Truncations of Haar distributed matrices, traces and bivariate Brownian bridges. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Random matrices: theory and Applications (RMTA) Année : 2011

Truncations of Haar distributed matrices, traces and bivariate Brownian bridges.

Résumé

Let U be a Haar distributed unitary matrix in U(n)or O(n). We show that after centering the double index process $$ W^{(n)} (s,t) = \sum_{i \leq \lfloor ns \rfloor, j \leq \lfloor nt\rfloor} |U_{ij}|^2 $$ converges in distribution to the bivariate tied-down Brownian bridge. The proof relies on the notion of second order freeness.
Fichier principal
Vignette du fichier
Donati-Rouault.pdf (262.81 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00498758 , version 1 (08-07-2010)
hal-00498758 , version 2 (02-12-2010)
hal-00498758 , version 3 (15-02-2011)
hal-00498758 , version 4 (19-09-2011)

Identifiants

Citer

Catherine Donati-Martin, Alain Rouault. Truncations of Haar distributed matrices, traces and bivariate Brownian bridges.. Random matrices: theory and Applications (RMTA), 2011, 23 p. ⟨10.1142/S2010326311500079⟩. ⟨hal-00498758v4⟩
208 Consultations
251 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More