenvectors of N = M M * , then the sequence W (n) obtained by changing U ij into U ij converges to the tied-down Brownian bridge as in Theorem 1.1. At the moment of posting the present version, we are aware that Florent Benaych-Georges ( [START_REF] Benaych-Georges | Eigenvectors of Wigner matrices: Universality of global fluctuations hal-00583889[END_REF]) answered positively to the conjecture when N is a Wigner matrix, under a fourth moment hypothesis.

The rest of the paper is organized as follows. In section 2, we introduce the basic notions on permutations, partitions, classical cumulants. The paper is then split into two parts. Section 3 deals with the unitary case and Section 4 is devoted to the orthogonal case. In each part, we develop the combinatorics associated with the group1 (the Weingarten function and the associated cumulants).

In particular, we state a formula for the cumulants of variables of the form X = Tr(AU BU ⋆ ) for deterministic matrices A, B of size n. In the unitary case, the formula follows from the results of [START_REF] Mingo | Second order freeness and fluctuations of random matrices: II. Unitary random matrices[END_REF]. We then apply the above formula to the computation of the second and fourth cumulants of T p,q . The proof of Theorem 1.1 is then divided in two parts: tightness of the family of distributions of W (n) and convergence of the finite dimensional laws. To prove the tightness, we use a criterion of Bickel and Wichura for two-parameter processes, with the help of the estimates obtained in section 3.2, resp 4.3. The convergence of the finite dimensional distributions to Gaussian distributions relies on the computations of their cumulants and their asymptotics. The expression of the cumulants follows from the previous section and their limit follows from the asymptotics of cumulants of unitary, resp. orthogonal, Weingarten functions, obtained in [START_REF] Collins | Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability[END_REF], resp. [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]. Let us mention that simultaneously and independently of the present paper, precise computations in the orthogonal case are presented in [START_REF] Redelmeier | Genus expansion for real Wishart matrices[END_REF] and [START_REF] Redelmeier | A definition for second-order freeness in the real case and the asymptotic real second-order freeness of several real matrix ensembles[END_REF]. In section 5, we give complementary remarks and connections with other problems.

Preliminaries

For n a positive integer we set [n] := {1, 2, • • • , n}.

Partitions, permutations. We call

A = {A 1 , • • • , A s } a partition of [k] if the A i (1 ≤ i ≤ s) are pairly disjoint, non-void subsets of [k] such that A 1 ∪ • • • ∪ A s = [k]. We call A 1 , • • • , A s the blocks of A.
The number of blocks of A is denoted by #(A). The set of all partitions of [k] is denoted by P(k). One partition A is said to refine another B, denoted A ≤ B provided every block of A is contained in some block of B. Given two partitions A and B, A ∧ B (resp. A ∨ B) is the largest (resp. smallest) partition which refines (resp. is refined by) both A and B. Under these operations, the partially ordered set P(k) is a lattice. We denote by 1 k the largest partition of [k] (one-block partition), and by 0 k the smallest one (k-blocks partition). For A, B ∈ P(k) with A ≤ B we denote by [A, B] the interval

[A, B] = {C ∈ P(k) | A ≤ C ≤ B} .
Since we will make some use of the Möbius function for partitions, let us just recall ([28] Sect 3.6) that for two real functions f, g defined on {(A, B) ∈ P(k) × P(k); A ≤ B}, we have:

f (A, B) = C∈[A,B] g(A, C) (2.1)
if and only if

g(A, B) = C∈[A,B] Möb(C, B)f (A, C) (2.2) with Möb(C, B) := i (-1) i-1 (i -1)! p i
where p i is the number of blocks of B that contain exactly i blocks of C. Let S k be the set of permutations on k elements. With σ ∈ S k , we associate the set C(σ) of its cycles, whose number is denoted by #(σ). We denote by 0 σ the partition whose blocks are the cycles of σ, or when the context is clear, just by σ. Given two pairings p 1 , p 2 , we define the graph Γ(p 1 , p 2 ) as follows. The vertex set is [2k] and the edge set consists of the pairs of p 1 and p 2 . Let loop(p 1 , p 2 ) the number of connected components of Γ(p 1 , p 2 ). 2.2. Cumulants. For r ≥ 1, κ r denotes the classical cumulant of order r (see [START_REF] Shiryayev | Probability. Graduate Texts in Mathematics[END_REF], [START_REF] Mingo | Second order freeness and fluctuations of random matrices: II. Unitary random matrices[END_REF] p.215). It is a multilinear function of r variables defined as follows: if a 1 , . . . , a r are random variables,

For π ∈ S k , a partition A = (A 1 , . . . A l ) of [k] is called π-invariant if π leaves invariant each block A i that is 0 π ≤ A (which we just write π ≤ A).
κ r (a 1 , . . . , a r ) = C∈P(r) Möb(C, 1 r ) E C (a 1 , . . . a r )
where for C = {C 1 , . . . , C k } ∈ P(r),

E C (a 1 , . . . , a r ) = r i=1 E( j∈C i a j ) .
(2.3) More generally, relative cumulants are defined, for A ≤ B ∈ P(r) as

κ A,B (a 1 , • • • , a r ) = C∈[A,B] E C (a 1 , • • • , a r ) Möb(C, B) . (2.4)
From the equivalence between (2.1) and (2.2) we have, for any A ≤ B ∈ P(r) Tr( j∈C M j ).

E B (a 1 , • • • , a r ) = C∈[A,B] κ A,C (a 1 , • • • , a r ) . ( 2 
Let s be a fixed integer and let {M 1 , . . . , M s } n be a sequence of n × n deterministic matrices. We say that {M 1 , . . . M s } n has a limit distribution if there exists a non commutative probability space (A, ϕ) and a 1 , . . . a s ∈ A such that for any polynomial p in s non commuting variables, lim n→∞ tr(p(M 1 , . . . , M s )) = ϕ(p(a 1 , . . . , a s )).

The unitary group

3.1. Preliminary remarks: Some moments. Let U be a Haar distributed matrix on U(n) the unitary group of size n. We have the following important relations (see [START_REF] Hiai | The Semicircle Law, Free Random Variables and Entropy[END_REF], Proposition 4.2.3 and [START_REF] Jiang | A variance formula related to a quantum conductance problem[END_REF]). If U i,j is the generic element of U , then the random variable |U i,j | 2 follows the beta distribution on [0, 1] with parameter (1, n -1) of density (n -1)(1x) n-2 . Thus,

E|U i,j | 2 = 1 n , E|U i,j | 4 = 2 n(n + 1)
,

Var |U i,j | 2 = n -1 n 2 (n + 1) , (3.1) 
and more generally

E|U ij | 2k = (n -1)!k! (n -1 + k)! . (3.2) If X = |U i,j | 2 and Y = |U i,k | 2 with k = j, then (X, Y ) follows the Dirichlet distribution on {0 ≤ x, y, x + y ≤ 1} with parameters (1, 1, n -2) of density (n -1)(n -2)(1 -x -y) n-3 . Thus E |U i,j | 2 |U i,k | 2 = 1 n(n + 1) . (3.3) Besides, if i = k, j = ℓ, E |U i,j | 2 |U k,ℓ | 2 = 1 n 2 -1 . (3.4) E|U ij | 2 = pqE|U 11 | 2 = pq n . (3.5) 
and

Var T p,q = pq n 2 -n(p + q) + pq n 2 (n 2 -1) . (3.6)
Assume that p/n → s, q/n → t, then,

lim n 1 n ET p,q = st , lim n Var T p,q = st(1 -(s + t) + st) = st(1 -s)(1 -t).
Proof:

ET 2 p,q = i,k≤p,j,l≤q E|U ij | 2 |U kl | 2 = i≤p,j≤q E|U ij | 4 + i≤p,j =l≤q E|U ij | 2 |U il | 2 + i =k≤p,j≤q E|U ij | 2 |U kj | 2 + i =k≤p,j =l≤q E|U ij | 2 |U kl | 2 = pq 2 n(n + 1) + pq(q -1) 1 n(n + 1) +p(p -1)q 1 n(n + 1) + p(p -1)q(q -1) 1 n 2 -1 = pq p + q n(n + 1) + (p -1)(q -1) n 2 -1 .
This yields (3.6).

Remark 3.2. An easy consequence of the above Proposition is

lim n 1 n T ⌊ns⌋,⌊nt⌋ = st in probability.
Actually the convergence is uniform in s, t ∈ [0, 1] (see section 5).

3.2.

Combinatorics for the unitary group. Let U(n) denote the unitary group of size n endowed with the Haar probability measure. The generic element will be denoted by U and its (i, j) coefficient by U ij . In [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF], Collins and Sniady proved the following integration formula on U(n), see also [START_REF] Collins | Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability[END_REF].

Let M U 2k denote the set of pairings of [2k], pairing each element of [k] with an element of [ k]. Let G U(n) be the Gram matrix 2 G U(n) = (G U(n) (p 1 , p 2 )) p 1 ,p 2 ∈M U 2k := (n loop(p 1 ,p 2 ) ) p 1 ,p 2 ∈M U 2k .
Then the unitary Weingarten matrix Wg U(n) is the pseudo inverse of G U(n) . 2 The term of Gram matrix comes from the theory of representations of groups and algebras, see [START_REF] Collins | On some properties of orthogonal Weingarten functions[END_REF].

Proposition 3.3. For every choice of indices i = (i 1 , . . . , i k , i1, . . . , ik) and j = (j 1 , . . . , j k , j1, . . . , jk),

E U i 1 j 1 . . . U i k j k Ūi1j1 . . . Ūik,jk = p 1 ,p 2 ∈M U 2k δ p 1 i δ p 2 j Wg U(n) (p 1 , p 2 ) (3.7)
where δ p 1 i (resp. δ p 2 j ) is equal to 1 or 0 if i (resp. j) is constant on each pair of p 1 (resp. p 2 ) or not.

It is clear that with each pairing

p ∈ M U 2k we can associate a unique σ ∈ S k such that p = k i=1 (i, σ(i)). It is known that if p 1 is associated with α and p 2 with β, then Wg U(n) (p 1 , p 2 ) is a function of βα -1 denoted by Wg(n, βα -1 ), so that (3.7) becomes E U i 1 j 1 . . . U i k ,j k Ūi1j1 . . . Ūik,jk = α,β∈S k δα i δβ j Wg(n, βα -1 ) (3.8)
where δα

i = 1 if i(s) = i(α(s)) for every s ≤ k and 0 otherwise. In particular, if π ∈ S k , we have Wg(n, π) = E(U 11 . . . U kk Ū1π(1) . . . Ūkπ(k) ) . (3.9) 
The Weingarten functions for k = 1, 2 are given by (see [START_REF] Collins | Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability[END_REF]): We set, for

Wg(n, (1)) = 1 n Wg(n, (1)(2)) = 1 n 2 -1 , Wg(n, ( 12 
)) = - 1 n(n 2 -1) . ( 3 
1 ≤ i ≤ r, X i = Tr(D i U DīU ⋆ ) . Then, κ r (X 1 , . . . , X r ) = α,β∈Sr A C βα -1 ,A Tr α ( D) Tr β -1 (D) (3.11)
where in the second sum A ∈ P(r) is such that

βα -1 ≤ A and A ∨ β ∨ α = 1 r , (3.12) 
and C σ,A are the relative cumulants of the unitary Weingarten function (see [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]) . Moreover, if the sequence {D, D} n has a limit distribution, then for r ≥ 3, lim n→∞ κ r (X 1 , . . . , X r ) = 0. ) is not given exactly on this form in [START_REF] Mingo | Second order freeness and fluctuations of random matrices: II. Unitary random matrices[END_REF] but in our particular case where X i = Tr(D i U DīU ⋆ ) with the D i deterministic, the formulas are equivalent. We shall prove a similar formula in the orthogonal case.

For the sake of completeness, let us give the meaning of C π,A . Let π ∈ S r and a i = U ii Ūiπ(i) . We denote for a π invariant partition Π ∈ P(r)

E Π (π) := E Π (a 1 , . . . , a r ) , (3.13) 
i.e., owing to (3.9)

E Π (π) = s k=1 Wg(π| V k ) , (3.14) 
where Π = {V 1 , . . . , V s }. Then, if we set

C π,A := κ π,A (a 1 , . . . , a r ) ,
the summation formula (2.4) yields

C π,A = π≤C≤A Wg(π| V 1 ) • • • Wg(π| V 1 ) Möb(C, A) (3.15) 
and the reverse one (2.5)

E C (π) = A∈[π,C] C π,A . (3.16) 
We will use these formulas in the orthogonal case.

3.3.

Computations of the second and fourth cumulants of T p,q .

3.3.1. The covariance of T p,q . The fundamental remark is that

H p,q = D 1 U D1U ⋆
with D 1 = I p , D1 = I q , where I k is the matrix of projection on the k first coordinates. Note that D 1 and D1 are commuting projectors and that if p/n → s, q/n → t, {D 1 , D1} n has a limit distribution with a 1 , a 2 commuting projectors on (A, ϕ) such that a 1 a 2 = a 1 if s < t and = a 2 if t < s, and ϕ(a 1 ) = s, ϕ(a 2 ) = t. Let p, p ′ , q, q ′ ≤ n. We now give an application of Proposition 3.4 to the computation of cov(T p,q , T p ′ ,q ′ ) = κ 2 (T p,q , T p ′ ,q ′ ). This can also be done, using the computations of Section 3.1. We set D 2 = I p ′ , D2 = I q ′ and apply formula (3.11) to X 1 = T p,q , X 2 = T p ′ ,q ′ , r = 2. The different possibilities for α, β and A satisfying (3.12) are gathered in the following table, where 0 and 1 stand for the convenient permutation or partitions on [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF]:

α β βα -1 A 0 0 0 1 1 0 1 1 0 1 1 1 1 1
0 0 or 1 The relative cumulants are given by (see (3.10), (2.4))

C 1,1 = - 1 n(n 2 -1) , C 0,1 = - 1 n 2 + 1 n 2 -1 = 1 n 2 (n 2 -1) , C 0,0 = 1 n 2
The different products of traces are quite obvious, so that plugging into (3.11), we get

κ 2 (T p,q , T p ′ ,q ′ ) = (3.17) (p ∧ p ′ )(q ′ ∧ q ′ ) n 2 -1 - (p ∧ p ′ )qq ′ n(n 2 -1) - pp ′ (q ∧ q ′ ) n(n 2 -1) + pp ′ q ′ q ′ n 2 (n 2 -1)
.

In the limit p/n → s, q/n → t, p ′ /n → s ′ , q ′ /n → t ′ , we get lim n κ 2 (T p,q , T p ′ ,q ′ ) = (s ∧ s ′ )(t ∧ t ′ ) -(s ∧ s ′ )tt ′ -ss ′ (t ∧ t ′ ) + ss ′ tt ′ = (s ∧ s ′ -ss ′ )(t ∧ t -tt ′ ). (3.18) 
3.3.2. The fourth cumulant. We now give an estimate for κ 4 (T p,q ). From (3.11) with r = 4,

κ 4 = α,β∈S 4 A C βα -1 ,A Tr α ( D) Tr β -1 (D) (3.19)
where A runs over the partitions of [START_REF] Benaych-Georges | Eigenvectors of Wigner matrices: Universality of global fluctuations hal-00583889[END_REF] satisfying condition (3.12), and finally

D i = I p , Dī = I q (i ≤ 4) .
We have now Tr

β -1 (D) = p #(β) , Tr α ( D) = q #(α) .
In [8, Cor. 2.9], Collins proved that the order of C βα -1 ,A is at most n -8-#(βα -1 )+2#(A) . Finally,

C βα -1 ,A Tr β -1 (D) Tr α ( D) = O n -8-#(βα -1 )+2#(A) p #(β) q #(α) . (3.20)
From equation [START_REF] Mingo | Second order freeness and fluctuations of random matrices. I. Gaussian and Wishart matrices and cyclic Fock spaces[END_REF] in [START_REF] Mingo | Second order freeness and fluctuations of random matrices: II. Unitary random matrices[END_REF], we see that

2#(A) + #(α) + #(β) -#(βα -1 ) ≤ 6
and the expression in (3.20) is of order

n -8-#(π)+2#(A) p #(β) q #(α) ≤ p #(β) q #(α) n -2-#(α)-#(β) ≤ (p/n) #(β)-1 (q/n) #(α)-1 pqn -4 ≤ p 2 q 2 n -4 .
We conclude that (n) is in force as soon as the condition C(β, γ) with β > 1 is satisfied (see ( 2), (3) in [START_REF] Bickel | Convergence criteria for multiparameter stochastic processes and some applications[END_REF]):

κ 4 = O p 2 q 2 n -4 . ( 3 
E(|W (n) (B)| γ 1 |W (n) (C)| γ 2 ) ≤ (µ(B)) β 1 (µ(C)) β 2 (3.22)
where γ = γ 1 +γ 2 > 0 and β = β 1 +β 2 > 1, B and C are two adjacent blocks in [0, 1] 2 and W (n) (B) denotes the increment of W (n) around B, given by

W (n) (B) = W (n) s ′ ,t ′ -W (n) s ′ ,t -W (n) s,t ′ + W (n) s,t for B =]s, s ′ ]×]t, t ′ ],
µ is a finite positive measure on [0; 1] 2 with continuous marginals.

From Cauchy-Schwarz inequality, (3.22) is implied by

E(|W (n) (B)| 2γ 1 ) ≤ (µ(B)) 2β 1 . (3.23)
Moreover, it is enough to consider blocks whose corner points are in

T n = { p n , 0 ≤ p ≤ n} × { q n , 0 ≤ q ≤ n} (see [5], p. 1665.) Let p ≤ p ′ ≤ n and q ≤ q ′ ≤ n and B =] p n , p ′ n ]×] q n , q ′ n ] W (n) (B) := ∆ (n) p,q (p ′ , q ′ ) = Y (n) p ′ ,q ′ -Y (n) p ′ ,q -Y (n) p,q ′ + Y (n) p,q = p+1≤i≤p ′ q+1≤i≤q ′ |U i,j | 2 -E(|U i,j | 2 ).
If we show that there exists a constant C, such that for all n,

E ∆ (n) p,q (p ′ , q ′ ) 4 ≤ C (p ′ -p) 2 (q ′ -q) 2 n 4 , (3.24) 
then (3.23) is satisfied with γ 1 = 2, β 1 = 1 and µ is the Lebesgue measure. Since ∆

p,q (p ′ , q ′ ) has the same distribution as

Y (n) p ′ -p,q ′ -q , it is enough to show E Y (n) p,q 4 = O(p 2 q 2 n -4 ) . (3.25)
If X is a real random variable, an elementary computation gives

E(X -EX) 4 = κ 4 + 3κ 2 2 , (3.26) 
where κ r is the r-th cumulant of X. Taking X = T p,q = Tr D 1 U D1U ⋆ , we saw above in (3.6) that 

κ 2 = Var T p,q ≤ 2 pq n 2 . ( 3 
) i≤k ∈ R, (s i , t i ) i≤k ∈ [0, 1] 2 . We must prove the convergence in distribution of X (n) := k i=1 a i W (n) s i ,t i to a Gaussian distribution. Let us denote p i = ⌊ns i ⌋, q i = ⌊nt i ⌋. Then X (n) = k i=1 a i Y (n) p i ,q i = k i=1 a i [Tr(D i U DīU ⋆ ) -E(Tr(D i U DīU ⋆ ))]
where D i = I p i , Dī = I q i . {D i , Dī, i = 1, . . . k} are commuting projectors with a limit distribution {q i , qī, i = 1, . . . k} on a probability space (A, φ 1 ) with φ 1 (q i ) = s i , φ 1 (qī) = t i and q i q j = q i if u i ≤ u j (and = q j otherwise) where u i = s i for i odd and

u i = t i for i even. Let r ≥ 3, then κ r (X (n) , . . . , X (n) ) = k i 1 ,...,ir=1 a i 1 . . . a ir κ r (Y (n) p i 1 ,q i 1 , . . . , Y (n) p ir ,q ir ) = k i 1 ,...,ir=1 a i 1 . . . a ir κ r (X i 1 , . . . , X ir )
where

X ip = Tr(D ip U Dī p U ⋆ ). From Proposition 3.4 lim n→∞ κ r (X i 1 , . . . , X ir ) = 0. (3.28)
Now, the second cumulant is given by

κ 2 (X (n) , X (n) ) = k i,j=1
a i a j κ 2 (Tr(D i U DīU ⋆ ), Tr(D j U DjU ⋆ )).

From (3.18)

lim n κ 2 (Tr(D i U DīU ⋆ ), Tr(D j U DjU ⋆ )) = (s i ∧ s j -s i s j )(t i ∧ t j -t i t j ).
Thus, we get the convergence of X (n) to a centered Gaussian distribution with variance k i,j=1

a i a j (s i ∧ s j -s i s j )(t i ∧ t j -t i t j ).
It follows that the finite-dimensional laws of the process W (n) converge to the finite-dimensional laws of the tied-down Brownian bridge. The generic element will be denoted by O and its (i, j) coefficient by O ij . In [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF], Collins and Sniady proved the following integration formula on O(n), see also [START_REF] Collins | On some properties of orthogonal Weingarten functions[END_REF]Theorem 2.1] for the following formulation. Let G O(n) be the Gram matrix 3

G O(n) = (G O(n) (p 1 , p 2 )) p 1 ,p 2 ∈M 2k := (n loop(p 1 ,p 2 ) ) p 1 ,p 2 ∈M 2k ,
where M 2k is the set of pairings of [2k] defined in Section 2.1. Then, the orthogonal Weingarten matrix Wg O(n) is the pseudo inverse of G O(n) .

Proposition 4.1. For every choice of indices i = (i 1 , . . . , i k , i1, . . . , ik) and j = (j 1 , . . . , j k , j1, . . . , jk),

E O i 1 j 1 . . . O i k j k O i1j1 . . . O ikjk = p 1 ,p 2 ∈M 2k δ p 1 i δ p 2 j Wg O(n) (p 1 , p 2 ) (4.1)
where δ p 1 i (resp. δ p 2 j ) is equal to 1 or 0 if i (resp. j) is constant on each pair of p 1 (resp. p 2 ) or not.

We now identify M 2k as the quotient set S 2k /H k where H k is a subgroup of S 2k known as the hyperoctahedral group and defined as follows (see [START_REF] Graczyk | The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution[END_REF] and [START_REF] Capitaine | Cumulants for random matrices as convolutions on the symmetric group[END_REF]). With each g ∈ S 2k , we associate the product of disjoint transpositions:

η(g) = k i=1 (g(i) g( ī)) ,
which can be identified as an element of M 2k .

We set γ = k i=1 (i ī) and define H k = {g ∈ S 2k , γg = gγ}, the centralizer of γ. We have the following equivalence

η(g) = η(g ′ ) ⇐⇒ ∃h ∈ H k , g = g ′ h , implying M 2k ∼ = S 2k /H k .
According to Proposition 3.3 in [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF], see also [START_REF] Collins | On some properties of orthogonal Weingarten functions[END_REF], Wg O(n) (η(g 1 ), η(g 2 )) depends only on the conjugacy class of η(g 1 )η(g 2 ) and we can define the orthogonal Weingarten function of S 2k , denoted by WΛ O(n) (see [6, p. 511]) by

W Λ O(n) (g) = Wg O(n) (η(Id), η(g))
and we have

Wg O(n) (η(g 1 ), η(g 2 )) = WΛ O(n) (g -1 1 g 2 ).
In the sequel, we shall drop the superscript O(n) keeping in mind for the asymptotics that W Λ depends on the size n. It is clear from the definitions that WΛ is invariant on the classes of the 3 See footnote 1.

double coset space H k \S 2k /H k . Then, formula (4.1) can be written as

E O i 1 j 1 . . . O i k j k O i1j1 . . . O ikjk = 1 |H k | 2 g 1 ,g 2 ∈S 2k δ η(g 1 ) i δ η(g 2 ) j WΛ(g -1 1 g 2 ).
(4.2) We now describe the generators of S 2k /H k following the presentation in [START_REF] Graczyk | The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution[END_REF], (see also [START_REF] Capitaine | Cumulants for random matrices as convolutions on the symmetric group[END_REF] with a slightly different definition for particular permutations). For ǫ = (ǫ 1 , . . . , ǫ k ) ∈ {-1, 1} k , we define τ ǫ by

τ ǫ = i,ǫ i =-1 (i ī) ∈ H k .
For π ∈ S k , we define t π ∈ S 2k by

t π (i) = i; t π ( ī) = π(i) .
We shall now parametrize S 2k /H k using special permutations. Definition 4.2. A pair (ǫ, π) ∈ {-1, 1} k × S k is particular if, for any cycle c of π, we have ǫ i = 1 where i is the smallest element of c. We say that the corresponding permutation g ǫ,π := τ ǫ t π in S 2k is particular. Proposition 4.3. (see Theorem 8 in [START_REF] Graczyk | The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution[END_REF]) The class S 2k /H k containing τ ǫ t π has exactely 2 #(π) elements of the form τ ǫ ′ t π ′ . Every class of S 2k /H k contains exactely one particular permutation of the form τ ǫ t π . There are

(2k)! 2 k k! particular permutations g l = τ ǫ l t π l , l ≤ (2k)! 2 k k! . Let Σ ∈ S 2k .
From the above Proposition, there exists a particular pair (ǫ, σ) such that Σ = τ ǫ t σ h with h ∈ H k . In particular,

Σ ∼ t σ in H k \S 2k /H k and WΛ(Σ) = WΛ(t σ ).
We now recall how to find σ from Σ (see [START_REF] Graczyk | The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution[END_REF]Proposition 18]). First consider the pairing η(Σ) and the 2-regular graph Γ(Σ) (i.e. with all the cycles having even length) defined by

Γ(Σ) = η(Σ) ∪ η(Id).
Then, any cycle Γ j of length 2q j of Γ(Σ) is of the form

Γ j = (i ± j1 , i ∓ j1 , . . . , i ± jq j , i ∓ jq j )
where the ordered couple i ± i ∓ is such that i ± i ∓ ∈ {i, ī} with i ± = i implies i ∓ = ī and i ± = ī implies i ∓ = i. By convention, the starting point of Γ j is i ± j1 = min{ ījl , l ≤ q j }. Set σ j = (i j1 , . . . , i jq j ). Then σ = σ j .

4.2.

The variance of T p,q . From Proposition 4.1 and the value of the Weingarten function for k = 2 ( [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF], [10, Examples 2.1-3.1], see also [START_REF] Jiang | A variance formula related to a quantum conductance problem[END_REF]), we have:

For i = k, j = ℓ, E O 2 ij O 2 kℓ = n + 1 n(n + 2)(n -1)
.

For j = k E O 2 ij O 2 ik = 1 n(n + 2) and EO 4 ij = 3 n(n + 2)
.

From these 3 relations, we easily get Proposition 4.4. The mean and the variance of T p,q are given by:

ET p,q = i≤p,j≤q EO 2 ij = pq EO 2 11 = pq n . (4.3)
and

Var T p,q = 2pq n 2 -n(p + q) + pq n 2 (n + 2)(n -1) . ( 4 

.4)

Assume that p/n → s, q/n → t, then,

lim n 1 n ET p,q = st , lim n Var T p,q = 2st(1 -(s + t) + st) = 2st(1 -s)(1 -t).

4.3.

Mixed moments of the variables T p i ,q i . As in the unitary case, we need to compute cumulants κ r (X 1 , . . . X r ) where the variables X i are of the form X i = Tr(D i ODīO -1 ).

We shall first establish an analogue of Proposition 3.4. We assume in the following that the matrices D i are deterministic and symmetric. Even if we shall deal later only with diagonal matrices, the computations are the same for general matrices. Then,

κ r (X 1 , . . . , X r ) = (α,β,ǫ)∈Sr×Sr×{±1} r λ α,β,r A C σ,A Tr α (D) Tr β -1 ( D) (4.5)
where in the second sum

• σ ∈ S r is a function of α, β, ǫ satisfying t α -1 τ ǫ t β ∼ t σ in H k \S 2k /H k see (4.8), • A ∈ P(r) is such that σ ≤ A and A ∨ α ∨ β = 1 r , • C σ,A
are the relative cumulants of the orthogonal Weingarten function (see [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF])

• the combinatorial coefficient λ α,β,ǫ is 2 r-#(α)-#(β) .
Proof: We first give a formula for the mixed moments, following [START_REF] Capitaine | Cumulants for random matrices as convolutions on the symmetric group[END_REF]Eq (20)]:

E[ k i=1 Tr(D i ODīO -1 )] = 1 |H k | 2 g,g ′ ∈S 2k W Λ(g -1 g ′ )M + D (g)M - D ((g ′ ) -1 ) (4.6)
where the ± generalized moments M are functions on S 2k , resp. H k -right and H k -left invariant: for Y a k-tuple of random real matrices,

M + Y (g) = E[Tr π l (Y ǫ 1 (l) 1 , . . . , Y ǫ k (l) k )] if g ∈ g l H k M - Y (g) = E[Tr π l (Y ǫ 1 (l) 1 , . . . , Y ǫ k (l) k )] if g ∈ H k g l with Y -1 = Y t the transpose of Y .
Formula (4.6) follows from (4.2) and straightforward computations. Since the matrices D are symmetric, the moments do not depend of the sequence ǫ. Using the parametrisation g = τ ǫ 1 t α h and g ′ = τ ǫ 2 t β h ′ with h, h ′ ∈ H k , we can rewrite (4.6) as

E[ k i=1 Tr(D i ODīO -1 )] = α,β∈S k ,ǫ∈{±1} k λ α,β,k W Λ(t α -1 τ ǫ t β ) Tr α (D) Tr β -1 ( D) (4.7) 
The coefficient λ α,β,k comes from the fact that we do not impose the sequences ǫ 1 and ǫ 2 associated with α, resp. β to be particular and ǫ = ǫ 1 ǫ 2 . From Proposition 4.3, λ α,β,k = 2 k-#(α)-#(β) As recalled before, with the triplet (α, β, ǫ), we can associate a particular pair (σ, ǫ ′ ) such that:

t α -1 τ ǫ t β = τ ǫ ′ t σ h (4.8) 
with h ∈ H. Then, WΛ(t α -1 τ ǫ t β ) = WΛ(t σ ), denoted below by WΛ(σ). In the following, we will denote by σ := σ(α, β, ǫ) the permutation constructed above.

We now compute the cumulant, following the same scheme as in [START_REF] Mingo | Second order freeness and fluctuations of random matrices: II. Unitary random matrices[END_REF]. Let C = {V 1 , . . . V k } ∈ P(r). We denote by S V i the permutations on V i .

E C (X 1 , . . . , X r ) = k i=1 E   j∈V i X j   = (α i ,β i ,ǫ i )∈S V i ×S V i ×{±1} |V i | ;i≤k ( k i=1 λ α i ,β i ,|V i | )W Λ(σ 1 ) . . . W Λ(σ k ) . . . . . . Tr α 1 (D) Tr β -1 1 ( D) . . . Tr α k (D) Tr β -1 k ( D) = (α, β, ǫ) ∈ S r × S r × {±1} r α, β ≤ C λ α,β,r WΛ C (σ) Tr α (D) Tr β -1 ( D)
where σ ∈ S r is such that σ ≤ C and (see [11, section 3.4])

WΛ C (σ) = k i=1 WΛ(σ |V i ).
Collins and Sniady defined the cumulants of orthogonal Weingarten functions that we will denote by C σ,A for A a partition σ-invariant. They satisfy like (3.15) and (3.16):

WΛ C (σ) = A∈[σ,C] C σ,A .
Thus,

E C (X 1 , . . . X r ) = α, β ≤ C ǫ ∈ {±1} r λ α,β,r A∈[σ,C] C σ,A Tr α (D) Tr β -1 ( D). Now, κ r (X 1 , . . . , X r ) = C Möb(C, 1 r ) E C (X 1 , . . . X r ) = C Möb(C, 1 r ) (α, β, ǫ) ∈ S r × S r × {±1} r α, β ≤ C λ α,β,r A∈[σ,C] C σ,A Tr α (D) Tr β -1 ( D) = (α,β,ǫ)∈Sr×Sr×{±1} r λ α,β,r σ≤A {C;A,α,β≤C} Möb(C, 1 r )C σ,A Tr α (D) Tr β -1 ( D) = (α,β,ǫ)∈Sr×Sr×{±1} r λ α,β,r σ≤A;A∨α∨β=1r C σ,A Tr α (D) Tr β -1 ( D)
where the last equality follows from

C;A,α,β≤C Möb(C, 1 r ) = 1 if A ∨ α ∨ β = 1 r , 0 otherwise. 
We now study the asymptotic of (4.5) when n → ∞. We assume that the family of n × n matrices (D i ) has a limit distribution. It is known (see [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]Theorem 3.16]) that the order of C σ,A is n -2r-#(σ)+2#(A) . In [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF], the asymptotic of the cumulant is given in terms of a metric l on pairings. We use that l(p σ , p Id ) = |σ| := r -#(σ) where p σ = (i, σ(i)) is the pairing associated with σ and p Id = γ. Now,

Tr α (D) Tr β -1 ( D) = n #(α)+#(β) tr α (D) tr β -1 ( D) = O(n #(α)+#(β) ).
Therefore, for given α, β, ǫ, the corresponding term in the cumulant is of order n -2r-#(σ)+2#(A)+#(α)+#(β) , where σ and A satify the conditions quoted in Proposition 4.5, i.e. σ is the permutation defined by (4.8), σ ≤ A and A ∨ α ∨ β = 1 r .

(4.9)

Proposition 4.6. Under the conditions (4.9), for r ≥ 3,

-2r -#(σ) + 2#(A) + #(α) + #(β) + 1 ≤ 0 . (4.10) Corollary 4.7. Let {D i , i ∈ [2r]
} n be a sequence of deterministic and symmetric matrices of size n which has a limit distribution and X i = Tr(D i ODīO -1 ).

For r ≥ 3, lim n→∞ κ r (X 1 , . . . , X r ) = 0 (4.11)

We first recall the following lemma (see [START_REF] Mingo | Second order freeness and fluctuations of random matrices: II. Unitary random matrices[END_REF] and the proof therein for the second assertion below). Lemma 4.8. For A, B ∈ P(k) we have

#(A) + #(B) ≤ k + #(A ∨ B) .
Moreover, if there exists a block A i of A and B j of B such that #(A i ∩B j ) = l, then,

#(A) + #(B) ≤ k -l + 1 + #(A ∨ B) .
Proof of Proposition 4.6 From the above lemma and Condition (4.9), we have: #(α) + #(β) ≤ r + #(α ∨ β) , (4.12) #(A) + #(α ∨ β) ≤ r + 1 , (4.13) #(A) ≤ #(σ) .

(4.14) The proof relies on the following property: Lemma 4.9. If α or β has a fixed point, then there is a strict inequality in (4.13) or in (4.14) Proof of Lemma 4.9 We denote by Σ the permutation of S 2r given by t α -1 τ ǫ t β .

1) Assume that i is a fixed point of α and β. Then (Σ(i), Σ( ī)) = (i, ī) or ( ī, i) depending on the sign of ǫ(i) and therefore, i is a fixed point of σ. In this case, σ ∨ α ∨ β = 1 r and therefore #(A) < #(σ).

2) Assume that i is a fixed point of β and α(i) = i. Then {Σ(i), Σ( ī)} = {i, α -1 (i)} and therefore the elements {i, α -1 (i)} are in the same cycle of σ (thus in the same block of A), thery are obviously in the same block of α. From Lemma 4.8, the inequality is strict in (4.13).

3) Assume that i is a fixed point of α and β(i) = i. Σ(β -1 (i)) = i or ī according to the sign of ǫ i and

Σ(β -1 (i)) = β -1 (i) or α -1 β -1 (i).
Thus, we find two distinct elements (i, β -1 (i)) (or (i, α -1 β -1 (i))) belonging to a cycle of σ (thus to the same block of A) and belonging to a block of α∨β (which is β -1 -invariant and α -1 β -1 -invariant). Therefore, the inequality (4.13) is strict.

Let α and β two permutations in S r . If #(α) + #(β) ≤ r -2 + #(α ∨ β), then, (4.10) is satisfied, using (4.13) and (4.14). From (4.12), it remains to study the two cases:

1) #(α) + #(β) = r + #(α ∨ β), 2) #(α) + #(β) = r -1 + #(α ∨ β).
Case 1) It is not difficult to see that in this case, there exist two different fixed points for α or β. For example, a unique fixed point for both α and β would imply:

#(α) + #(β) ≤ 1 + r -1 2 + 1 + r -1 2 = r + 1.
This is not possible since in this case, α ∨ β has at least two blocks. So, let i = j the two fixed points. Several situations can occur: a) i, j are fixed points of both α and β. Then, as seen above, i, j are fixed points of σ. In this case, #(A) ≤ #(σ) -2, leading to (4.10).

b) i is a fixed point of α and β and j is a fixed point of one of them. From the previous Lemma, #(A) ≤ #(σ) -1 and #(A) + #(α ∨ β) ≤ r -1 + 1 = r leading to (4.10). c) i, j are fixed points of one of the two permutations. For example, i, j are fixed points of β. If #{i, j, α -1 (i), α -1 (j)} ≥ 3, then, from Lemmas 4.8 and 4.9, it is not difficult to see that #(A) + #(α ∨ β) ≤ r -2 + 1 (either a block of σ and a block of α have 3 common points or two blocks of σ and two blocks of α have two common points, etc.), leading to (4.10). If #{i, j, α -1 (i), α -1 (j)} = 2, in this case, α and σ have a 2-cycle (i, j). This yields #(A) + #(α ∨ β) ≤ r -1 + 1 but we also have #(A) < #(σ) since σ ∨ (α ∨ β) = 1 r . The other cases are similar, leading to

-#(σ) + 2#(A) + #(α ∨ β) ≤ r -2 + 1 = r -1 proving (4.10). Case 2): #(α) + #(β) = r -1 + #(α ∨ β).
If there exists a fixed point, then one of the inequality in (4.13) or (4.14) is strict and we are done. If there is no fixed point, this implies that r is even, #(α) = #(β) = r 2 and α ∨ β = 1 r . An equality in (4.13) is true only for A = 0 r , the partition in singletons. This would imply that σ = Id. Let i ≤ r,

Σ(i) = i or α -1 (i) and Σ( ī) = β(i) or α -1 β(i).
Therefore, σ = Id implies that α -1 β(i) = i or α -1 (i) = β(i) and α and β have a common 2-cycle. This is not possible (α ∨ β = 1 r ) except if r = 2. .

4.4.

The fourth cumulant. We give an estimate for κ 4 (T p,q ). From the previous section,

κ 4 (T p,q ) = (α,β,ǫ)∈S 4 ×S 4 ×{±1} 4 λ α,β,4 A;A∨α∨β=1 4 C σ,A Tr α (D) Tr β -1 ( D)
where D = (I p , I p , I p , I p ) and D = (I q , I q , I q , I q ). From the asymptotic behavior of the cumulant, each term is of order

n -8-#(σ)+2#(A) p #(α) q #(β) (4.15)
where σ, A, α, β satisfy condition (4.9). First assume that #(α) = #(β) = 1. Then the order of (4.15) is at most: pq n 4 ≤ p 2 q 2 n 4 . Now assume that α or β has at least two blocks. From Proposition 4.6, the order of (4.15) is at most

n -1-#(α)-#(β) p #(α) q #(β) .
It is easy to see that this is at most of order p 2 q 2 n 4 . For example, α and β has at least two blocks,

n -1-#(α)-#(β) p #(α) q #(β) ≤ p 2 q 2 n 5 p n #(α)-2 q n #(β)-2 .
In the remaining cases, we find a majoration by pq 2 n 4 or p 2 q n 4 . Therefore, we obtain 

κ 4 (T p,q ) = O p 2 q 2 n 4 . ( 4 
|W (n) (s, t)| → sup s,t∈[0,1] |W (∞) (s, t)| in distribution, which implies that sup s,t∈[0,1] | 1 n T ⌊ns⌋,⌊nt⌋ -st| → 0 (5.1)
in probability.

2) The definition of our process focusses on the trace of a random matrix H p,q . This trace is a linear statistic of its empirical spectral distribution, i.e.

T p,q = Tr H p,q = p xdµ(x) , and the λ k 's are the eigenvalues of H p,q . If we are interested only in marginals (p = ⌊ns⌋, q = ⌊nt⌋, with s, t ∈ (0, 1) fixed), we can look directly at the asymptotic behavior of µ when n → ∞ and then deduce results from the continuity of the mapping µ → xdµ(x) on M 1 ([0, 1]). It is known that, if p ≤ q and p + q ≤ n, the random matrix H p,q belongs to the Jacobi unitary/orthogonal ensemble ([9] Theorem 2.2, [1] Prop. 4.1.4), which entails that the joint distribution of eigenvalues has a density proportional to

p k=1 λ a-1 i (1 -λ i ) b-1 1≤i<j≤p |λ i -λ j | β (5.2) 
where a = (qp + 1) β 2 and b = (npq + 1) β 2 . The sequence of empirical spectral distributions converges to the generalized Kesten-McKay distribution. When s ≤ min(t, 1t), this distribution has a density which can be parametrized by s, t or by the endpoints of its support (u -, u + ) with 0 ≤ u -< u + ≤ 1:

π u -,u + (x) = C u -,u + (x -u -)(u + -x) 2πx(1 -x) (5.3) 
where

C -1 u -,u + := 1 2 1 - √ u -u + -(1 -u -)(1 -u + ) .
The relation between (s, t) and u ± is

u ± = s(1 -t) ± (1 -s)t 2 .
By continuity, in all cases, we recover a weak form of (5.1), i.e. from the known results on the fluctuations of linear statistics of µ. Actually, the result of Johansson [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF] is not specific of the Jacobi ensemble, but uses a model of random matrices invariant by conjugation, with polynomial external field. Here, the ensemble is invariant but the potential is logarithmic (see (5.2)). The result is a Gaussian limit with the good variance. At another level, in the same asymptotics as above, Hiai and Petz [START_REF] Hiai | Large deviations for functions of two random projection matrices[END_REF] proved that the family of empirical spectral distributions satisfies the Large Deviation Principle in M 1 ([0, 1]) with speed βn 2 /2 and good rate function, which in the case s < t < 1/2 is

I(ν) = -s 2
log |x -y|dν(x)dν(y)

-s ((1st) log(1x) + (ts) log x) dν(x) + I 0 (s, t) .

where I 0 (s, t) is some constant (the limiting free energy). Appealing again to the continuity of the mean, we deduce from the contraction principle that n -1 T ⌊ns⌋,⌊nt⌋ satisfies the LDP at scale n -2 with good rate function

I(c) = inf{I(ν); ν ∈ M 1 ([0, 1]), 1 0 xdν(x) = c} .
3) In multivariate (real) analysis of variance, the random variable T p,q is known as the Bartlett-Nanda-Pillai statistics. The exact distribution of T p,q is known by its Laplace transform which is an hypergeometric function of matrix argument ( [START_REF] Muirhead | Aspects of multivariate statistical theory[END_REF] p.479). Various asymptotic studies have been performed, essentially p, q fixed, n → ∞ (large sample framework), or highdimensional framework with q fixed, n, p → ∞ and p/n → s < 1 (see for instance [START_REF] Fujikoshi | Asymptotic results in canonical discriminant analysis when the dimension is large compared to the sample size[END_REF]). The asymptotic regime of the present paper (p/n → s, q/n → t) is considered in Section 4.4 of the book [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF] and a CLT for the statistic T p,q may be deduced from Theorem 2.2 of [START_REF] Bai | Corrections to LRT on Large Dimensional Covariance Matrix by RMT[END_REF].

Finally, we

  define M 2k as the set of pairings of [2k], i.e. of partitions where each block consists of exactly two elements. It is then convenient to encode the set [2k] by [2k] ∼ = {1, . . . , k, 1, . . . , k} .

. 5 ) 2 . 3 .

 523 Matrices. For a matrix M = (M ij ) i,j≤n , we denote by Tr the trace and by tr the normalized trace Tr(For π ∈ S k and M = (M 1 , . . . M k ) a k-tuple of n × n matrices, we set Tr π (M ) = Tr π (M 1 , . . . , M k ) = C∈C(π)

. 10 )

 10 From these equations, we can recover (3.3),(3.4). We can now state a proposition which is a particular case of[21, Theorem 3.10]. Proposition 3.4. Let U be Haar distributed on U(n). Let D = (D 1 , . . . D k ) and D = (D1, . . . Dk) be two families of deterministic matrices of size n.

Remark 3 . 5 .

 35 When writing Tr α ( D) in (3.11), we consider α as a permutation acting on [ k]. The formula (3.11

.21) 3 . 4 . 3 . 4 . 1 .

 34341 Proof of Theorem 1.1. Tightness. According to Bickel and Wichura [5, Theorem 3], since our processes are null on the axes, the tightness of the family of distributions of W

4. The orthogonal case 4 . 1 .

 41 Combinatorics for the orthogonal group. Let O(n) denote the orthogonal group of size n endowed with the Haar probability measure.

Proposition 4 . 5 .

 45 Let O be Haar distributed on O(n). Let D = (D 1 , . . . D k ) and D = (D1, . . . Dk) be two families of deterministic and symmetric matrices of size n. We set, for 1 ≤ i ≤ r, X i = Tr(D i ODīO -1 ).

.16) 4 . 5 .5. Complementary remarks 1 )

 451 Proof of Theorem 1.1. The proof is similar to the proof in the unitary case, using the asymptotic vanishing cumulants of order r ≥ 3 (Corollary 4.7) and the estimate (4.16) for the fourth cumulant, ensuring the tightness of the family of distributions. Since the sup norm is continuous for the Skorokhod topology, Theorem 1.1 implies that sup s,t∈[0,[START_REF] Anderson | An introduction to random matrices[END_REF] 

lim n 1 n

 1 T ⌊ns⌋,⌊nt⌋ = s xπ u -,u + (x)dx = st , in probability.It could also be possible to recover the limiting fluctuations of the marginal distribution of T ⌊ns⌋,⌊nt⌋ with s, t fixed, i.e.T ⌊ns⌋,⌊nt⌋ -ET ⌊ns⌋,⌊nt⌋ law -→ N (0, 2 β s(1s)t(1t))

We will deal with the symplectic case in a forthcoming paper.
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