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A Sequent Calculus with
Implicit Term Representation

Stefan Hetzl

Laboratoire Preuves, Programmes et Systèmes (PPS)
Université Paris Diderot

175 Rue du Chevaleret, 75013 Paris, France

Abstract. We investigate a modification of the sequent calculus which
separates a first-order proof into its abstract deductive structure and
a unifier which renders this structure a valid proof. We define a cut-
elimination procedure for this calculus and show that it produces the
same cut-free proofs as the standard calculus, but, due to the implicit
representation of terms, it provides exponentially shorter normal forms.
This modified calculus is applied as a tool for theoretical analyses of the
standard calculus and as a mechanism for a more efficient implementation
of cut-elimination.

1 Introduction

It is a fundamental observation, made independently by several researchers, that
a formal proof can be subdivided into its abstract deductive structure, often
called skeleton, and a way of instantiating it with formulas which renders it a
valid proof. For proof-search, the separation of these two layers is a principle
whose importance can hardly be overemphasised. It is already visible in the
original resolution rule [24] but even more apparent in the extension [18] of
resolution to type theory. It is central for matings [1] and has applications in logic
programming where proof-search provides an operational semantics for Prolog-
like languages [21]. From a proof-theoretic point of view, the relation between
these two levels has been investigated in [22]. Such questions give rise naturally
to unification problems [20, 10]: filling up a skeleton for a cut-free first-order
proof can be done by solving a first-order unification problem, the case with
cuts corresponds to second-order unification, which is undecidable [15].

In the present paper this separation is investigated from the point of view
of cut-elimination. We introduce the calculus LKs, for first-order classical logic,
which makes these two levels explicit: a proof contains formulas with free vari-
ables whose instantiation is specified independently. We define a cut-elimination
procedure for LKs and show that it has the same set of normal forms as the
standard sequent calculus. We describe two applications of this calculus: on the
one hand we obtain an exponential compression of the size of normal forms
which makes LKs a powerful mechanism for the implemention of LK. On the
other hand the implicit representation of terms is used to give a considerably



simplified proof of a characterisation of the form of witness terms obtainable by
cut-elimination in terms of a regular tree grammar.

From an implementational perspective, we investigate the role of sharing in
the context of first-order proofs from a novel point of view. Previous work on
proof normalisation with sharing treated the level of the proof, respectively the
term calculus associated to it via a Curry-Howard correspondence: for example
the work on optimal reduction for the lambda calculus, see [2] for a survey, or
deduction graphs [12, 13] which treat natural deduction directly. The present pa-
per provides a complementary study of redundancy in the formulas of a proof, in
particular the exponential compression described in Section 5 cannot be obtained
by the above-mentioned sharing mechanisms.

2 The calculus LKs

In order to introduce the calculus LKs we first need some preliminary notions
and results about first-order substitutions. We assume two disjoint countably
infinite sets of variables at our disposal: one for free variables and one for bound
variables; the letters α, β, γ, . . . will only be used for free variables, the letters
x, y, z, . . . will be used for both free and bound variables, substitutions may
contain free and bound variables. The variables in some expression e will be
denoted by V(e). A substitution σ is a function mapping variables to terms s.t.
its domain dom(σ) := {x | x 6= xσ} is finite. The variable-range is vrge(σ) :=
V({xσ | x ∈ dom(σ)}). For a set S of substitutions, dom(S) :=

⋃
σ∈S dom(σ)

and vrge(S) :=
⋃
σ∈S vrge(σ). For σ and θ being substitutions call σ right-

independent of θ if dom(σ) ∩ dom(θ) = ∅ and vrge(σ) ∩ dom(θ) = ∅; σ and θ
are called independent if σ is right-independent of θ and θ is right-independent
of σ. The (right-)independence of substitutions is a useful technical property
for carrying out rearrangements of substitution sequences which will be used
throughout this paper.

Lemma 1. If σ is right-independent of θ = [x1\t1, . . . , xn\tn], then
θσ = σ[x1\t1σ, . . . , xn\tnσ]. If σ and θ are independent, then θσ = σθ.

A substitution σ is called base substitution if |dom(σ)| = 1. A set S of base
substitutions is called functional if for all σ1, σ2 ∈ S: dom(σ1) = dom(σ2) ⇒
σ1 = σ2. For substitutions σ, θ write σ <1 θ if vrge(σ) ∩ dom(θ) 6= ∅. A set S
of substitutions is called acyclic if the directed graph (S,<1) does not contain
a directed cycle. For a set S of substitutions write σ <S θ if there is a directed
path from σ to θ in (S∪{σ, θ}, <1) and ≤S for its reflexive closure. This ordering
of substitutions will play an important role, it is convenient to extend it also to
other objects as follows: For variables x, y write x ≤S y if x = y or there are
σ, θ ∈ S s.t. σ ≤S θ and x ∈ dom(σ) and y ∈ vrge(θ). For a set V of variables
write V ≤S y if there is an x ∈ V s.t. x ≤S y, for a term t write t ≤S y if t
contains a variable x s.t. x ≤S y and for a formula F write F ≤S y if F contains
a free variable α s.t. α ≤S y.



Definition 1. Let S be a finite, acyclic, functional set of base substitutions. A
list σ1, . . . , σn is called linearisation of S if for every σ ∈ S there is exactly one
i ∈ {1, . . . , n} s.t. σi = σ and whenever σi <S σj, then i < j.

Lemma 2. Let S be a finite, acyclic, functional set of base substitutions. Let
σi1 , . . . , σin and σj1 , . . . , σjn be linearisations of S. Then σi1 · · ·σin = σj1 · · ·σjn .

Proof. By induction on n.

Therefore, each finite, acyclic, functional set S of base substitutions induces a
unique substitution σ1 · · ·σn for σ1, . . . , σn being any linearisation of S. We de-
note this substitution by S◦. This description of a substitution is particularly
natural in the context of cut-elimination because a global substitution is com-
puted successively by composing base substitutions. This point of view is the
design principle behind LKs.

Definition 2. A sequent is a pair of multisets of formulas. An LKs-proof is a
pair (π, S) s.t. S is a finite, acyclic, functional set of base substitutions containing
free variables only and π is built up from the following axioms and rules:

A1 → A2 if A1S
◦ = A2S

◦

Γ → ∆,A Π → Λ,B

Γ,Π → ∆,Λ,A ∧B ∧r
A,Γ → ∆ B,Π → Λ

A ∨B,Γ,Π → ∆,Λ
∨l

A,B, Γ → ∆

A ∧B,Γ → ∆
∧l

Γ → ∆,A,B

Γ → ∆,A ∨B ∨r
Γ → ∆,A

¬A,Γ → ∆
¬l

A,Γ → ∆

Γ → ∆,¬A
¬r

A[x\t], Γ → ∆

∀xA, Γ → ∆
∀l

Γ → ∆,A[x\α]
Γ → ∆,∀xA ∀r

A[x\α], Γ → ∆

∃xA, Γ → ∆
∃l

Γ → ∆,A[x\t]
Γ → ∆,∃xA ∃r

where α /∈ dom(S) and t does not contain a variable that is bound in A

A,A, Γ → ∆

A,Γ → ∆
cl

Γ → ∆,A,A

Γ → ∆,A
cr

Γ → ∆
A,Γ → ∆

wl
Γ → ∆
Γ → ∆,A

wr

Γ → ∆,A1 A2, Π → Λ

Γ,Π → ∆,Λ
cut if A1S

◦ = A2S
◦

Furthermore, the following global variable condition must be fulfilled: For every
∀r- and ∃l-inference ι with an eigenvariable α and every β ≤S α: β occurs in π
only above ι.

We have thus relaxed the usual identity constraints on axioms and cuts and
replaced it by the weaker constraint of unifiability by S◦. An even more liberal
calculus could be used instead where also the identity constraints on contractions
and even on the context of rules are replaced by unifiability. However, our aim
here is the analysis of cut-elimination in LK and the above calculus LKs is
sufficiently flexible for that purpose. This calculus also bears some resemblance
to deduction modulo [8, 9] in relaxing identity constraints, its focus however
is rather different as proofs modulo are typically considered w.r.t some fixed
background theory, in LKs however we will rather start from S = ∅ and fill S
by cut-elimination.



Example 1. Let π =

P (f(α), g(α))→ P (f(α), g(α))
P (f(α), g(α))→ ∃xP (f(α), g(x))

∃r

P (β, g(γ))→ P (β, δ)
P (β, g(γ))→ ∃y P (β, y)

∃r

P (β, g(γ))→ ∃x∃y P (x, y)
∃r

∃xP (β, g(x))→ ∃x∃y P (x, y)
∃l

P (f(α), g(α))→ ∃x∃y P (x, y)
cut

∃xP (f(x), g(x))→ ∃x∃y P (x, y)
∃l

and S = {[β\f(α)], [δ\g(γ)]}. Then (π, S) is an LKs-proof.

It should be noted that this transition from a calculus K to a calculus Ks

where syntactic identity is replaced by unifiability is conceivable in a very broad
setting: it depends neither on K being a sequent calculus nor on working in
first-order classical logic. The analysis carried out in this paper is therefore also
extendable to other proof systems with quantifiers, e.g. to sequent calculi or
natural deduction systems for intuitionistic or higher-order logic.

An LK-proof is called regular if different strong quantifier inferences (i.e. ∀r-
and ∃l-inferences) have different eigenvariables. LKs is complete as every regular
LK-proof π can be regarded as an LKs-proof (π, ∅). For soundness we need the
following

Proposition 1. If (π, S) is an LKs-proof, then πS◦ is a regular LK-proof.

Proof. The rules remain correct under substitution, the eigenvariable condition
of πS◦ being implied by the global variable condition of (π, S). For regularity,
suppose there are strong quantifier inferences ι1 and ι2 with the same eigenvari-
able. By the global variable condition applied to ι1 and ι2, ι1 must be above ι2
and ι2 must be above ι1 and thus ι1 = ι2, so πS◦ is regular.

3 Cut-Elimination

In this section, we describe cut-elimination for LKs. The proof reduction steps
will be based on those of LK. There are however two crucial differences: upon
reduction of a quantifier, the substitution will not be applied to the proof but
rather be stored in S and secondly variable renamings have to be carried out
in S as well. The basic idea behind this procedure, namely to not carry out all
substitutions immediately, bears some resemblance to calculi of explicit substi-
tutions, see e.g. [19] for a recent survey. However, LKs differs from calculi of
explicit substitutions as it does not consider substitutions as part of the object
level and does not extend the standard proof reductions by reductions that deal
with substitutions.



For the reader’s convenience we first recall the reduction of a universal quan-
tifier in LK. Let π be an LK-proof. If it contains a subproof of the form

ψ =

(ψ1)
Γ → ∆,A[x\α]
Γ → ∆,∀xA ∀r

(ψ2)
A[x\t], Π → Λ

∀xA,Π → Λ
∀l

Γ,Π → ∆,Λ
cut

,

we denote this by π = π[ψ] and define

ψ′ :=
(ψ1[α\t])

Γ → ∆,A[x\t]
(ψ2)

A[x\t], Π → Λ

Γ,Π → ∆,Λ
cut

and π[ψ] → π[ψ′] where π[ψ′] denotes the proof π where the subproof ψ has
been replaced by ψ′. This reduction is adapted to LKs in the following sense.

Lemma 3. Let (π, S) be an LKs-proof where π contains a subproof

ψ =

(ψ1)
Γ → ∆,A1[x\α]
Γ → ∆, ∀xA1

∀r

(ψ2)
A2[x\t], Π → Λ

∀xA2, Π → Λ
∀l

Γ,Π → ∆,Λ
cut

and let

ψ′ :=
(ψ1)

Γ → ∆,A1[x\α]
(ψ2)

A2[x\t], Π → Λ

Γ,Π → ∆,Λ
cut

.

Then there is an S′ s.t. (π[ψ′], S′) is an LKs-proof.

Proof. If x does not appear in A1, then it also does not appear in A2 since
A1S

◦ = A2S
◦ and S contains only free variables. In this case, let S′ = S and

observe that (π[ψ′], S′) is an LKs-proof. If x does appear in A1, let S′ = S ∪
{[α\t]}. S′ is obviously finite; it is also functional as the ∀r-side condition ensures
that α /∈ dom(S). Suppose S′ is cyclic, then the cycle in S′ must contain [α\t]
and thus t ≤S α which, as t occurs outside of ψ1 contradicts the global variable
assumption of (π, S).

Let [α1\t1], . . . , [αn\tn] be a linearisation of S. Then there is a k ∈ {0, . . . , n}
s.t. S′◦ = σl[α\t]σr for σl = [α1\t1] · · · [αk\tk] and σr = [αk+1\tk+1] · · · [αn\tn].
Then

A1[x\α]S′◦ = A1σlσr[x\tσr, α\tσr] = A2σlσr[x\tσr, α\tσr] = A2[x\t]S′◦.

Let ι be a ∀r- or ∃l-inference in π[ψ′] with eigenvariable β and let γ be a
variable with γ ≤S′ β. If [α\t] does not appear in the substitution path γ ≤S′ β,
then γ ≤S β and the global variable condition of (π[ψ′], S′) follows from that of
(π[ψ], S). If [α\t] does appear, it does so exactly once for suppose it would appear



twice, then t ≤S α contradicting acyclicity of S, hence γ ≤S α and t ≤S β. By
γ ≤S α, γ occurs only in ψ1 and by t ≤S β, ι is below the reduced cut and thus
γ appears only above ι.

Finally, the remaining identity constraints in (π[ψ′], S′) are satisfied as they
are closed under substitution and the side conditions of the quantifier rules are
fulfilled too.

A technical aspect of cut-elimination is to keep track of the names of eigenvari-
ables. The traditional solution of this problem is to work on regular proofs. An
alternative would be to use additional constructs for local binding of these vari-
ables. In order to keep the object-level formalism as simple as possible, we opted
for the first solution. The elimination of a contraction is the only reduction rule
where this aspect has to be dealt with. Let V be a set of variables. A substi-
tution ρ is called fresh-variable renaming for V if ρ = [αi\α′i]ni=1, ρ is injective
and none of the α′i occurs in V . We say that ρ is a fresh-variable renaming for
an expression e if it is one for V(e). If an LK-proof π contains a subproof of the
form

ψ =

(ψ1)
Γ → ∆,A,A

Γ → ∆,A
cr

(ψ2)
A,Π → Λ

Γ,Π → ∆,Λ
cut

,

define ψ′ :=
(ψ1)

Γ → ∆,A,A
(ψ2ρ

′)
A,Π → Λ

Γ,Π → ∆,Λ,A
cut (ψ2ρ

′′)
A,Π → Λ

Γ,Π,Π → ∆,∆,Λ
cut

Γ,Π → ∆,Λ
c∗

where {α1, . . . , αk} are the eigenvariables of ψ2 and ρ′ := [αi\α′i]ki=1, ρ′′ :=
[αi\α′′i ]ki=1 are fresh-variable renamings for π. Define π[ψ]→ π[ψ′]. For simplify-
ing the comparison with LKs we assume that the above variables α′i and α′′i have
been chosen in such a way that they are not only fresh for the proof currently
under consideration but also for the whole cut-elimination sequence up to the
current proof. Given a substitution σ = [βj\sj ]mj=1, ρ is a fresh-variable renaming
for σ if it is one for V = dom(σ)∪vrge(σ). In this case, define σρ := [βjρ\sjρ]mj=1.
Given a set S of substitutions, ρ is a fresh-variable renaming for S if it is one
for all σ ∈ S; in this case, define Sρ := {σρ | σ ∈ S}. For the reduction of a con-
traction in LKs we have to extend the renaming to all variables which depend
on eigenvariables of the duplicated proof.

Lemma 4. Let (π, S) be an LKs-proof where π contains a subproof

ψ =

(ψ1)
Γ → ∆,A1, A1

Γ → ∆,A1

cr
(ψ2)

A2, Π → Λ

Γ,Π → ∆,Λ
cut

.



Let α1, . . . , αk be the eigenvariables of ψ2 and let {α1, . . . , αn} = {α | α ≤S
αi for an i ∈ {1, . . . , k}}. Let α′1, α

′′
1 , . . . , α

′
n, α

′′
n be distinct variables s.t. ρ′ :=

[αi\α′i]ni=1 and ρ′′ := [αi\α′′i ]ni=1 are fresh-variable renamings for π and S. Then,
by the global variable condition, ψ2ρ

′ and ψ2ρ
′′ end with A2, Π → Λ. Let ψ′ :=

(ψ1)
Γ → ∆,A1, A1

(ψ2ρ
′)

A2, Π → Λ

Γ,Π → ∆,Λ,A1
cut (ψ2ρ

′′)
A2, Π → Λ

Γ,Π,Π → ∆,Λ,Λ
cut

Γ,Π → ∆,Λ
c∗

and S′ := Sρ
′ ∪ Sρ′′

, then (π[ψ′], S′) is an LKs-proof.

Having established the reductions of quantifiers and contractions above we have
a cut-elimination relation for LKs.

Definition 3. We will write (π, S) → (π′, S′) if π, S, π′, S′ are as in Lemma 3
or in Lemma 4 above (including the symmetric variants for ∃ and contraction-
left). Furthermore we also write (π, S)→ (π′, S) if π reduces to π′ by a standard
LK-reduction of a propositional connective, a weakening, an axiom or the rank of
a cut-formula. The reader interested in technical details is invited to consult [16]
for a comprehensive list of all reduction rules for this calculus. For LK-proofs
π, π′ we write π → π′ for the standard reduction. We will also use → to denote
a sequence of the above reduction steps for both LK and LKs.

Note that we do not impose any restriction on the strategy that can be ap-
plied. Therefore this set of reduction rules is not confluent, see [4] for a strongly
non-confluent example. It is also not strongly normalising by allowing the double-
contraction example found e.g. in [7] and in a similar form in [25]. It is however
weakly normalising which follows from known results about LK. The rationale
for considering this liberal cut-elimination relation lies in the fact that each re-
striction by a strategy limits the obtainable normal forms. From the point of view
of obtaining a confluent calculus, see e.g. [7, 23], to be used as a programming
language this effect is intended. However, from the foundational point of view
that asks for the constructive content of a mathematical proof in classical logic
it has the unfortunate consequence of strongly reducing the degree of generality
in which the original proof is considered, see [4].

4 Relation to LK

We can now reduce an LK-proof π using either the standard LK-reductions to
obtain a cut-free LK-proof π∗ or the LKs-reductions to obtain a proof (ψ, S)
where ψ is cut-free. For a regular LK-proof π we define

NFLK(π) := {π∗ | π → π∗, π∗ cut-free} and
NFLKs(π) := {(ψ, S) | (π, ∅)→ (ψ, S), ψ cut-free}.



In this section we will show that LK and LKs have the same normal forms. In
order to compare the normal forms of LKs with those of LK we consider the set
(NFLKs(π))◦ where, for a set P of LKs-proofs, we define P ◦ := {ψS◦ | (ψ, S) ∈
P}. First we need some auxiliary commutation properties.

Lemma 5. Let V be a set of variables, ρ be a fresh-variable renaming for V and
σ a substitution with dom(σ) ⊆ V and vrge(σ) ⊆ V . Then (σρ)|V = (ρσρ)|V .

Lemma 6. Let S be a finite, acyclic, functional set of base substitutions and let
ρ be a fresh-variable renaming for S. Then (Sρ)◦ = (S◦)ρ.

Proposition 2. Let π → π∗ be a cut-elimination sequence in LK. Then there
is a cut-elimination sequence (π, ∅)→ (ψ, S) in LKs s.t. ψS◦ = π∗.

Proof. By induction on the length of π → π∗; the case of the empty sequence
is trivial. So assume given a sequence π → π′ → π∗ where π′ → π∗ consists of
exactly one reduction. By induction hypothesis there is an LKs-proof (ψ′, S′)
s.t. ψ′S′◦ = π′. Note that the inferences in π′ are in 1-1 correspondence with
those in ψ′, so the cut-reduction step π′ → π∗ uniquely induces one in (ψ′, S′)
which we use to define (ψ∗, S∗). It remains to prove ψ∗S∗◦ = π∗. This is easy
for the reduction of axioms, propositional connectives, weakening and the rank
reductions as S′ = S∗ in these cases.

For the reduction of a quantifier, let [α\t] be the substitution and π1 be
the subproof of π′ to which the substitution is applied in the reduction step
π′ → π∗. Then, for some term s we have S∗ = S′ ∪ {[α\s]} where, as ψ′S′◦ =
π′, also sS′◦ = t. Let [α1\t1], . . . , [αk\tk], [α\s], [αk+1\tk+1], . . . , [αn\tn] be a
linearisation of S′, then [α1\t1], . . . , [αn\tn] is a linearisation of S. Abbreviating
σl = [α1\t1] · · · [αk\tk] and σr = [αk+1\tk+1] · · · [αn\tn] we thus have t = sσr.
Letting ψ1 be the subproof of ψ′ that corresponds to π1 we have π1[α\t] =
ψ1σlσr[α\sσr]. But now, for i ∈ {k + 1, . . . , n}, α /∈ V(ti) by the linearisation
property and α 6= αi by the ∀r-side condition in ψ, so σr is right-independent of
[α\s] and thus by Lemma 1: π1[α\t] = ψ1S

∗◦. If F is a formula in ψ∗ outside of
ψ1, then FS′◦ = FS∗◦ because F �S α by the global variable condition of ψ′

and therefore ψ∗S∗◦ = π∗.
For the reduction of contraction, let α1, . . . , αk be the eigenvariables of the

subproof π2 of π′ that is duplicated in the reduction π′ → π∗. Then α1, . . . , αk
are also the eigenvariables of the subproof ψ2 of ψ′ corresponding to π2. Let
{α1, . . . , αn} = {α | α ≤S′ αi for an i ∈ {1, . . . , k}}, then the variables α′1, α

′′
1 ,

. . . , α′k, α
′′
k are fresh for ψ′ and S′ because they are fresh for π → π′. For the

LKs-step, they are extended to α′1, α
′′
1 , . . . , α

′
n, α

′′
n which are also fresh for ψ′ and

S′. Define ρ = [αi\α′i]ni=1, ρ̂ = [αi\α′i]ki=1, σ = [αi\α′′i ]ni=1 and σ̂ = [αi\α′′i ]ki=1.
As ψ2ρ does not contain any α′′i we have ψ2ρS

∗◦ = ψ2ρ(S′ρ)◦. By Lemma 6:
ψ2ρ(S′ρ)◦ = ψ2ρ(S′◦)ρ. Letting V := dom(S′) ∪ vrge(S′) ∪V(ψ2) and observing
that ρ is fresh for V , apply Lemma 5 to obtain ψ2ρ(S′◦)ρ = ψ2S

′◦ρ. Now by
induction hypothesis ψ2S

′◦ = π2 and as αk+1, . . . , αn do not appear in π2, we
have π2ρ = π2ρ̂ and thus ψ2ρS

∗◦ = π2ρ̂. Analogously we obtain ψ2σS
∗◦ = π2σ̂. If

F is a formula in ψ∗ outside of ψ2ρ and ψ2σ, then for all i ∈ {1, . . . , n}: F �S′ αi
by the global variable condition, so FS′◦ = FS∗◦ and therefore ψ∗S∗◦ = π∗.



Theorem 1. Let π be a regular LK-proof, then NFLK(π) = (NFLKs(π))◦.

Proof. The direction ⊆ follows from the above Proposition 2, the direction ⊇
from Proposition 1 and the observation that for (ψ, S)→ (ψ′, S′) being an LKs-
step, ψS◦ → ψ′S′◦ is an LK-step.

So LKs is equivalent to LK from an extensional point of view. It is however
different from an intensional point of view, a property that will be exploited in
the next two sections to demonstrate that LKs is an advantageous mechanism
for implementing cut-elimination and a useful tool for carrying out a more fine-
grained analysis of LK.

5 Implementation and Complexity

It is a well-known observation going back to Kreisel that proof-theoretic meth-
ods for consistency-proofs like Gentzen’s cut-elimination, Hilbert’s ε-calculus or
Gödel’s Dialectica-interpretation can be applied to concrete mathematical proofs
in order to extract constructive information, e.g. bounds or programs, from them.
An example for this kind of mathematical application of cut-elimination is Gi-
rard’s analysis of the Fürstenberg-Weiss proof of van der Waerden’s theorem on
arithmetic progressions [14, annex 4.A]. A central motivation for implementing
cut-elimination thus lies in, at least partially, automating such analyses. The
ceres-system1 is an implementation of the cut-elimination method [6] based on
resolution and has been applied to concrete proof analyses, see e.g. [5]. In this
section we will argue that LKs is a useful mechanism for the implementation
of the standard cut-elimination as the implicit term representation allows for
exponentially shorter normal forms.

The size of a term, formula or LK-proof is the number of symbols it contains,
the size of a set S of substitutions is

∑
σ∈S size(σ), the size of an LKs-proof (ψ, S)

is size(ψ) + size(S). We consider a language containing the constant symbol 0,
the function symbols s(·),+, 2· and the binary predicate symbol = with N as
intended interpretation. A numeral is a term of the form sn(0) for some n ∈ N; for
ease of notation we identify a numeral with the number it denotes. Furthermore
the language contains a constant symbol a and a binary function symbol f
formalising a data-structure, e.g. binary trees as well as a unary function symbol
| · | whose intended interpretation is the number of leaves in a tree built up by f
and a. Accordingly, we define the following set A of axioms, some of which are
assigned abbreviations:

1 = 20

P ≡ ∀x 2x + 2x = 2s(x)

|a| = 1
S ≡ ∀x∀y |f(x, y)| = |x|+ |y|
T ≡ ∀x∀y∀z (x = y ⊃ y = z ⊃ x = z)
C ≡ ∀x∀y∀y′∀z∀z′ (x = y + z ⊃ y = y′ ⊃ z = z′ ⊃ x = y′ + z′)

1 http://www.logic.at/ceres/



where the implication F ⊃ G is an abbreviation for ¬F ∨ G and is right-
associative. The sequences of proofs we are going to consider will prove ∃x |x| =
2n from A. When writing down proofs, a list of rule names next to an inference
line denotes the application of this list in bottom-up order. We also use the above
letters P, S, T, C for denoting a macro-inference which consists of an application
of the respective axiom, i.e. one contraction to make a working copy of the ax-
iom, instantiating all quantifiers and removing all implications by axioms on the
left so that only the head atom remains. Let

π0 :=

|a| = 20 → |a| = 20

|a| = 20 → ∃x |x| = 20
∃r

A → ∃x |x| = 20
T,w∗

which, in expanded form, is

|a| = 1→ |a| = 1
1 = 20 → 1 = 20

|a| = 20 → |a| = 20

|a| = 20 → ∃x |x| = 20
∃r

P, S, |a| = 20, T, C → ∃x |x| = 20 w∗

1 = 20, P, S, 1 = 20 ⊃ |a| = 20, T, C → ∃x |x| = 20
⊃l

1 = 20, P, |a| = 1, S, |a| = 1 ⊃ 1 = 20 ⊃ |a| = 20, T, C → ∃x |x| = 20
⊃l

1 = 20, P, |a| = 1, S, T, T, C → ∃x |x| = 20
∀l(3×)

1 = 20, P, |a| = 1, S, T, C → ∃x |x| = 20
cl

Let furthermore πn+1 :=

(πn)
A → ∃x |x| = 2n

(ξn)
|αn| = 2n,A → ∃x |x| = 2s(n)

∃x |x| = 2n,A → ∃x |x| = 2s(n)
∃l

A,A → ∃x |x| = 2s(n)
cut

A → ∃x |x| = 2s(n)
c∗

Let t0 := a, tn+1 := f(αn, αn) and define ξn :=

|tn+1| = 2s(n) → |tn+1| = 2s(n)

|tn+1| = 2s(n) → ∃x |x| = 2s(n)
∃r

|tn+1| = 2n + 2n,A → ∃x |x| = 2s(n)
P, T,w∗

|tn+1| = |αn|+ |αn|, |αn| = 2n,A → ∃x |x| = 2s(n)
cl, C

|αn| = 2n,A → ∃x |x| = 2s(n)
S

Now, due to the numerals, size(ξn) = O(n) and size(πn+1) = size(πn)+size(ξn)+
O(n) hence size(πn) = O(n2). For describing the cut-elimination of πn we define
the following additional proofs. Let Sn := {[α1\t1], . . . , [αn\tn]}. Write An for n
copies of A. For all n ≥ 0, define a derivation

|a| = 20,An → ∃x |x| = 2n

(χ0
n)

An+1 → ∃x |x| = 2n



by the succession T,w∗ as used in π0. For 1 ≤ k ≤ n, define a derivation

|tk| = 2k,An−k → ∃x |x| = 2n

(χkn)
|tk−1| = 2k−1,An−(k−1) → ∃x |x| = 2n

by the succession S, cl, C, P, T,w∗ as used in ξn and for n ≥ 0, define the proof

ψn :=

|tn| = 2n → |tn| = 2n

|tn| = 2n → ∃x |x| = 2n
∃r

(χnn)....
(χ0
n)

An+1 → ∃x |x| = 2n

A → ∃x |x| = 2n c∗

We have size(χkn) = O(n) hence size(ψn) = c +
∑n
k=0 size(χkn) = O(n2) and as

size(Sn) = O(n) finally size(ψn, Sn) = O(n2).

Theorem 2. There is a sequence (πn)n≥0 of regular LK-proofs with size(πn) =
O(n2) s.t.

1. every sequence (π∗n)n≥0 of LK-normal forms has size(π∗n) = Ω(2n) and
2. there is a sequence (ψn, Sn)n≥0 of LKs-normal forms with size(ψn, Sn) =

O(n2). Furthermore, the reduction sequences (πn, ∅)→ (ψn, Sn) have length
O(n2) and contain only proofs of size O(n2).

Proof. Let πn, ψn and Sn be as above. For 1 note that the intended interpretation
of our language shows that every cut-free proof of A → ∃x |x| = 2n must contain
a witness term for x that has 2n occurrences of a.

For 2 we have to show that (πn, ∅)→ (ψn, Sn). We proceed by induction on
n: the base case n = 0 is fulfilled by the empty reduction sequence. To treat the
case n + 1, first apply the induction hypothesis which costs O(n2) reductions
steps, then apply O(n) rank reductions to transform (πn+1, ∅) to the proof

|tn| = 2n → |tn| = 2n

|tn| = 2n → ∃x |x| = 2n
∃r

(ξn)
|αn| = 2n,A → ∃x |x| = 2s(n)

∃x |x| = 2n,A → ∃x |x| = 2s(n)
∃l

|tn| = 2n,A → ∃x |x| = 2s(n)
cut

(χnn+1)
....

(χ0
n+1)

An+2 → ∃x |x| = 2s(n)

A → ∃x |x| = 2s(n)
c∗

with Sn as set of substitutions. This LKs-proof in turn reduces to (ψn+1, Sn+1)
in a constant number of reduction steps.



In total, this sums up to O(n2) reduction steps for (πn, ∅) → (ψn, Sn). All
proofs in the reduction sequence have size O(n2) as rank reductions do not
change the size and the quantifier reductions only add [α1\t1], . . . , [αn\tn] to
the set of base substitutions.

Note that the length of the reduction sequence to ψnS
◦
n in LK is also O(n2)

so the above result is an improvement w.r.t. proof size. The above compression
cannot be obtained by sharing mechanisms that work on the level of the proof
because the redundancy lies at the formula level. Also note that this result is
reminiscent of the situation known from first-order unification that, while the
unifiability problem is decidable in linear time, the size of the most general unifier
is exponential [3].

The above result shows that LKs is an advantageous mechanism for imple-
menting cut-elimination because it avoids to unfold terms as long as possible. In
addition, it should be noted that due to the simplicity of the used data structure
– a set – implementing LKs does not require more effort than implementing LK.
The global substitution which is explicitly computed by LKs represents the full
cut-elimination in a concise way and can also be applied to structures derived
from the original proof π with cuts: for example to a short tautology [17] read
off from π to obtain a Herbrand-disjunction or to the characteristic clause set [6]
to obtain a propositionally refutable clause set.

6 LKs as tool for analysing LK

Carrying out the above analysis of sharing mechanisms on the proof-theoretic
instead of on the implementational level has the benefit that it can be used
for theoretical analyses as well. An investigation of the form of witness terms
obtainable by cut-elimination has been carried out in [16] by different means.
One of the central results obtained there is a characterisation of the form of
terms obtainable by cut-elimination by regular tree grammars. In this section
we will provide a simple proof of this result by observing that it is a corollary of
cut-elimination in LKs.

A regular tree grammar [11] is a quadruple G = (α,N, F,R) composed of
an axiom α, a set N of non-terminal symbols with α ∈ N , a set F of terminal
symbols with F ∩ N = ∅ and a set R of production rules of the form β → t
where β ∈ N and t is a term built from F ∪ N . Given a regular tree grammar
G = (α,N, F,R), the derivation relation→G associated to G is defined as s→G t
if there is a production rule β → u and a context r[] s.t. s = r[β] and t = r[u].
Furthermore, �G is the reflexive and transitive closure of →G. The language
L(G) generated by G is the set of all terms containing only symbols from F
which can be reached by a derivation path from α.

For the sake of comparability with Section 5, we describe a slightly more
general setting than in [16] by working on proofs of Σ1-sentences in a unviersal
theory T . For a proof π of a Σ1-sentence F = ∃x1 . . . ∃xnA with A quantifier-free
from axioms of T , let H(π) be the set of auxiliary formulas of ∃r-inferences intro-
ducing ∃xn in π. Note that H(π) is quantifier-free, that T proves the existential



closure of
∨

H(π), if π is cut-free, then T proves
∨

H(π) and if, in addition, T is
the empty theory, then

∨
H(π) is a tautology, the Herbrand-disjunction induced

by π.
Let π be a proof and Q be a quantifier occurrence in π. Define a set of terms

t(Q) associated with Q as follows: if Q occurs in the main formula of a weakening,
then t(Q) := ∅. If Q is introduced by a quantifier inference from a term t or a
variable x, then t(Q) := {t} or t(Q) := {x} respectively. If Q occurs in the main
formula of a contraction and Q1, Q2 are the two corresponding quantifiers in the
auxiliary formulas of the contraction, then t(Q) := t(Q1) ∪ t(Q2). In all other
cases Q has exactly one immediate ancestor Q′ and t(Q) := t(Q′).

Let π be a proof, c be a cut in π. Write Q(c) for the set of pairs (Q,Q′) of
quantifier occurrences where Q is a strong occurrence in one cut-formula of c
and Q′ the corresponding weak occurrence on the other side of the cut. Define
the set of base substitutions of c as B(c) :=

⋃
(Q,Q′)∈Q(c){[x\t] | x ∈ t(Q), t ∈

t(Q′)}. For c1, . . . , cn being the cuts in π define the base substitutions of π as
B(π) :=

⋃n
i=1 B(ci). A proof then induces a grammar as follows.

Definition 4. The grammar G(π) = (ϕ,N, F,R) is defined by setting N =
{ϕ, α1, . . . , αn} where {α1, . . . , αn} are the eigenvariables of π, ϕ is a new sym-
bol, F is the signature of π plus the propositional connectives ¬,∨,∧ and

R = {ϕ→ F | F ∈ H(π)} ∪ {α→ t | [α\t] ∈ B(π)}.

Example 2. For the proofs πn of Section 5 we obtain G(πn) = (ϕ,N, F,R) where

N = {ϕ, α0, . . . , αn−1},
F = {¬,∨,∧, 0, s,+, 2·,=, a, f, | · |}, and
R = {ϕ→ |f(αn−1, αn−1)| = 2s

n(0),

αn−1 → f(αn−2, αn−2), . . . , α1 → f(α0, α0), α0 → a}.

One of the central results of [16] is

Theorem 3. Let π be an LK-proof of a Σ1-sentence from universal axioms,
then there is a regular tree grammar G(π) s.t. for every cut-free π∗ with π → π∗:
H(π∗) ⊆ L(G(π)).

The importance of this result lies in the fact that the grammar provides a char-
acterisation of all possibly obtainable witness terms that depends only on the
original proof π and not on the chosen cut-elimination strategy. In [16] this re-
sult has been obtained by considering structured terms which use an additional
tree structure for representing substitutions applied to terms. We can now give
a simple proof based on cut-elimination in LKs.

Proof. By Proposition 2 there is a cut-elimination sequence (π, ∅) → (ψ, S) in
LKs s.t. ψS◦ = π∗. Given a variable α in (ψ, S) we write ι(α) for the unique
variable in π that has been renamed to α. The function ι is extended to terms and
formulas in the obvious way. By induction on the length of the cut-elimination
sequence, it is then straighforward to show (i) ι(H(ψ)) ⊆ H(π) and (ii) ι(S) ⊆



B(π) where ι is needed for contraction- and⊆ for weakening-reduction. As ψS◦ =
π∗ also H(π∗) = H(ψ)S◦ and as π∗ is a cut-free proof of a Σ1-sentence from
universal axioms, H(π∗) = ι(H(π∗)). Let now H ∈ H(ψ) and σ1, . . . , σn be a
linearisation of S. We will show ϕ �G(π) ι(HS◦) by induction on n. For n = 0,
ϕ �G(π) ι(H) by (i). For n > 0 let σn = [α\t], then by (ii) [ι(α)\ι(t)] ∈ B(π) and
by applying the production rule ι(α)→ ι(t) to all positions of α in Hσ1 · · ·σn−1

we obtain ι(Hσ1 · · ·σn−1) �G(π) ι(Hσ1 · · ·σn).

The author is convinced that LKs will be a useful tool for obtaining stronger
results of the above kind which is left to future work.

7 Conclusion

We have introduced the calculus LKs which differs from standard sequent calcu-
lus by presenting a proof in a two-layered form: its abstract deductive structure
on the one hand and a unifier which renders this structure a proof on the other
hand. It has been shown that cut-elimination in LKs is equivalent to LK in the
sense that the same set of normal forms is produced. The implicit term repre-
sentation provided by LKs can be used for an implementation that provides an
exponential compression of normal forms as well as for a fine-grained theoretical
analysis of LK.
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