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Abstract: In dell' Isola and Ruta, and dell' Isola and Rosa is suggested a “perturbative approach” (Nayfeh;
Trabucho and Viaiio) to the Saint-Venant problem for thin cross sections, however, the papers deal with
closed cross sections or with cross sections of constant thickness only (see also Wheeler and Horgan). Here
we generalize the proposed procedure by giving a method for treating the case of open or closed sections of
variable thickness. We find all the known formulas (Trabucho and Viafio; Feodosyev; Chase and Chilver;
Baldacci) due to Kelvin and Bredt as first non-vanishing-terms of our perturbative development and give the
corrections to these formulas, too. This seems to be a first step toward solving the open problem formulated
in Trabucho and Viafio, pp. 162-164.

I. INTRODUCTION

In applying Saint-Venant torsion theory to thin-walled (linear elastic) beams, Bredt [9]
suggested a way to solve approximately, in the case of negligible thickness, the Prandtl
[10] elliptic boundary value problem for general cross sections. Here, we extend these
results by giving a systematic procedure for deducing and generalizing formulas useful
in technical applications. The cross section 2D of the Saint-Venant cylinder will be rep-
resented as follows: D = D\ Dy, where D;, i = 0,1, are simply connected domains,
Dy C Dy and 0Dy NOD; = 0. We will consider two cases: Dy # 0 and Dy = 0. In the
first case we have (so called) closed cross sections, while in the second we have open
cross sections.

For reasons expounded in dell' Isola and Ruta [1], we state the Saint-Venant torsion
problem in terms of the Prandtl stress function ¢:

Ad+2 = 0 inDCI, 1)

*Vo.-n = 0 ondD, 2)

Vo-n = —2Aq. (3)
3Dy

Here, I1 is the plane of the section, * is the 7t/2-rotation operator in IT, A is the Laplace
operator, V is the gradient operator, # is the outer normal of the domain D and Ay is the
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area of 7. Because of (2), ¢ has constant values on 0D and d%. As it is defined up to
a constant, we can choose

while
c:=0(dD) )
is determined by the integral condition (3). We explicitly remark that condition (3)
is equivalent to requiring that the warping function is not polydrome (see Fraeijs de
Veubeke[11]).
For open sections, condition (1) implies (3) so, because 0D = 0D we have to satisfiy

condition (4) only (see Section 4.3).
Let the function ¢ : D; — R be defined by

—_ JcifxeDy
¢(x)—{ ox)ifxeD -~ ©

Once the problem for the Prandtl function is solved, we can calculate the torsional
rigidity R, the warping w and the tangent stress ¢ by the following formulas (Clebsh [12],
Sokolnikoff [13], and Love [14])

R=2G [ &, Vw()=—t(Vo0)++ly=0), 1=-Gi:Vo ()

where 0 € I1, y € D, G is the shear modulus of elasticity and 7 is the angle of twist.

II. PERTURBATIVE DEVELOPMENT OF THE PRANDTL FUNCTION

In this paper, we will consider an annular region Axler, Bourdon and Ramey [15]) A
(0A =:YpUv1) and a one parameter family of C?-diffeomorphisms from A to II (Section
3):
Xe i A —IL

Let D, = %e(A), 0D: = %e(Y0) Uxe(n1) =: U T'f. We will consider Prandtl problem
)] throu%h (3) for the family of Slomains D,, and we will call ¢ the corresponding
solution, ¢¢ : D — R. Let ¢¢ := ¢g 0 Ye. We will assume for ¢ the following formal
expansion in terms of € > 0 (¢ measures the thickness of the section and ¢ : A — R):

0= 3 e’ . ®)
k=0
In particular, for the image ¢ of @g on Yo, we assume the following development:

Ce = z Ckek- (9)
k=0
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It turns out that @js are solutions of a hierarchy of ordinary differential equations easily
solved by quadratures, therefore, (Nayfeh [3]) we have a singular perturbation problem.
In the sequel, we do not discuss convergence of the proposed formal expansion because
our principal aim is to give a procedure for deducing formulas useful in technical ap-
plications. However, we supply formal expansions of all other quantities appearing in
Saint-Venant torsion theory in terms of the small parameter € thus obtaining all known
formulas, due to Kelvin and Bredt, as terms of first order in €. We then can find all higher
order terms and in this paper, we give the next non-vanishing corrections to Kelvin and
Bredt formulas.

III. THE GEOMETRY OF THE PROBLEM

We identify a point p € A with the couple (s,z) where s € ¥ and z € [0,1], so that we
have
A~ x[0,1].
Moreover, we use the notation f, to mean the derivative of f with respect to x.
Let I'y be a curve whose parametrization is ro : Yo — I,

ro: s+ ro(s) : (10)

(when not misleading, we will identify s with the arc length of I'y: this means that the
length of an arc Y € 7y is equal to the length of ro(y) € T'p). Let d be a scalar field such that
8:v0— Rt and T (z € [0,1]) the z-lifted curve from I'y whose parametric representation
is given by

r(s,z) = ro(s) — zed(s)*ro4(s). (11)

We define
(Vg) (@g = U FZ')
Z€[0,1]

Therefore €3(s) can be regarded as the thickness of the section at the point s along I'y.
The couple (A, ) is a chart in D to which are associated the following:
(i) holonomic basis

e(s,z) = % = (1+2zed(s)K (5))ro,s — 20 5(5)*ros(s) (12)
es2) = 5 =—ebls)wrosls) 13

(K(s) is the curvature of I'p),
(i1) metric-tensor (when not misleading we will omit the explicit s-dependence of various

functions):
b 1 €252 — 26255, (4
8= 2821+ 220K)? \ —26288, (1+760K)? + 26282 )’
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as D has to be regarded as a Riemannian submanifold of IT.
For the sake of completeness we give expression for the gradient and the Laplacian,
which will be needed below (Weatherburn [16], and Germain [17]):

i i %0 09[R _ 1[0 ™
Vo=g"0,e;, AQ=g" (axiaxj - ﬁ{”}) - % (a_xi\/ggjq’,l) ] 15)

h
{i j} are the Christoffel symbols and g is the determinant of the metric tensor.

IV. FORMAL EXPANSION OF THE PRANDTL FUNCTION
Using (14) and the expansion (8) and (9), equations (1), (4) and (5) become:
S0 {&0nat e (323K 0nz + 8K0,) (16)
€2 (82 5+ 22 (35K + 82) Pz — 2288 5P
+(215,25 — 288 5 + 228°K 2)(p,,,z]
4ot [1631(%” + 2 (83K + 832K) Oz — 2228°8 K 25 — 28°K 5Pz

+(22288LK ~ 288 o K + 28K — z2828,sl<,s) <|>n,z] }

= —2e?8%(1 4+ e23K)>.
z:=0 (Pnlzzlen =0 a7n
Yoo (cn—@n|z=0)€" =0. (18)

A. Closed Sections

We explicitly show here only the first three terms of the e-expansion for the Prandtl
function. Noting that, because of the geometry of considered sections, V¢-n|,—o = %QZ,
condition (3) becomes

9o,z D1,z < Pnz
haid Y2494 teh| = Q. 1
ﬁ,[a“L(aJ" O)Hg‘zf’e] (19)
Using (16),(17),(18) and, in the case of closed sections, (19), we get

I:=¢81 I(s):= f58‘1>:
Iy

Po(s,2) = 0 (20)



EXTENSION OF KELVIN AND BREDTFORMULAS 247

249

Bl = —2(1-2) @1

0 (57) = @{[r()s—@]ﬂfﬂ[ Kg0+l]} @)

wid = 2 (Bep)re-nBic-a2 o
T

with

2
o Bi(s) = 205, 2% —28%

o Ba(s) = K(—82 + 48K — 1 §5+ Fr ).

Note that the 7 appearing in the expressions of ¢, and @3 is due to the Gauss-Bonnet
theorem, Kobayashi and Nomizu [18].

B. Torsional Rigidity, Warping and Shearing Stress

Using formulas (7) and the expansions R = Yo R.€", w(s,2) = X,_own(s,2)€" and
t(S, Z) = Zzo:()t,,(s,z)e", we get:

Ry = 0, (24)
4GA?
Rio= S, e3)
R, = 4(1;;4“ {1}{8-1:,40} (26)
T
WO(;’Z) = ?Ao@-k / sroxro,s (27)
WI(TS’Z) - }48 2“A° /8+ O/sK, (28)
0

and finally for the shearing stress

fo((;:;_z) = (&)= (mog,O) (29)
iy g _ _1__ 21TA0 — KAO
(Gred = ("51 [fim I ]+8(1 2) == ) GO

et = Gt (3 o) vt nfgrenty

+ ZSK[—%[ﬁO —2“;40] +5(5— KAIO)(Zz—l)] M) G
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Note that the first non-vanishing z-component of the shearing stress is of second order
in €. Thus our procedure illustrates one of the assumptions made by Bredt in deducing
his formulas.

The values of Ry, ty(s,z) and wy(s,z) are the usual ones reported in the literature
(Feodosyev [6], Chase and Chilver [7], and Baldacci [8]); they are due to Bredt [9]. We
want to emphasize how easily we got them and the expressions giving the next-leading
corrections.

C. Open Sections

Since our asymptotic expansion is singular, we cannot always satisfy all of the bound-
ary conditions on dD. More precisely, boundary conditions for the Prandtl functions
cannot be satisfied at all points that are z-lifted from r((0) and ro(l). Consequently, our
development has to be considered as approximating the solution at points far away from
the ending edges of . If we want to study ¢ in these terminal regions, we can use, for
example, an asymptotic-matching technique [3], Trabucho and Viafio [4]. Remembering
that in this case condition (3) is automatically satisfied and using (16) and (2), we get for
the Prandtl function

(P()(S,Z) = 07 (P1(S,Z)=O, (32)
w(s,2) = &) (z—72), (33)

(9 = Bk (i-Z4% (4
P3(s,2) = s)K(s ) 3 ) )

D. Torsional Rigidity, Warping and Shearing Stress

As a consequence of the fact that for an open section we do not consider the effects of
the two extrema of the section, we introduce an error in our estimate of the torsional
rigidity. This should not affect lower order terms in the development for R : Ro, R1, R,
and R3, but could change the values of R,. Further investigations will clear up this point.

Ro = 0, Ri=0, Ry=0 (35)
Ro= S[® (36)
Ry = 56;. /0 5K 37)
wo(s,2) = /Sroxro,s (38)
1 0
)
WI(’:’Z) = Zaro-r()’s——/o o (39)
to(S,Z) = (tOs,tOZ)z(OaO) (40)

(tlsatlz) = 618(1—2270) (41)
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(s t2r) = —G&’K (22 - éK’()) ’ 42)

Timoshenko and Goodier [20] credit (36), (38) and (41) to Lord Kelvin.

V. CONCLUSIONS AND PERSPECTIVES

It seems to us that the method proposed herein allows one in a rational and simple way
to get a hierarchy of formulas generalizing those of Kelvin and Bredt. Moreover, we get
a new iterative method for solving the Prandtl problem. Particularly interesting is the
second order correction to the torsion rigidity. In fact, it is easy to verify that the ratio
R, /R; can assume sensible values, choosing, for example, (a case of a certain technical
relevance), for I'y a circle of radius rg and €38 = €y + €0, sin 2"T"s, with [ = 2nry and

€01 < €8y <K rg, we have

R2£2_£50 1 51 2 85() 3 1 81 2 51 4
fe= () )~ Gea) velz))) @

If 8; = 0 we have Rye? _ 3eby a result that can be obtained from the well-known (exact)

Rie — 2rg’ . .
formula for the torsion rigidity of circular sections.
. 55() . L §_|. _ l R 82 ~ . . .
With T =10 and 5 = 20 We get —Z—Rle 16% . Moreover, in the singular case in

which 8; = 0g, R, = R; = 0 we must determine the following correction to R.

Finally, we state two limitations of our approach and suggest ways of getting around
these:
(1) The main limitation of this method comes from the way of generating the section
from the inner curve. For example, it is not easy to handle the problem when I'y and I'
are two confocal ellipses. Thus we are led to generalize the z-lifting as follows

ro(s) > ro(s) +z(ros81(s) +*ros(s)02(s)) .

Maybe the most natural procedure for constructing thin sections is by means of
Conformal Mapping Theory, Caratheodory [19].
(i) Within this approach it is difficult to study the convergence properties of the proposed
series. This could be better understood by using the theory of Padé approximants.
(iii) Developing the ideas exposed in Wheeler and Horgan [21], we expect to be able to
apply our procedure also to the analysis of flexure.
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