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TRUNCATIONS OF HAAR UNITARY MATRICES,

TRACES AND BIVARIATE BROWNIAN BRIDGE

C. DONATI-MARTIN AND A. ROUAULT

Abstract. Let U be a Haar distributed unitary matrix in U(n). We
show that after centering the double index process

W
(n)(s, t) =

∑

i≤⌊ns⌋,j≤⌊nt⌋

|Uij |
2

converges in distribution to the bivariate tied-down Brownian bridge.
The proof relies on the notion of second order freeness.

1. Introduction

Let σ be a random permutation uniformly distributed on the symmetric
group Sn . Define for p, q ≤ n

Y (n)
p,q = card{1 ≤ i ≤ p, σ(i) ≤ q}.

In [4], G. Chapuy proved that a suitable normalization of Y
(n)
p,q converges in

distribution to the bivariate tied-down Brownian bridge. Note that Y
(n)
p,q =

Tr(Σp,qΣ
⋆
p,q) where Σp,q is the truncated matrix of size p × q of Σ, the per-

mutation matrix associated to σ. In this paper, we prove a similar result
when the symmetric group is replaced by the unitary group, equipped with
the Haar measure.

Let U be a Haar distributed unitary matrix in U(n). We consider, for
p ≤ n and q ≤ n, the upper-left p×q submatrix Vp,q and the p×p Hermitian
matrix

Ap,q = Vp,qV
⋆
p,q .

We are interested in the asymptotic behavior of

Tp,q = TrAp,q =
∑

i≤p,j≤q

|Ui,j |2 .

Let for p, q ≤ n

Y (n)
p,q = Tp,q − ETp,q .

We define a sequence of two parameter processes W (n) by

W (n) :=
(

Y
(n)
⌊ns⌋,⌊nt⌋, s, t ∈ [0, 1]

)
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Chapuy used the space C([0, 1]2) completing its process in such a way that
it is continuous and affine on each closed ”lattice triangle”. We prefer using
the multidimensional generalization of Skorokhod space D([0, 1]2) given by
[3]. It consists of functions from [0, 1]2 to R which are at each point right
continuous (with respect to the natural partial order of [0, 1]2) and admit
limits in all ”orthants”. The space D([0, 1]2) is endowed with the topology
of Skorohod (see [3] for the definition).
Our main result is the following

Theorem 1.1. The process W (n) converges in distribution in D([0, 1]2) to

the tied-down Brownian bridge W (∞) which is a centered continuous Gauss-
ian process on [0, 1]2 of covariance

E[W (∞)(s, t)W (∞)(s′, t′)] = (s ∧ s′ − ss′)(t ∧ t′ − tt′).

The proof of this theorem relies on the notion of second order freness
introduced by [12] and further developed in [13] in the case of unitary ma-
trices. Roughly speaking, whereas the freeness, introduced by Voiculescu
[16], provides the asymptotic behavior of expectation of traces of random
matrices, the second order freeness describes the leading order of the fluc-
tuations of these traces.

The rest of the paper is organized as follows. In section 2, we compute the
first and second moments of Tp,q from some relations obtained in [10] giving
the multiple moments (up to order 4) of the matrix elements Uij of a Haar
distributed unitary matrix U . Section 3 is devoted to some combinatorics
for the unitary group, giving a summary of the main results of [13]. In
particular, we state a formula for the cumulants of variables of the form X =
Tr(AUBU⋆) for deterministic matrices A,B of size n. In Section 4, we apply
the above formula to the computation of the second and fourth cumulant of
Tp,q. Section 5 is devoted to the proof of Theorem 1.1. As usual, the proof is

divided in two parts: tightness of the distributions of W (n) and convergence
of the finite dimensional laws. To prove the tightness, we use a criterion
of Bickel and Wichura for two parameter processes, with the help of the
estimates obtained in section 4. The convergence of the finite dimensional
distributions to a Gaussian distribution relies on the computations of their
cumulants and their asymptotics, obtained in [13] and recalled in Section
3. In section 6, we give complementary remarks and connections with other
problems.

2. Preliminary remarks: Some moments

We have the following important relations (see [10], Proposition 4.2.3). If
Ui,j is the generic element of U ∈ U(n) and X = |Ui,j |2, then X follows the
beta distribution with parameter (1, n − 1) of density (n− 1)(1 − x)n−2 on
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[0, 1]. Thus,

EX =
1

n
, EX2 =

2

n(n+ 1)
VarX =

n− 1

n2(n+ 1)
. (2.1)

and if X = |Ui,j|2 and Y = |Ui,k|2 with k 6= j, then (X,Y ) follows the
Dirichlet distribution of parameters (1, 1, n−2) of density (n−1)(n−2)(1−
x− y)n−3 sur {0 ≤ x, y, x+ y ≤ 1}. Thus

E
(

|Ui,j|2|Ui,k|2
)

=
1

n(n+ 1)
(2.2)

Besides, if i 6= k, j 6= ℓ,

E
(

|Ui,j |2|Uk,ℓ|2
)

=
1

n2 − 1
. (2.3)

At last

E|Uij |2k =
(n− 1)!k!

(n− 1 + k)!
(2.4)

From these relations, we can compute the first moments of Tp,q.

Proposition 2.1. The mean and the variance of Tp,q are given by:

ETp,q =
∑

i≤p,j≤q

E|Uij|2 = pqE|U11|2 =
pq

n
. (2.5)

and

Var Tp,q = pq
n2 − n(p+ q) + pq

n2(n2 − 1)
. (2.6)

Assume that p/n → s, q/n → t, then,

lim
n

1

n
ETp,q = st , lim

n
Var Tp,q = st(1− (s + t) + st) = st(1− s)(1− t).

Proof:

ET 2
p,q =

∑

i,k≤p,j,l≤q

E|Uij |2|Ukl|2

=
∑

i≤p,j≤q

E|Uij|4 +
∑

i≤p,j 6=l≤q

E|Uij |2|Uil|2

+
∑

i 6=k≤p,j≤q

E|Uij|2|Ukj|2 +
∑

i 6=k≤p,j 6=l≤q

E|Uij|2|Ukl|2

= pq
2

n(n+ 1)
+ pq(q − 1)

1

n(n + 1)

+p(p− 1)q
1

n(n+ 1)
+ p(p− 1)q(q − 1)

1

n2 − 1

= pq

(

p+ q

n(n+ 1)
+

(p − 1)(q − 1)

n2 − 1

)

This yields (2.6).
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Remark 2.2. An easy consequence of the above Proposition is

lim
n

1

n
T⌊ns⌋,⌊nt⌋ = st

in probability. Actually the convergence is uniform (see section 6).

3. Combinatorics for the unitary group

We recall in this section the notations and the main result of [13] that we
shall use to prove our main theorem. Let U be a n×n Haar distributed uni-
tary matrix. The expectations of products of entries of U can be described
by a special function, called the Weingarten function (see [5]) defined as
follows:

Wg(N,π) = E(U11 . . . UppŪ1π(1) . . . Ūpπ(p)) (3.1)

where π ∈ Sp the set of permutations of p elements, p ≤ n. Then, matrix
integrals can be expressed as follows:

E(Ui′1j
′
1
. . . Ui′pj

′
p
Ūi1j1 . . . Ūipjp)

=
∑

α,β∈Sp

δi1i′α(1)
. . . δipi′α(p)

δj1jβ(1)
. . . δjpi′β(p)

Wg(N,βα−1) ,

(see [7] Cor. 2.4. The Weingarten functions for p = 1, 2 are given by (see
[5]):

Wg(n, (1)) =
1

n

Wg(n, (1)(2)) =
1

n2 − 1
, Wg(n, (12)) = − 1

n(n2 − 1)
(3.2)

From these equations, we can recover (2.2), (2.3).

Notations: For n a positive integer we set [[n]] := {1, 2, · · · , n}.
1) Let ǫ : [[2l]] 7→ {−1, 1} be such that

∑2l
i=1 ǫi = 0. We write ǫ−1(1) =

{p1 < p2 < . . . < pl} and ǫ−1(−1) = {q1 < q2 < . . . < ql}. Let S(ǫ)
2l

be the permutations π in S2l such that π sends {p1 < p2 < . . . < pl} on

{q1 < q2 < . . . < ql} and reversly. For S(ǫ)
2l , we can associate a permutation

π̃ in Sl defined by
π2(pk) = pπ̃(k).

A partition A = (A1, . . . Ak) of [[2l]] is π- invariant (π ∈ S2l) if π leaves

invariant each block Ai. To a partition A π- invariant with π ∈ S(ǫ)
2l , we can

associate a partition Ã on [[l]] which is π̃ invariant as follows: for a block Ai

of A, we associate the block Ãi = {k ≤ l, pk ∈ Ai}.
2) Cumulants: κr denotes the classical cumulants (see [15], [13]): kr is a

multilinear function of r variables defined as follows: if a1, . . . , ar are random
variables,

κr(a1, . . . ar) =
∑

C∈P(r)

Möb(C, 1r)EC(a1, . . . ar)
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where P(r) is the set of partitions of [[r]], the Möbius function is given by
Möb(C, 1r) = (−1)k−1(k− 1)! where k is the number of blocks of C and for
C = {C1, . . . Ck},

EC(a1, . . . ar) =

k
∏

i=1

E(
∏

j∈Ci

aj).

If X1, . . . X2l are random matrices , for π a permutation with cycle structure
π = π1 × · · · × πr with πi = (πi,1, . . . , πi,ℓ(i))

κπ(X1, . . . ,X2l) = κr

(

Tr(Xπ1,1 · · · ,Xπ1,ℓ(1)
), . . . ,Tr(Xπr,1 · · ·Xπr,ℓ(r)

)
)

For A = {A1, . . . , Ak} a σ-invariant partition of [[2l]] we can write σ =
σ1 × · · · × σk where σi = π|Ai

is a permutation of the set Ai, we define

κσ,A(X1, . . . ,X2l) = κσ1(X1, . . . ,X2l) · · · κσk
(X1, . . . ,X2l) ,

Remark 3.1. When the matrices Xi are deterministic, κσ,A(X1, . . . ,X2l)
is non zero only if A is the partition consisting in the cycles of σ.

3) Limiting distribution Let {X1, . . . ,Xs}n a sequence of n×n determin-
istic matrices. {X1, . . . Xs}n has a limit distribution if there exists a non
commutative probability space (A, ϕ) and a1, . . . as ∈ A such that for any
polynomial p in s non commuting variables,

lim
n→∞

tr(p(X1, . . . ,Xs)) = ϕ(a1, . . . , as).

where tr denotes the normalized trace.
We can now state a proposition which is a particular case of [13, Theorem

3.10]. In the following, U ǫ = U if ǫ = 1 and U⋆ if ǫ = −1.

Proposition 3.2. Let (Un) a sequence of Haar distributed unitary matrices
of size n and {X1, . . . Xs}n a sequence of deterministic matrices which has
a limit distribution. Let r > 1 and ǫ1, . . . ǫ2r ∈ {−1, 1} such that

∑

ǫi = 0.
Consider p1, . . . p2r polynomials in s non commuting variables. For i =
1, . . . , 2r, we set

Di = pi(X1, . . . ,Xs)

and for 1 ≤ i ≤ r,

Xi = Tr(D2i−1U
ǫ(2i−1)D2iU

ǫ(2i)).

Then,

κr(X1, . . . ,Xr) =
∑

π∈S
(ǫ)
2r

∑

A,B

Cπ̃,Ã κγπ−1,B(D1, . . . ,D2r) (3.3)

where the second sum is taken over pairs of partitions of [[2r]] such that A is
π invariant, B is γπ−1 invariant and A∨B = 1[[2r]] the one block partition.
γ is given by the product of transpositions

∏

i≤r(2i − 1, 2i) and Cπ,A are

relative cumulants (see [5]) defined by

Cπ,A =
∑

C∈[π,A],C={V1,...Vk}

Möb(C,A)Wg(π|V1) . . .Wg(π|Vk
) (3.4)
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for A π invariant.
Moreover, for r ≥ 3,

lim
n→∞

κr(X1, . . . ,Xr) = 0.

In the sequel, we shall apply this Proposition with ǫ(2i − 1) = 1, ǫ(2i) =
−1.

4. Computations of the second and fourth cumulants of Tp,q

4.1. The covariance of Tp,q. The fundamental remark is that

Ap,q = D1UD2U
⋆

with D1 = Ip,D2 = Iq, where Ik is the matrix of projection on the k
first coordinates. Note that if p/n → s, q/n → t, {D1,D2} are commuting
projectors with a limit law a1, a2 commuting projectors on (A, ϕ) such that
a1a2 = a1 if s < t and = a2 if t < s, and ϕ(a1) = s, ϕ(a2) = t.
Let p, p′, q, q′ ≤ n. We now give an application of Proposition 3.2 to the
computation of cov(Tp,q, Tp′,q′) = κ2(Tp,q, Tp′,q′). This can also be done,
using the computations of Section 2.
We set D3 = Ip′ ,D4 = Iq′ and apply formula (3.3) to X1 = Tp,q, X2 = Tp′,q′ ,

r = 2. We have ǫ(1) = ǫ(3) = 1, ǫ(2) = ǫ(4) = −1. The elements of S(ǫ)
4 are

the permutations of S4 which send {1, 3} on {2, 4}, namely

S(ǫ)
4 = {σ, π, τ, γ} (4.1)

where

σ = (14)(23) , π = (1234) , τ = π−1 = (1432) , γ = γ22 = (12)(34)

We have, successively

γσ−1 = γσ = (13)(24) , γπ−1 = γτ = (13)(2)(4) , γτ−1 = γπ = (1)(24)(3)

and, of course γγ−1 = (1)(2)(3)(4). The tilde permutations are obtained
easily:

σ2(1) = 1 , σ̃ = (1)(2) , τ2(1) = 3 , τ̃ = (12) (4.2)

π2(1) = 3 , π̃ = (12) , γ2(1) = 1 , γ̃ = (1)(2) . (4.3)

In (3.3), for given π, B := Bπ is determined as the partition given by the
cycles of γπ−1 (see Remark 3.1). Thus,

Bσ = {{1, 3}, {2, 4}} , Bπ = {{1, 3}, {2}, {4}} , Bτ = {{1}, {2, 4}, {3}},
Bγ = {{1}, {2}, {3}, {4}}.

The corresponding A satisfying the conditions of (3.3) are

Aπ = Aτ = Aγ = {{1, 2, 3, 4}} and Ã = {{1, 2}}
and for σ, we have two choices

Aσ(1) = {{1, 2, 3, 4}} ; Aσ(2) = {{1, 4}, {2, 3}} and Ã(2) = {{1}, {2}}.
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The relative cumulants are given by (see (3.2), (3.4))

Cπ̃,Ãπ
= Cτ̃ ,Ãτ

= − 1

n(n2 − 1)

Cγ̃,Ãγ
= C

σ̃,Ãσ(1)
= − 1

n2
+

1

n2 − 1
=

1

n2(n2 − 1)

C
σ̃,Ãσ(2)

=
1

n2

2
∑

p=1

C
σ̃,Ãσ(p)

=
1

n2 − 1

and the D’s contribution (we omit the arguments) are

κγσ−1 = (TrD1D3) (TrD2D4) = (p ∧ p′)(q ∧ q′)

κγπ−1 = (TrD1D3) (TrD2) (TrD4) = (p ∧ p′)qq′

κγτ−1 = (TrD1) (TrD3) (TrD2D4) = pp′(q ∧ q′)

κγγ−1 = (TrD1) (TrD2) (TrD3) (TrD4) = pp′qq′

Plugging into (3.3) , we get

κ2(Tp,q, Tp′,q′) = (4.4)

(p ∧ p′)(q′ ∧ q′)

n2 − 1
− (p ∧ p′)qq′

n(n2 − 1)
− pp′(q ∧ q′)

n(n2 − 1)
+

pp′q′q′

n2(n2 − 1)
.

In the limit p/n → s, q/n → t, p′/n → s′, q′/n → t′, we get

lim
n

κ2(Tp,q, Tp′,q′)

= (s ∧ s′)(t ∧ t′)− (s ∧ s′)tt′ − ss′(t ∧ t′) + ss′tt′

= (s ∧ s′ − ss′)(t ∧ t− tt′).

4.2. The fourth cumulant. We now give an estimate for κ4(Tp,q) . From
(3.3),

κ4 =
∑

π∈S
(ǫ)
8

∑

A,B

Cπ̃,Ã κγπ−1,B(D1, . . . ,D8) (4.5)

where S(ǫ)
8 is the subset of S8 which sends {1, 3, 5, 7} onto {2, 4, 6, 8} and

reversely, γ = (12)(34)(56)(78) ∈ S8, A and B are partitions of [[8]] such
that A is π-invariant, B is γπ−1-invariant, A ∨B = 1[[8]], and finally

D1 = D3 = D5 = D7 = Ip , D2 = D4 = D6 = D8 = Iq .

Since the matrices Di are deterministic, κσ,B(D) is non-zero only if B is the
partition consisting in the cycles of σ. If γπ−1 = τ1 × · · · × τh, then

κγπ−1,B(D1, · · · ,D8) = κ1

(

Tr(Dτ1,1 · · ·Dτ1,ℓ(1))
)

· · · κ1
(

Tr(Dτh,1 · · ·Dτh,ℓ(h))
)

Note that γπ−1 sends even (resp. odd) integers to even (resp. odd) integers,
thus h ≥ 2.
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First assume p < q. For each block Bj of B corresponding to a cyclic
permutation τj,

Tr(Dτj,1 · · ·Dτj,ℓ(j)) = p if ∃k : τj(k) ∈ {1, 3, 5, 7}
and = q otherwise. Let N be the number of blocks Bj of B such that
∃k : τj(k) ∈ {1, 3, 5, 7}. We have now

κγπ−1,B(D1, · · · ,D8) = pNq#(B)−N .

In [5, Cor. 2.9], Collins proved that the order of Cπ̃,Ã is at most n−8−#(π)+2#(A)

where #(π) denotes the number of cycles of π. Finally

Cπ̃,Ãκγπ−1,B(D1, · · · ,D8) = O
(

n−8−#(π)+2#(A)pNq#(B)−N
)

From equation (20) in [13], we see that

2#(A) + #(B)−#(π) ≤ 6

so that

n−8−#(π)+2#(A)pNq#(B)−N ≤ pNq#(B)−Nn−2−#(B)

≤ (q/n)#(B)−2q2−NpNn−4

≤ q2−NpNn−4

≤ p2q2n−4 .

It is straightforward that this result holds also if p ≥ q. We conclude that

κ4 = O
(

p2q2n−4
)

(4.6)

5. Prrof of Theorem 1.1

5.1. Tightness. According to Bickel and Wichura [3, Theorem 3], since our

processes are null on the axes, the tightness of the distributions of W (n) is
in force as soon as the condition C(β, γ) with β > 1 is satisfied (see (2), (3)
in [3]):

E(|W (n)(B)|γ1 |W (n)(C)|γ2) ≤ (µ(B))β1(µ(C))β2 (5.1)

where γ = γ1+γ2 > 0 and β = β1+β2 > 1, B and C are two adjacent blocks
in [0, 1]2 and W (n)(B) denotes the increment of W (n) around B, given by

W (n)(B) = W
(n)
s′,t′ −W

(n)
s′,t −W

(n)
s,t′ +W

(n)
s,t

for B =]s, s′]×]t, t′], µ is a finite positive measure on [0; 1]2 with continuous
marginals.
From Cauchy-Schwarz inequality, (5.1) is implied by

E(|W (n)(B)|2γ1) ≤ (µ(B))2β1 . (5.2)

Moreover, it is enough to consider blocks whose corners points are in T n =
{ p
n
, 0 ≤ p ≤ n} × { q

n
, 0 ≤ q ≤ n} (see [3], p. 1665.)
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Let p ≤ p′ ≤ n and q ≤ q′ ≤ n and B =] p
n
, p

′

n
]×] q

n
, q

′

n
]

W (n)(B) := ∆(n)
p,q (p

′, q′) = Y
(n)
p′,q′ − Y

(n)
p′,q − Y

(n)
p,q′ + Y (n)

p,q

=
∑

p+1≤i≤p′

∑

q+1≤i≤q′

Ti,j − Ti,j.

If we show that there exists a constant C, such that

sup
n

E

[

(

∆(n)
p,q (p

′, q′)
)4

]

≤ C
(p′ − p)2(q′ − q)2

n4
, (5.3)

then (5.2) is satisfied with γ1 = 2, β1 = 1 and µ is the Lebesgue measure.

Since ∆
(n)
p,q (p′, q′) has the same distribution as Y

(n)
p′−p,q′−q, it is enough to show

E

[

(

Y (n)
p,q

)4
]

= O(p2q2n−4) . (5.4)

If X is a real random variable, an elementary computation gives

E(X − EX)4 = κ4 + 3κ22 , (5.5)

where κr is the r-th cumulant of X. Taking X = Tp,q = TrD1UD2U
⋆, we

saw above in (2.6) that

κ2 = Var Tp,q ≤ 2
pq

n2
. (5.6)

Gathering (5.5) , (5.6) and (4.6) we get that (5.4) is checked, which proves
the tightness.

5.2. Finite-dimensional laws. Let (ai)i≤k ∈ R, (si, ti)i≤k ∈ [0, 1]2. We

must prove the convergence in distribution of X(n) :=
∑k

i=1 aiW
(n)
si,ti

to a
Gaussian distribution.
Let us denote pi = ⌊nsi⌋, qi = ⌊nti⌋. Then

X(n) =

k
∑

i=1

aiY
(n)
pi,qi

=

k
∑

i=1

ai[Tr(D2i−1UD2iU
⋆)− E(Tr(D2i−1UD2iU

⋆))]

where D2i−1 = Ipi , D2i = Iqi .
{D2i−1,D2i, i = 1, . . . k} are commuting projectors with a limit distribution
{q2i−1, q2i, i = 1, . . . k} on a probabilty space (A, φ1) with φ1(q2i−1) = si,
φ1(q2i) = ti and qiqj = qi if ui ≤ uj (and = qj otherwise) where ui = si for
i odd and ui = ti for i even.
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Let r ≥ 3, then

κr(X
(n), . . . ,X(n)) =

k
∑

i1,...,ir=1

ai1 . . . airκr(Y
(n)
pi1 ,qi1

, . . . , Y (n)
pir ,qir

)

=
k

∑

i1,...,ir=1

ai1 . . . airκr(Xi1 , . . . ,Xir)

where Xip = Tr(D2ip−1UD2ipU
⋆). From Proposition 3.2

lim
n→∞

κr(Xir , . . . ,Xir) = 0. (5.7)

Now, the second cumulant is given by

κ2(X
(n),X(n)) =

k
∑

i,j=1

aiajκ2(Tr(D2i−1UD2iU
⋆),Tr(D2j−1UD2jU

⋆)).

From (4.4)

κ2(Tr(D2i−1UD2iU
⋆),Tr(D2j−1UD2jU

⋆)) =

(pi ∧ pj)(qi ∧ qj)

n2 − 1
− (pi ∧ pj)qiqj

n(n2 − 1)
− pipj(qi ∧ qj)

n(n2 − 1)
+

pipjqiqj
n2(n2 − 1)

.

In the limit, we get

lim
n

κ2(Tr(D2i−1UD2iU
⋆),Tr(D2j−1UD2jU

⋆))

= (si ∧ sj)(ti ∧ tj)− (si ∧ sj)titj − sisj(ti ∧ tj) + sisjtitj

= (si ∧ sj − sisj)(ti ∧ tj − titj).

Thus, we get the convergence of X(n) to a centered Gaussian distribution
with variance

k
∑

i,j=1

aiaj(si ∧ sj − sisj)(ti ∧ tj − titj).

It follows that the finite-dimensional laws of the process W (n) converge to
the finite-dimensional laws of the tied-down Brownian bridge.

6. Complementary remarks

1) Since the sup norm is continuous for the Skorokhod topology, Theorem
1.1 implies that

sup
s,t∈[0,1]

|W (n)(s, t)| → sup
s,t∈[0,1]

|W (∞)(s, t)|

in distribution, which implies that

sup
s,t∈[0,1]

| 1
n
T⌊ns⌋,⌊nt⌋ − st| → 0 (6.1)

in probability.
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2) The definition of our process focusses on the trace of a random matrix
Ap,q. This trace is a linear statistic of its empirical spectral distribution, i.e.

Tp,q = TrAp,q = p

∫

xdµ(p)(x) ,

where

µ(p) =
1

p

p
∑

k=1

δ
λ
(p)
k

,

and the λ
(p)
k ’s are the eigenvalues of Ap,q. If we are interested only in

marginals (p = ⌊ns⌋, q = ⌊nt⌋, with s, t ∈ (0, 1) fixed), we can look di-

rectly at the asymptotic behavior of µ(p), as n → ∞. It is known that the
random matrix Ap,q belongs to the Jacobi unitary ensemble ([6], [9]) and
we can deduce results from the continuity of the mapping µ 7→

∫

xdµ(x)
on M1([0, 1]). The sequence of empirical spectral distributions converges to
the Kesten-McKay distribution of density which can be parametrized by s, t
or by the endpoints of its support (u−, u+) with 0 ≤ u− < u+ ≤ 1:

πu−,u+(x) = Cu−,u+

√

(x− u−)(u+ − x)

2πx(1− x)
(6.2)

where

C−1
u−,u+

:=
1

2

[

1−√
u−u+ −

√

(1− u−)(1− u+)
]

.

The relation between (s, t) and u± is

u± =
[

√

s(1− t)±
√

(1− s)t
]2

.

By continuity, we recover a weak form of (6.1), i.e.

lim
n

1

n
T⌊ns⌋,⌊nt⌋ = s

∫

xπu−,u+(x)dx = st ,

in probability.
It could also be possible to recover the fluctuation result for the marginal

distribution, i.e.

T⌊ns⌋,⌊nt⌋ − ET⌊ns⌋,⌊nt⌋
law−→ N (0, s(1 − s)t(1− t))

from the known results on the fluctuations of linear statistics of µ(p). Ac-
tually, the result of Johansson [11] is not specific of the Jacobi ensemble,
but uses a model of random matrices invriant by conjugation, with poly-
nomial external field. Here, the ensemble is invariant but the potential is
logarithmic. The result is a Gaussian limit with the good variance.

At another level, in the same asymptotics as above, Hiai and Petz [9]

proved that the family (µ(p)) satisfies the Large Deviation Principle in
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M1([0, 1]) with scale n−2 and good rate function, which in the case s <
t < 1/2 is

I(ν) = −s2
∫ ∫

log |x− y|dν(x)dν(y)

−s

∫

((1− s− t) log(1− x) + (t− s) log x) dν(x) + I0(s, t) .

where I0(s, t) is some constant (the limiting free energy). Appealing again
to the continuity of the mean, we deduce from the contraction principle that
n−1T⌊ns⌋,⌊nt⌋ satisfies the LDP at scale n−2 with good rate function

I(c) = inf{I(ν); ν ∈ M1([0, 1]),

∫ 1

0
xdν(x) = c} .

3) It would be interesting to develop the same study with the orthogonal
group O(n) and we will address this point in a separate work. Indeed, in
multivariate (real) analysis of variance, the random variable Tp,q is known as
the Bartlett-Nanda-Pillai statistics. The exact distribution of Tp,q is known
by its Laplace transform which is an hypergeometric function of matrix
argument ([14] p.479). Various asymptotic studies have been performed,
essentially p, q fixed, n → ∞ (large sample framework), or high-dimensional
framework with q fixed, n, p → ∞ and p/n → s < 1 (see for instance
[8]). The asymptotic regime of the present paper (p/n → s, q/n → t) is
considered in Section 4.4 of the book [1] and a CLT for the statistic Tp,q

may be deduced from Theorem 2.2 of [2].
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