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Abstract We investigate the development of terms during cut-elimination in
first-order logic and Peano arithmetic for proofs of existential formulas. The
form of witness terms in cut-free proofs is characterized in terms of structured
combinations of basic substitutions. Based on this result, a regular tree gram-
mar computing witness terms is given and a class of proofs is shown to have
only elementary cut-elimination.
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1 Introduction

Cut-elimination is a tool of central importance for proof theory. It has tradi-
tionally been used to prove meta-theorems, in particular consistency-results.
The situation is similar for related methods like normalization [30], G6édel’s Di-
alectica interpretation [20] or Hilbert’s e-calculus [23]. However, these methods
can also be applied to formalized mathematical proofs to extract constructive
information, for example a program, from them [24,33]. Gentzen’s original
cut-elimination proof [15] consists essentially of a set of proof rewrite rules
and a terminating strategy for applying these rules. The same is true about
most cut-elimination theorems since: apart from the strategy of picking an
uppermost cut for reduction as in [15], also picking a lowermost cut [16] or
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one of maximal logical complexity [35] turned out to be useful for obtaining
termination. Several restrictions of the general proof rewrite rules with the
aim of obtaining, in addition to termination, a confluence property have also
been investigated [10,11]. Each restriction of the full set of proof rewrite rules
has the (sometimes intended) effect of limiting the obtainable results. How-
ever, recent work [1] has shown that the number of (significantly different)
normal forms may increase non-elementarily in the size of the original proof.
An investigation of cut-elimination as non-deterministic computation can be
found in [37,38], including a case study of a non-confluent proof in [37]. A cut-
elimination method which produces even more normal forms than any method
based on proof rewriting is [5], with case studies exhibiting non-confluent be-
havior in [2,3]. Another investigation extracting different algorithms from a
classical proof is [32]. In general it is far from clear which cut-free proofs can
and which cannot be obtained from a given proof with cuts. The present in-
vestigation is motivated by the interest in a characterization of the obtainable
cut-free proofs.

The first aspect of this question to be dealt with is to make precise what
is to be characterized as clearly there are aspects of formal proofs which are
mathematically uninteresting. Here we will — along the lines of Herbrand’s
theorem — restrict our attention to the term level of a first-order proof. Let
F =3z ---3z,A(z1, ..., x,) be a valid existential formula and t1, %, ... be an
enumeration of all n-tuples of variable-free terms in the considered language,
then

H(F)={{A{;) |iel} | ICN, \/A(fi) tautology }
iel

is an upper semi-lattice with the set of all instances of A(Z) as the unique
maximal element and those sets of instances as minimal elements where re-
moving a single formula renders them a non-tautology. Each proof m of F
with cuts induces a set of points in H(F'): the cut-free proofs reachable by
cut-elimination from 7. What shall be characterized then is the least upper
bound of the reachable proofs: it represents the content of 7 on an elementary
level (in the sense of the subformula property) but at the same time it con-
siders 7 in its full generality (as no particular proof has been pre-determined
by the choice of a cut-elimination procedure). The second aspect is to fix in
terms of what this least upper bound is to be characterized: being interested
in a set of term-tuples, what has to be sought is a characterization based on a
pure term formalism that does not refer to proofs.

In this paper we give a characterization of a non-trivial (but not the least)
upper bound in terms of a regular tree grammar [9,14]. As an application we
obtain a certain class of proofs having only elementary cut-elimination. In the
second part of the paper these results are extended to Peano arithmetic and
demonstrated on the formalization of a short proof in number theory. From
the algorithmic point of view, this method provides a new way of computing
witness terms that circumvents cut-elimination.



2 Cut-elimination and Herbrand-disjunctions

Definition 1 A sequent is a pair of multisets of formulas. A proof is a tree
that starts with sequents of the form A — A for an atomic formula A and is

built up using the following rules.

I'—-AA II - AB A
ri—AAANB 7

Al'—-A B/II— A
AV B, T — A A

1

A BT — A A I'— A A B I'—AA _ AT — A _
AANBT A" TSAAVB 5 “AT A ' T SA-A "
A(t), ' — A v I — A A(y)
(Vz)A(z), [ — A ' T = A, (Vz)A(z)

I — A At Aly),  — A 3
I — A (@A) ™ Go)A), [ — A
I'— A W I'— A AvAv-Z—‘_)AC F_>A7A7AC
AT A T=AA " AT A r—AA "

Ir—-AA AIl - A
ili— A A

cut

The quantifier rules are subject to the usual conditions:

1. t must not contain a variable which is bound in A,
2. y is called eigenvariable and must not occur in I"'U AU {A}
(eigenvariable condition).

For the sake of technical simplification, we restrict our attention to proofs of
X -sentences, i.e. to sequents of the form — JxF where F is quantifier-free
and 3z F contains no free variables. As the following proposition shows, this is
not a severe restriction. Let |7| denote the number of sequents in the proof .

Proposition 1 For any sequent s there is a Xi-sentence F which is valid
iff s is. Furthermore, for each proof ™ of s there is a proof @ of F with
7’| = O(|[?).

Proof By skolemizing the proof m we obtain a proof m; of a sequent s; which
does not contain strong quantifiers and |m1| < ||, see [4]. The proof 7’ is
defined by first appending to m; several —;- and V,-inferences to combine all
formulas in s; into a single one and then cutting with quantifier shifts to arrive
at the prenex form F'. Free variables in s are treated as constants in F' and the
result on the formulas follows from skolemization being validity-preserving.

For complexity-reasons it is advisable to carry out the above transformation
by skolemizing first and prenexifying afterwards (see [4]).



Definition 2 Let 7 be a proof of a X'1-sentence and 1 be a subproof of 7. The
Herbrand-set H(y, ) of ¢ w.r.t.  is defined as follows. If ¥ is a quantifier-free
axiom A — A, then

H(y, ) := 0.
If 4 is of the form
(¥")
I' - A F(t)
I'— A3zF(x) "
where F' is quantifier-free and JxF(z) is ancestor of the formula in the end-
sequent of 7, then

H(, ) == H(y', m) U{F(t)}.

If ¢ ends with any other quantifier inference or if ¢ ends with a unary inference
which is not a quantifier inference, let 1)’ be the immediate subproof of v and
define

H(y, ) :=H(', m).
If ¢ ends with a binary rule, let ¥; and 5 be the two immediate subproofs of
1 and define
H(w’ 7T) = H(’L/Jb ﬂ-) U H(wQa 7T)'

We write H(w) for H(w, 7). For cut-free , the formula \/ H() is a tautology,
which is Gentzen’s form of Herbrand’s theorem, the mid-sequent theorem.

Example 1 Let P,Q, R be unary predicate symbols and define the proof m =

P(a),Q(8) — Rlg(a, 5))
P@.PO) L Ple) = QU) | Pla),Q(5) — SR
— 3zP(z),P(b) 7 P(a) — F2Q(z) ~" P(a),3zQ(z) — IzR(x) o cut
— JxP(x),3xP(x) " P(a) — dzR(x) ’
— JzP(x) ' JxP(z) — JxR(x) !
— JxR(x) cut

in the sequent calculus extended by the initial sequents of 7 as additional
axiom sequents. Then H(w) = {R(g(«, 3))}.

It will turn out to be useful to have a mechanism that keeps track of variable
names. We assume that the set of free variables is partitioned into infinitely
many classes, each with infinitely many elements. Each class has exactly one
distinguished element which will be called initial variable. For a free variable
x we write ((z) to denote the initial variable of the class x belongs to. As
a convention, proofs at the beginning of cut-elimination sequences will only
contain initial variables.

A quantifier occurrence in a sequent is called strong if it is positive V or
negative 3 and weak otherwise. A proof is called regular if the strong quantifier
rules have pairwise different eigenvariables. Cut-elimination is a set of rewrite



rules transforming regular proofs into regular proofs. If the cut formula is
introduced by quantifier rules on both sides immediately above the cut, then

(m1) (m2)

I — A A(t) Ay), I — A y
I'— A3zA(x) " 3wA(x),II — A !
Tl =AA cut
s
(m1) (maly « t])
I'— AJA(t) A@)T — A
T = AA cut

If the cut formula is introduced by a contraction in a proof 7 of the form

(1)
I' - AAA . (m2)

T

I'—AA A Il - A
Tl AA cut

let {z1,...,2,} be the eigenvariables introduced by strong quantifier rules in
o, let {af, 2, ...,z ,xl'} be fresh variables s.t. «(a}) = o(z}) = t(x;) for
i=1,...,n and define

(1) (molw; — aifiiy)

r—A4,44 Al — A (molw; 27 y)
e T = AAA cut AT A

T I = A AA cut

il—AaA ¢

As a convention, we assume that the z} and z} are chosen so as to be fresh
not only for the current proof but for all proofs up to the current one in the
cut-elimination sequence under consideration. In addition to the above, — also
contains the usual rules for permuting cuts upwards, removing propositional
top-level symbols from the cut formula and for removing cuts with axioms, for
the complete list of rules see Appendix A.1. With — we denote the compatible
closure of — and with — the reflexive and transitive closure of —.

For our purposes, it will be convenient to associate a set of substitutions
to a cut-elimination sequence as in [22]. If 7 — 7’ is a quantifier-reduction as
above, we associate the singleton set {[y < ¢]} to this step which is written as
7 ==t o/ If 1 — 7/ is a contraction-reduction of the above form, then the
reduction with associated substitution-set is 7 — {Fi—=ilisulz =T} 7/ To
any other reduction the singleton set {id} is associated. To a cut-elimination
sequence 7y 2, 2 3 Tp41 We associate X = X .-+ X, where
the concatenation of two sets of substitutions is defined as X0 := {00 | o €
XY.0 € ©} which is associative. Similarly, the application of a set of substi-
tutions X to a set of formulas F is defined FX := {Fo | F € F,o0 € X}.
The crucial property of the substitution-set associated to a cut-elimination
sequence is that it captures all changes to the first-order level of a proof in the
following sense.



Proposition 2 Let 7 and ©* be proofs of a X1 -sentence with m —> 7*. Then
H(7*) CH(m)X.

Proof By induction on the length of 7 —% 7*. If 7 = 7*, then H(7*) = H(n)
and X = {id}. If 7 ¥ 7/ € 7* make a case distinction on the type of
the step 7’ —© 7*: if it is an axiom reduction, a rule permutation or the
reduction of a propositional connective, then H(7*) = H(n’), X = X’ and the
result follows from the induction hypothesis. If 7/ —© 7* is the reduction of
a weakening, then H(7*) C H(n'), X' = X’ and the result follows from the
induction hypothesis.

If 7/ —© 7* is the reduction of a contraction, let H(n') = H; U Hy where
H; contains the formulas occurring in' the proof 7r; (which contains the con-
traction) and in the context of the reduction step and Hs those occurring in
the proof 7o (that will be duplicated). Then H(7*) = Hy U Ha[z; <« =}, U
Hylx; < «]7_;. On the other hand, H(n")© = Hi[z; «— x|, U Halzx; «—
), U Hylw; — 2], U Ha[z; — z/]*, but due to the regularity of the
proof, the z; do not appear in H; and therefore H(n*) = H(7’)© from which
the result follows by induction hypothesis.

If 7" —© 7* is the reduction of a quantifier, let H(n') = Hy U Hy where H;
contains the formulas occurring in m; and the context of the reduction step and
H those occurring in mo. Then H(7n*) = HiUHs[y < t] and H(7")© = Hy[y <
t] U Haly < t] but due to regularity, y does not appear in H; and therefore
H(7)© = H(7*) and the result follows from the induction hypothesis.

By inspecting the proof above, we can observe that the changes to the first-
order level of a proof are governed by two distinct but intertwined phenomenas:
duplication and instantiation. The property we rely upon in the proofs to come
is the possibility of decomposing the first-order modifications into a chain of
instantiations and duplications. This holds for a wide range of calculi includ-
ing not only variants of the sequent calculus but also, e.g. the normalization
procedure of natural deduction. The scope of the present analysis is thus quite
general. This level of flexibility will also be crucial for the extension to Peano
Arithmetic described in Section 5.

3 Structured Terms

In this section we introduce a formalism for the explicit description of substi-
tutions on first-order terms which will be used as central technical tool in the
analysis of cut-elimination. We will use two different operations, substitution
and injection, for modeling duplication and instantiation respectively.

Definition 3 A structured term (sterm) is an expression built from first-order
terms and the symbols [,], <, - as follows:

1. If t is a term, then ¢ is an sterm.

1 In this proof, and the following, we will in the context of a particular cut-elimination
step use the proof-, term- and formula-names of the definition of the cut-elimination step.



2. If tis a term, n > 1, x1,...,x, are distinct variables and T7,...,T,, are
sterms, then ¢ - [x1 « T4, ..., 2z, < T,] is an sterm.
We often abbreviate [x1 « T1,...,2, < Ty] as [x; — T3] ;.

3.1 Substitution and Injection

Definition 4 Let T be an sterm. The term T°, the evaluation of T, is defined
as follows:

1. f T =t then T° :=t.
2. T =t [z; — T3], then T° := t[z; — T2,

(2

The variables of T' are defined as follows:

1. If T =t, then V(T') := V(¢) where V(¢) is the set of variables in t.
2. T =t [z;— T3y, then V(T) := V() U{z1,..., 25}

The locally free variables of T are defined as follows:

1. If T = t, then LEV(T) := V(t).
2. T =t [z; — 1], then LFV(T) := V() \ {z1,...,2,}.

Let o be a substitution. The sterm T'o is defined as follows:

1. If T =t, then To :=to.
2. T =t-[x; — T3]}, then To := t(olLpv(r)) - [2i — Tio]j-,.

Let T =t [z; «— T;]%_, and S be sterms and let = be a variable. The sterm
T © [x < 8], the injection of S at x into T, is defined as follows:

1. fx ¢ LEV(T), then T O [x — S| :=1t - [z; « T; © [x < S]|I;.

2. If o € LEV(T), then
TOx—Si=t-[r—Sx;T1O0x<S5],....,zp —T,0 [z 9]

Ezample 2 Let T = f(x,y) - [x — a,y < g(x)], then

Tz —d=f(z,y) [z —ay—g(c)]

and
Tolr—d=[f(zy) - lz—ay—g)-lz—c]

Note that (T[z — ¢])° = (T © [z « ¢])° = f(a, g(c)).

The evaluation o of an sterm, the application of a substitution, and the injec-
tion are extended to sets of sterms 7 and sets of substitutions X by defining
T ={1T° |TeT}, TY ={To | Te€T,0e X}and T Oz « 5] :=
{T'®[x — S]|T € T}. For a substitution o, the variable-range is defined as
vrge(o) := {z | there is a y # x s.t. € V(yo)}, the variable-range of a set of
substitutions X is vrge(X) := {J, ¢ 5 vrge(o).



Lemma 1 LetT be an sterm, o be a substitution with vrge(o)NV(T) =0, and
T be a set of sterms and X be a set of substitutions with vrge(X)NV(T) =0
Then 1. (To)° =T% and 2. (TX)° =T°X.

Proof 1. is shown by a straightforward induction on the structure of 7" and 2.
follows from 1.

Lemma 2 Let T, S be sterms, T be a set of sterms and x be a variable. Then
1. Tolx—98)° =Tz 85 and 2. (T © [z — S])°=T°[x «— S°].

Proof 1. is shown by induction on 7" and 2. follows from 1.

3.2 Normal and Regular Structured Terms

Definition 5 An sterm is called normal if each subexpression of the form
t-[x; — T;]7, satisfies {z1,...,2,} C V(t). A term ¢t is called regular if for
all z,y € V(t): o(z) = 1(y) = = = y. An sterm is called regular if all terms
appearing in it are regular.

Given any sterm 7T, one can obtain a normal 7" with T° = T’° by deleting
parts of T. The function ¢(-) is extended from variables to terms by defining
(f(tr, -y tn)) = f(t1),...,u(ty)) and t(c) = ¢. The role of normality and
regularity is to serve as preconditions for the following definition.

Definition 6 For a normal and regular sterm 7" define ¢(T"), the projection of
T to the initial variables, as follows:

1. T =t, then «(T) := ¢(t).
2. T =t [z; «— Ti]fy, then o«(T) := () - [t(x;) — o(T3)];.

Note that ¢(t) - [e(z;) — o(T3)]"; is a well-defined sterm because i # j =
t(x;) # t(x;) by normality and regularity of T'. The next two lemmas demon-
strate that normality and regularity are preserved by substitution and injection
in a manner which is sufficient for our later purposes.

Lemma 3 Let T and S be normal sterms, x be a variable and o be a substi-
tution. Then 1. T'o is normal and 2. T ® [x — S| is normal.

Proof 1. is shown by induction on T observing that substitution does not
change locally bound variables. 2. is also shown by induction on 7" by elabo-
rating that the only changes to locally bound variables preserve normality.

Lemma 4 Let T and S be reqular sterms, x,x1,2,...,Zn, 2, be variables
with o(x;) = u(z}) fori = 1,...,n. Then 1. T[x; «— x|, is regular and
2. T ® [z — 8] is regular.

Proof 1. is shown by induction on 7" based on the observation that substituting
x; by x} preserves regularity as ¢(x;) = ¢(z}). For 2. it suffices to observe that
each term appearing in T'® [z < S| appears in T or in S.



3.3 Properties of the Projection to Initial Variables

Lemma 5 Let T be a normal and regular sterm, let x1,2}, ..., xp,, 2} be vari-
ables with (x;) = v(z}) fori=1,...,n. Then Tlzx; — x)?_, is normal and
regular and o(T[x; — z}]") = o(T).

Proof Normality and regularity follow from Lemmas 3 and 4. The equality is
then shown by induction on T

For an sterm T =t - [x; < T;]", or T =t, we call ¢ the initial term of T. A
substitution is called base substitution if it is of the form [z « t] and {z}UV ()
contains only initial variables. For a set B of base substitutions and an sterm
T we say that T is over B if for every subexpression z < t of T' we have
[z —t] € B.

Lemma 6 Let B be a set of base substitutions. Let S and T be normal and
reqular sterms with ¢(S) and ((T') being over B and s being the initial term of
S. Let x be a variable with [1(x) < u(s)] € B. Then T ® [x « S] is normal
and regular and (T © [z «— S]) is over B.

Proof Normality and regularity follow from Lemmas 3 and 4. The claim is
then shown by induction on 7" demonstrating that all expressions of the from
y «— t that appear in «(T ® [z — S]) either appear in ¢(T) or in ¢(S) or are
equal to v(x) « ¢(s).

4 Witness Terms in First-Order Logic

Having laid the necessary groundwork above, we now return to proofs in first-
order logic. To each proof m we will associate a set of base substitutions,
suitable combinations of which will then serve to describe the witness terms
obtainable by cut-elimination.

Definition 7 Let m be a proof and ) be a quantifier occurrence in 7. Define
a set of terms t(Q) associated with @ as follows: if @ occurs in the main
formula of a weakening, then t(Q) := 0. If Q is introduced by a quantifier
inference from a term ¢ or a variable z, then t(Q) := {t} or t(Q) = {«z}
respectively. If @ occurs in the main formula of a contraction and @, Q2 are
the two corresponding quantifiers in the auxiliary formulas of the contraction,
then t(Q) = t(Q1) U t(Q2). In all other cases @) has exactly one immediate
ancestor Q' and t(Q) := t(Q’).

Let 7 be a proof, ¢ be a cut in 7. Write Q(c) for the set of pairs (Q, Q) of
quantifier occurrences where @ is a strong occurrence in one cut-formula of ¢
and Q' the corresponding weak occurrence in the other cut-formula. Define the
set of base substitutions of ¢ as B(c) := U g oneqile < tl | # € t(Q),t €
t(Q")}. For ¢y, ..., ¢y, being the cuts in 7 define the base substitutions of 7 as

B(m) = Ui=1 Blea)-
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Ezxample 3 Letting 7 be the proof defined in Example 1 we have
B(m) = {la < a], [0 < 0], [B — f()]}.

The following auxiliary result is the analog of Proposition 2 for base substitu-
tions.

Lemma 7 Let 1 —* 7 be a cut-elimination sequence. For all [z « t] €

B(n*) there is [t(x) « s] € B(w) s.t. t € sX.

Proof By induction on the length of 71 —% 7*. If 7 = 7*, then B(n*) = B(n)
and ¥ = {id}. If 7 - 7/ - 7* and © = {id}, then B(r*) C B(x'), ¥ = %’
and the result follows from the induction hypothesis.

If © = {[x; «— z}]iy,[x; — «/]i,} then for all [x « t] € B(7*) there is
an [z' — t'] € B(n') with ¢ € 0 and z € 2'© which implies ¢(z) = ¢(z"). By
induction hypothesis there is [t(z) < s] € B(w) s.t. t' € sX’, and thus t € sX.

If © = {[y < u]} then for all [x « t] € B(n*) there is an [z’ — t'] € B(x')
s.t. t = t'[y < u] and by induction hypothesis there is [t(z) « s] € B(n) s.t.
t' = sX’. Therefore t € sX.

We are now in the position to prove the main technical lemma: each substi-
tution associated to a cut-elimination sequence starting at a proof m has the
form of an sterm whose projection to the initial variables is over B(w). In order
to describe substitutions by sterms we introduce a new function symbol C(-)
which will represent the context in a proof. Later, we will replace C(+) by those
members of the Herbrand-set to which the substitution shall be applied. For
an sterm 7' with initial term ¢ we say that T is based on s if ¢(t) = s.

Lemma 8 Letm —> 7* be a cut-elimination sequence, let {a1, ..., am} be the

initial variables occurring in w. Then there is a set T of normal and reqular
sterms based on C(aq,...,am) s.t. T° = Cloq,...,0um) 2 and o(T) is over
B(w).

Proof We abbreviate C(ay, ..., qy,) as C(@). The result is shown by induction
on the length of 7 - 7*. If 7 = 7* then ¥ = {id} and 7 := {C(a)}. If
7 - 7/ =€ 7* then by induction hypothesis there is a set 7’ of normal and
regular sterms based on C(&) with 7’° = C'(a)X’ and «(7") being over B(w).
If ©={id}, then ¥ = X" and 7 :=T".

If © = {[z; — 2|, [z, — «/]7_,}, define T := T'O which is based on
C(@). By Lemma 5, 7 is normal and regular and «(7) = «(7'[z; < z}]7,) U
(T'z; — 2)?y) = «(T') which is therefore over B(w). Furthermore, the
a2 and 2} are not in V(7’) by the convention on the choice of variables at
contraction-steps. Therefore we can apply Lemma 1 to conclude 7° = 7°0 =
C (@)X from the induction hypothesis.

If © = {[x < t]}, then, as [x — t] € B(n’), by Lemma 7 there is a [t(z) «—
s] € B(w) and o € X' s.t. t = so. By induction hypothesis there is a " € 77 s.t.
§'° = C(a)o. S’ being normal is of the form S = C(@) - [, — S;]_;. Define
Si=s-lay; — Sj}aij ev(s) and observe that S° = s[a;, «— S’jo]aij ev(s) = 50 =
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t. Define 7 := 7' ® [x < S] and observe that 7° = T'°[x «— S°] = C(@)X by
Lemma 2 and the induction hypothesis. Furthermore S is normal and regular
because the S; are and the a;; appear in S, 7' is normal and regular by
induction hypothesis and [t(z) < ¢(s)] € B(nw). Therefore, by Lemma 6, also
7 is normal and regular and «(7) is over B(w).

In order to describe the Herbrand-disjuncts and not just the witness-terms,
we will treat the logical connectives A, V,— as well as the predicate symbols
as part of the term signature. Then, sterms can be evaluated to formulas. The
main result for first-order logic is:

Theorem 1 Let 7 be a proof of a X1-sentence and 7 be a cut-free proof with
m — 7. Then there is a set S of sterms over B(w) whose initial terms are
elements of H(m) s.t. H(r*) = S°.

Proof Let m —* m* and F* € H(n*); then by Proposition 2 there is F' € H(r)
and o0 € X s.t. F* = Fo. By Lemma 8 there is a normal and regular sterm
S based on C(a@) s.t. S° = C(a)o and «(S) is over B(m). Define the sterm
T :=F .Sy where Sy is S after dropping C(@) and all top-level substitutions
which refer to initial variables that do not occur in F. Then T is over B(w)
with initial term F and T° = «(Fo) = «(F*) and as 7* is cut-free «(F*) = F*.

Every Herbrand-disjunct in a cut-free proof can thus be decomposed into a
formula from the Herbrand-set of the original proof m and an sterm built up
from base substitutions of 7. This result gives the following upper bound.

Corollary 1 Let w be a proof of a Xy-sentence F and let S be the set of
sterms over B(w) with initial term from H(w). Then

{H(7*) | 7* cut-free,m — 7*} C S°

From the algorithmic point of view, the above result shows that we can com-
pute an Herbrand-disjunction from a proof 7m with cuts by successively gen-
erating sterms over B(w) with initial term from H(7) until we find a tautol-
ogy. An advantage of such a procedure is that it allows complete freedom in
the order of computation of witness terms and thus to find e.g. the shortest
Herbrand-disjunction or one where the size of the witness of a certain quanti-
fier is minimal.

Ezample 4 The upper bound on H(7*) provided by Corollary 1 is not the
least upper bound. Letting 7 be the proof defined in example 1 and S be the
set of sterms having initial terms from H(w) and being over B(w), we have
S§° ={R(g(a,a)), R(g(a,b)), R(g(b,a)), R(g(b,b))}. On the other hand, for all
cut-free 7* with 7 — 7* we obtain H(x*) = {R(g¢(a,a)), R(g(b,b))}. This
example shows that cut-elimination does not generate all sterms but only
such that satisfy certain structural restrictions. Describing these restrictions
is left to future work.
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4.1 Tree Grammars

The above characterization of witness terms uses the somewhat non-standard
notion of structured term because it is well-adapted to the changes induced
by cut-elimination. We will now derive from it a characterization in terms of a
regular tree grammar. Regular tree languages are a natural generalization of
regular (string) languages and are among the standard notions in the theory
of formal languages [14]. A regular tree language can be described in several
different, but equivalent ways, in particular as automaton or as grammar. We
choose the presentation as grammar because the derivation of trees from a
grammar closely resembles the effect of cut-elimination on the Herbrand-set.
We follow the notation of [9]. For X being a set of symbols with associated
arities, let T(X) denote the set of terms — or equivalently: trees — over X.

Definition 8 A regular tree grammar is a quadruple G = (o, N, F, R) com-
posed of an axiom a, a set N of non-terminal symbols with o € N, a set F' of
terminal symbols with FFN N = () and a set R of production rules of the form
B — t where € N andt € T(FUN).

Note that — in contrast to string grammars — a terminal symbol comes with
an associated arity allowing the formation of trees. The non-terminal symbols
however all have arity 0. Given a regular tree grammar G = (a, N, F, R), the
derivation relation —¢ associated to G is defined for s,t € T(FUN) as s —g t
if there is a production rule 8 — w and a context 7[] s.t. s = r[3] and t = r[u].
The language generated by G is L(G) := {t € T(F) | & —¢ t} where —¢ is the
reflexive and transitive closure of —¢g. Given a proof w, let X(7) denote the
set of symbols consisting of the term-signature of 7, the predicate-signature
of m and the propositional connectives.

Definition 9 Let 7 be a proof of a X;-sentence containing the initial variables
{ai,...,an}. The grammar G(m) = (¢, N, F,R) of m is defined by setting
N={p,a1,...,a,}, F=X(r) and

R={p— F|FeH(m}U{a—t][a—t €B(m)}

Ezample 5 Letting m be the proof defined in Example 1 we have G(7) =
(¢, N, F, R) with axiom ¢, non-terminal symbols N = {¢, a, 8}, terminal sym-
bols F = {P,Q, R, f,g,A,V,—} and production rules R = {¢ — R(g(«,3)),
a—a,x— ba6_> f(Oé)}

Lemma 9 Let w be a proof of a X1-sentence. For any sterm T over B(m) with
wnitial term t we have t —»q(r) T°.

Proof If T = t, the result is trivially true. If T' =t - [z; « T;]7"_;, then letting
t; be the initial term of T;, we have t; —q () T} by induction hypothesis. But
there are production rules x; — ¢; in G(m) and thus 2; — g () T; which when
applied to all occurrences of x; in ¢ gives the result.

Corollary 2 Let w be a proof of a X1 -sentence. Let m* be a cut-free proof with
m — . Then H(m*) C L(G(n)).
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Proof Let F* € H(7*), then by Theorem 1 there is an sterm 7" over B(w) with
initial term F' € H(7) s.t. F* = T° and thus by Lemma 9, F' — () F** which
— as 7* is cut-free — implies F* € L(G(w)).

Note that Theorem 1 is slightly stronger than Corollary 2 and differs from it
on terms containing several occurrences of the same variable. For example, if
H(r) = {F(a,a)} and B(7) = {[a < a], [ < b]}, then the only sterms admit-
ted by Theorem 1 generate F'(a,a) and F(b,b) while the grammar generates
F(a,b) and F(b,a) in addition.

4.2 Acyclic and Directed Proofs

It is a well-known result that the worst-case complexity of cut-elimination is
non-elementary. Lower bounds have been given in [29,31,34]. In this section,
we will use Theorem 1 to show that a certain class of proofs, acyclic proofs,
has an only elementary cut-elimination. Upper bounds for the general problem
based on the depth of cut-formulas can be found in [33,19,6]. W. Zhang has
improved these upper bounds in [39] by using the number of nested quantifiers
(nqgf) instead and further in [40] by using the number of alternations between
YV — A and 3 — V-blocks (aqf). These results have been further improved by
P. Gerhardy in [17,18] by considering, in addition to the cut-formulas, the way
they are used in the proof: a part of a cut-formula which is not contracted can
be eliminated with only exponential expense, regardless of the connectives
that appear in this part. He introduced the measures of contracted nested
quantifier depth (cngf) and contracted alternating quantifier depth (caqf). In
all of these cases, a fixed bound on the measure immediately translates to a
fixed bound on the number of iterations of the exponential function and thus
to elementary cut-elimination.

The following acyclicity-condition can also be viewed as extending the
complexity-analysis of cut-elimination from the cut-formulas to the way they
are used in the proof. Let B be a set of base substitutions and let =,y €
dom(B). Write y <! x if there is a 0 € B s.t. y € V(zo); write < for the
transitive closure of <!. B is called cyclic if there is an z € dom(B) s.t. x < x
and acyclic otherwise. A proof 7 is called cyclic iff B(7) is.

Corollary 3 Let w be an acyclic proof of a X1-sentence and let 7* be cut-free
with @ — . Then |H(x*)| < |x|I7"™""

Proof If a variable x € dom(B(7)) is <g()-minimal, then define rank(z) := 1,
if z is not <g(n)-minimal, define rank(z) := max{rank(y) | y <]13(7T) x}+1. Due
to acyclicity, the rank of a variable is well-defined. Let r be the maximal rank
of all variables of dom(B(7)). Let m be the maximal number of substitutions
in B(n) having the same left side and let v be the number of initial variables
in 7. We first find an upper bound on Ny :=

max  |{[x < T] | rank(z) = k,x - [z « T normal sterm over B(m)}|
z€dom(B(m))
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for k=1,...,r. First Ny < m; secondly, V41 < m- N} because after having
chosen one of at most m possibilities for the leftmost substitution, it remains
to choose, for each of at most v different variables, an sterm with rank k. We
obtain N < m>i=1*"". Let now S be the set of all normal sterms over B(n)
having initial terms from H(). Then

S| < [H(x)| - NY < [H(x)| - m>i=1 ¥,

Now H(m) < |n|, m < |r| being bound by the number of weak quantifier
inferences corresponding to a certain quantifier in a cut, and r < v < |r| and
thus

|7T|I7r\+1

| i
81 < fa] - =5 <
Finally, by Theorem 1, |H(7*)| < |S|.

The above result improves any upper bound based on the logical structure of
cut-formulas, in particular nqf and aqf, but also cnqf and caqf as follows: Let
7, be any worst-case sequence and define 7/, from 7, by removing the term-
level thus rendering every predicate nullary and every quantifier vacuous. The
logical structure of the cut-formulas (as well as the contractions in the proof)
do not change but the set of base substitutions becomes empty hence acyclic
and thus 7}, is recognized as having elementary cut-elimination.

In order to obtain a more meaningful comparison with the known upper
bounds we will now consider a class of formulas whose use for cuts induces
only acyclic proofs. A cut is called directed if its cut formula does not contain
both strong and weak quantifiers. A proof is called directed if all its cuts are.

Lemma 10 Every directed proof is acyclic.

Proof By induction on the number of cuts in the proof. All cut-free proofs
are acyclic. For the induction step, consider a proof 7 and let ¢ be the lowest
binary inference with subproofs m; and 7 s.t. either 1. ¢ is a cut or 2. both m;
and my contain a cut. In case 2, <p = <, U <, which is acyclic by induction
hypothesis. In case 1, <. = <. U<} U <]13(L). By induction hypothesis, <,
and <, are acyclic and as ¢ is directed, also <p,) is acyclic. Therefore, a cycle
in <; must be of the form z1 <r, 2 <p() y1 <r, ¥2 <B() %1 where x1, 2o
are eigenvariables of strong quantifier inferences in m; and y;, yo of inferences
in mo. However, as ¢ is directed, only one of z2 <g(,) y1 and y2 <p(,) 21 is
possible.

Therefore the elementary upper bound of Corollary 3 applies to directed
proofs. For the sake of comparison we restrict our attention to formulas in
negation normal form and find for A with aqf(A) = 0 that A is directed. For
each k > 0 one can find directed formulas with aqf = &k (by alternating V and
V, or 3 and A respectively) as well as undirected formulas (by alternating V
and 3). The measure nqf behaves analogously. The bound on directed proofs
thus improves the known upper bounds by exhibiting an additional class of
formulas that has only elementary cut-elimination. In how far the restrictions
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on the use of contractions considered in [17,18] imply properties of the graph
(B(7), <) and vice versa is an interesting question left open for future work.

Corollary 3 shows that, in particular, the worst case sequences of [29,31,
34] with cuts are cyclic. It is also interesting to compare this result with the
one obtained by A. Carbone in [8]: the logical flow graph of a short proof of
the feasibility of a large number must necessarily be cyclic. This property of
logical flow graphs is not very robust w.r.t. changes in the calculus. Indeed,
in [7] a sequent calculus ALK (acyclic LK) is defined in which all logical
flow graphs are acyclic while ordinary LK-proofs can be translated to ALK-
proofs with only elementary increase in length. The cyclicity-property of the
base substitutions is considerably more robust to changes of the calculus, in
particular the results of this paper also hold in ALK.

The base substitutions can be regarded as a flow graph-like structure if we
consider the graph whose vertices are the quantifier occurrences in a proof, and
we draw a (cut-)link between two quantifier occurrences if they are ancestors
of the dual occurrences in the same cut (which corresponds to the definition
of B(c) from Q(c)) and an (axiom-)link between @ and @' if the term of the
weak quantifier Q' contains the eigenvariable of the strong quantifier Q. Such
a presentation in the framework of proof-nets has been given in [21] and [27].

Another interesting aspect of the situation is that, even though an acyclic
proof has only short Herbrand-disjunctions, it may nevertheless have normal
forms of arbitrary size (this can easily be seen by incorporating the double-
contraction example found e.g. in [11,13,37] and in a similar form in [41] into
an acyclic proof). The large normal forms of acyclic proofs are therefore only
due to repetitions of the same formulas and thus mathematically meaningless.
The analogous question for cyclic proofs is open: it has been shown in [1] that
a (cyclic) proof can have a non-elementary number of reachable Herbrand-
disjunctions. It is unclear however whether there exists a (cyclic) proof having
infinitely many reachable Herbrand-disjunctions.

5 Extension to Peano Arithmetic

In this section, the above results are extended to Peano arithmetic. The lan-
guage contains a symbol for every primitive recursive function. The calculus
is extended by their defining equations as additional axiom sequents. Terms
of the form 0,0’,0”,... are called numerals; we use the notation 7 for the
numeral denoting the natural number n. We further add the induction rule

I' - AF(0) F(y),II - AF)
11— A A F(t) ind

where F' is an arbitrary formula, ¢ is an arbitrary term and y is an eigenvariable,
i.e. it is not allowed to occur in I') IT — A, A, F(t). For a variable-free term ¢,
let |t| denote its value in N. We also add the evaluation rules

I' — A F(s) F(s), ' = A

I = AF®l) " FO. T —A
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for variable-free terms s and t with |s| = [t|. Note that these rules are redun-
dant w.r.t. provability, i.e. FI(s) — F(¢) is also provable without them. How-
ever, these rules (as well as the particular form of the induction rule above that
differs from the one in [36]) will permit some technical simplifications later on.
The proof reduction steps for cut-elimination are extended by the following
rules for eliminating inductions: If ¢ is a variable-free term with |¢| = 0, then

(1)

(71) (72) I — A F(0
I — AF0) F(y),II — A F(y') o L=4A00
ind Ir— A,F(t)
1T — A A, F(t) W
I —AAFE .
If |t| = n+ 1, then let x1,...,2, be the eigenvariables of ms, let xy) for
j=1,...,mand i = 1,...,n be fresh variables s.t. L(.%‘§-i)) = 1(z;). Define
0; ==y «— 1,1 — xgi), e Ty — x%)] for i = 0,...,n; then the same proof
maps to
(m1) (m260)
I~ AF©O) F0).1—AF0) (201)
11 — A A, F(0) W), 11— A, F0)

I I1,11 — A, A, A, F(07) cut

I T — A, A, F(0")

C

[ — A A FRTT)
I 1 — A, A F(t)

T

where the same freshness convention as in first-order logic is assumed for the
xg.l). To the former reduction, we associate the singleton set of substitutions
{id} and to the latter we associate {fg,...,0,}. In addition, we add proof
rewrite steps for shifting evaluation rules upwards, see Appendix A.2, to which
we associate the substitution set {id}. We restrict our attention to proofs of
sequents of the form — F where F is a X{-sentence, i.e. a formula 3z G(z)
where G is quantifier-free and contains no variable except . We do not impose
any restriction on the formulas used in inductions and cuts.

Definition 10 The set t(Q) of terms associated to a quantifier occurrence
Q@ in a PA-proof 7 is defined as in Definition 7 with the following addition.
If @ is in the main occurrence F'(t) of an induction inference, let Q1 be the
corresponding quantifier in F(0) and Q2 that in F(y') and define t(Q) :=
8(Q1) Ut(Q2).

For the base substitutions we extend Definition 7 as follows. For an induc-
tion inference d write Q(d) for the set of pairs (Q, Q') of quantifier occurrences
s.t. @ is a strong occurrence, @' is a weak occurrence and one of the following
is true.

1. Qisin F(0) and Q' is the corresponding occurrence in F(y)
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2. Qisin F(y) and @’ is the corresponding occurrence in F(0)
3. Qisin F(y) and @' is the corresponding occurrence in F(y')
4. Qisin F(y') and Q' is the corresponding occurrence in F'(y)

Define
Bd) ={ly—0ly—yPu |J {lz—tlzet@),tet(@)}
(Q,Q1)€Q(d)
Let ¢q,..., ¢, be the cuts and d,...,d,, be the inductions in 7 and define
B(r) := | B(e;) U | B(dy)
i=1 i=1

In arithmetical proofs, one is usually interested in the witness terms per se (in-
stead of, as in the case of first-order logic, in the whole Herbrand-disjunction).
We will therefore only follow the development of the witness terms during cut-
elimination. For a proof 7 of a X0-sentence, let Q be the existential quantifier
in the end-sequent and define W(r) := t(Q).

Example 6 Define m =

(¥)
2ﬁ27—>2ﬁ,22-’y
.90 7 25:'y—>3y25/:y '
-3y 2=y 3y2ﬁ:yﬂﬂy25':y.l
a2 =y ind
—Vrdy 22 =y '

where ¢ is cut- and induction-free. Let () denote 7 without its last rule.
Then W(m(a)) = {1,2- v} and B(w () = {[y — 1],[y = 2:7],[8 — 0, [8 «
A}

What follows now is an extension of the results that have been obtained for
first-order logic to Peano arithmetic.

Proposition 3 Let m be a PA-proof of a X9-sentence. If m —* w*, then
W(r*) C W(m)X.

Proof The induction base and those cases of the induction step referring to
reduction rules of first-order logic are treated as in the proof of Proposition 2.
It only remains to extend the induction step to the proof rewrite steps specific
to PA. So let 7 " 7/ =€ 7* which by induction hypothesis gives W (') C
W(m)X'. If 7' —© 7* is the permutation of an evaluation, for example

I' — A F(r,s) . I' — A F(r,s)
I' - A3z F(x,s) vr — I — A F(r,t)
I' - A3z F(x,t) ' I — A3z F(x,t)

r
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let Q' be the existential quantifier in the left proof and @Q* the one in the right
proof, observe that t(Q*) = t(Q’) = {r} and thus W(7*) = W(x’) from which
the result follows by induction hypothesis.

If 7/ —€ 7* is an induction-elimination, let W(z') = W U W U W5 where
W contains the witnesses introduced by quantifier rules in the context of the
reduction step, W; and W5 those introduced in the proofs 71 and 7y above
the induction inference. If |t| = 0, then W(7*) = W U W} which is a subset of
W(m)X by induction hypothesis. If |t| = n + 1, then © = {04,...,60,,} where
0; = [y —i,21 — zgi), ey Ty — 9:7(%)] and W(m*) = WU W; UUJ;_, W26;. On
the other hand, W(?T/)Q = U;L:()(Wel U W191 U W291) =Wu W1 U U?:o W201
as, due to regularity, y and the x; do not appear in W7. Therefore W(7*) =
W(r")® C W(r)X by the induction hypothesis.

Lemma 11 Let m be a PA-proof and © —* 7*. For all [x + t] € B(7*) there
is [t(x) — s] € B(nw) s.t. t € sX.

Proof As in the proof of Lemma 7 we proceed by induction on the length of
m —» 7* and it only remains to treat the PA-specific reductions in the induction
step. So assume m —* —© 1*. If 7/ — 7* is a permutation of an evaluation
inference, then B(7*) = B(n’) as the terms t(Q) associated to a quantifier
do not change. As © = {id}, the result follows immediately by the induction
hypothesis.

e

!
—»

If 7/ —-© 7* is an induction-elimination with |¢| = 0, then B(7*) C B(n’)
and as X = Y’ the result follows immediately by the induction hypothesis, so
let |t| = n+ 1. To show the claim, it suffices to show for all [x « t] € B(7*)
that

(*) there is a [/ « t'] € B(x') s.t. 1(z) = ¢(2/) and ¢t € 'O,

for then, by induction hypothesis, there is a [t(x) < s] € B(w) with ¢’ € sX’
which implies that ¢ € sX'@ = sX. To prove (*), let d be the eliminated
induction in 7’ and observe that

B(n') = BU By U By UB(d)

where B are the base substitutions associated to cuts and inductions in the
context of the reduction step and B; and Bs are those of cuts and induc-
tions in m and me respectively. Furthermore, let ©® = {6y,...,0,} where
0; =y — i,x1 — xgl), e Ty — ngl)] and let cq, ..., c, be the cuts replacing
the induction in 7*, then

B(r*)=B*UBy U O{[x@i —t0;] | [t —t] € Bo} U O B(c;)
i=0 i=0

where B* are the base substitutions associated to cuts and inductions in the
context of the reduction step in 7*. We will now prove (*) for each of the above
subsets of B(7*).
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If [t — t] € Byor [z — t] € Uy{[z0; — t0;] | [x — t] € By}, then
(*) is immediate from observing that «(z) = ¢(z6;). Write @’ for a quantifier
in the end-sequent of the reduction step in 7’ and Q* for the corresponding
quantifier in the end-sequent of the reduction step in 7*. If Q’, @* are in I" or
A, then t(Q*) = t(Q'). If they are in IT or A, then t(Q*) = ;" t(Q")6;. If
Q',Q* are in F(t), let t(Q') = Th UTy where T} are the terms from 7; and Th
those from 7o and observe that t(Q*) = T26,,. Putting these cases together,
we obtain that for all ¢ € t(Q*) there is a t’ € t(Q’) s.t. t € t’© and therefore
that (*) is true for all [z « ¢] € B*.

If [z « t] € B(cp), then this substitution is induced by a pair (Q, Q") of
quantifier occurrences where @ is strong and Q' is weak. If ) is in 71, then Q’
is in w20y and t = 6y where [x — t'] € B(¢). If @ is in ma6p, then Q' is in 7,
[z < t] € B(¢) and ¢0; = ¢ for all i by regularity. Let now [z < t] € B(c¢;) for
some i € {1,...,n} with quantifier-pair (Q, Q") with @ strong and Q' weak.
If Q is in m20;—1 and Q' in m26; then there is a [2' — ¢'] € B(¢) with '8, =t
and 2'6;_1 = x, i.e. v(x) = ¢(a’). If, on the other hand, @ is in mef; and @’
in me6;_1 then there is [z «— t'] € B(¢) with t'6;_1 = ¢ and 2'6;, = z, i.e.
t(x") = t(x). This concludes the proof of (*) for all [x « t] € B(n*) and thus
the proof of the lemma.

Lemma 12 Let 7 be a PA-proof and m —* m*, let {1, ..., } be the initial
variables occurring in w. Then there is a set T of normal and regular sterms
based on C(@) s.t. T° = C(a)X and o(T) is over B(m).

Proof By induction on the length of 7 —* 7*. The induction base and the
cases of the induction step pertaining to pure first-order logic are analogous to
the proof of Lemma 8, where it is important to note that the case of quantifier
reduction relies on the extension of Lemma 7 to PA in form of the above
Lemma 11. It remains to treat the PA-specific cases. Let w — © 7,
then by the induction hypothesis there is a set 7’ of normal and regular
sterms based on C(&) with 77° = C(a)X" and «(7’) over B(r). If 7 —© 7* is
a permutation of an evaluation or an induction-elimination [¢t| = 0, let 7 := 7"

I

and observe that the result follows directly from ¥ = X’. Let now 7/ —© 7*
be an induction-elimination with |[t| = n 4+ 1 where © = {6,,...,0,} with
0; = [y — 1,27 xﬁ ey Doy — x%)] Define a sequence of sterms as Sp := 0

and Si11:=y - [y < Si] and define
T = U{T[l‘] — ‘,Egl)};n:1 @ [y — Sz] ‘ T c T/}
=0

As 7' is based on C(@), so is 7. By Lemma 5, the T[z; « xg.i)]gnzl are
normal and regular and ¢(T'[z; «— :E;Z)]’]”:l) = ((T") which is therefore over B().
Furthermore, the S; are normal and regular, [c(y) < 0] as well as [t(y) < ¢(y')]
are in B(w), therefore the ¢(.S;) are over B(w) and we can apply Lemma 6 to

conclude that 7 is normal and regular and ¢(7) is over B(n). Finally, by the
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convention on the choice of fresh variables at elimination of an induction, the
:c;Z) do not appear in 7’ and we can apply Lemma 1 to obtain

T° = | J{T°lz; — ),y  s'(0)] | T € T'}
1=0
=T7"°0 = C(a)X.

Observe that while the substitution-set associated to an induction-elimination-
step is a mixture of duplication and instantiation, it can be written as con-
catenation of these two components. This is crucial for the above result to
extend to PA without having to extend the framework on the level of struc-
tured terms. The main result and its corollaries can then be proved as in the
case of first-order logic.

Theorem 2 Let m be a PA-proof of a X9-sentence and ©* be a cut- and
induction-free proof with m — w*. Then there is a set S of sterms over B(m)
having initial terms from W(m) s.t. W(n*) = S°.

The grammar of a PA-proof is defined as in the case of first-order logic with
the only difference of replacing H(w) by W(r).

Corollary 4 Let m be a PA-proof of a X9-sentence and ©* be a cut- and
induction-free proof with @ — 7*. Then W(r*) C L(G(n)).

These results can be applied to a proof 7 of a IT9-sentence as follows: assume
w.l.o.g. that m ends with a V,-inference with eigenvariable o and denote with
m(a) the proof m without its last rule. We can obtain B(w(«)) and W(m(a)) just
as for a proof of a X{-sentence by regarding « as a constant symbol. For n € N,
B(w(n)) and W(nw (7)) are uniform in the sense that B(n (7)) = B(w(«))[o < 7]
and W(m(n)) = W(m(«a))[ow < 7] and therefore also the grammars and the
languages induced by them are uniform in n, i.e. G(n(72)) = G(n(a))[a «— 7]
and L(G(x(n))) = L(G(r(a)))[a — 7).

The corollary about acyclic proofs of X -sentences also holds in PA, how-
ever the presence of an induction makes a proof cyclic. It would be possible to
broaden the scope of the corollary by deleting base substitutions (and thus:
their cycles) that are not reachable from the initial witness terms but we do
not go into more detail here.

6 Application to a Concrete Proof

In this section, we apply the above techniques to a concrete example proof of
a Hzo—statement in number theory: We will prove that for m > 2 and n > 1
there is a number between n and m? - n which can be written as a sum of
two squares. Let S(x) be a quantifier-free formula s.t. S(7) is true iff there are
ni,ny € N with n? +n3 = n. Define A(m,n, k) := n<kAk<m?-nAS(k).
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To simplify the exposition, we formalize the hypotheses m > 2 and n > 1 by
proving Vmvn3k A(m” ,n' k). Let w :=

< (IS)
= 3,
— Tk A", 1, k) kA" v, k) — 3k AW vl k) .31
~ AR nd
— Ym¥n3k A(m” 0/ k) T
i< K,A(/J, VO, ) A v, k)
A7) ARl < xS
AG v, ) — 3k A 7, ) o
IS] IS, IS;
s GA AR
and 1S := - <k, A(p", Vi, k) — A" v, (W")? - k) 5

—\1/0 <K A(MN, V(/), ;‘ﬁl) — 3k A(/J’”a V6l7 k)

and

IS] proves v <k — vy < (u")?-
182 proves ﬂuo <K — (,u ) -k < (H )2 : V(/)/’ and
IS} proves S(k) — S((1")?- k).

For proving S(k) — S((1")?- k) we may choose to rely on the characterization
of the sums of two squares due to Fermat and first proved by Euler [12]: n € N
is a sum of two squares iff all primes p = 3 (mod 4) have even exponent in the
factorization of n. We may also choose to prove this by a direct calculation
showing that products of sums of two squares are sums of two squares. It is
important to note at this point that we do not have to explicitly formalize its
proof nor that of any other of the as of now unproved statements to carry out
the following analysis.

Let m(u,v) denote the above proof m without its last two Vy-rules. The
witness terms for 3k are W(n(u,v)) = {2,k, (1”)? - k} and letting ¢ be the
displayed induction, B(:) = {[x < 2], [k < &], [k < ()2 - K], [vo < 0], [vo «
v)]} and B(w(u, v)) = B(v)UB* where B* contains the base substitutions of all
cuts and inductions in those parts of the proof that have not been formalized.
We obtain a grammar G(m(u,v)) = (7, N,F,R) with 7,k,1p € N and R
consisting of the rules

T—2 K—2 vy — 0

T—K K— K vy — V)

T () K= ()
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plus those induced by B*. By applying standard pruning techniques we can
simplify the above grammar: the only non-terminal symbols reachable from the
axiom 7 are 7 and k, thus we can delete all rules whose left-hand side is different
from 7 and k including all those induced by B*. The corresponding proof
parts are computationally irrelevant and only serve the purpose of verification.
Secondly, observe that 7 and x have the same right-hand sides, so we can
identify them. Finally, we can delete the unproductive loop rule 7 — 7 to
obtain the grammar G,, which is equivalent to G(7(u,v)), has 7 as axiom and
only non-terminal symbol and

T—2 T— (W2 T

as the only production rules.

Let now m > 2 and n > 1. By inspecting G, we can see that eliminating
the cuts in 7w(m — 2,n — 1) will produce a sum of two squares of the form 2-m?!
for some ! € N. What we have thus obtained is a restriction on possible wit-
nesses which is independent of the particular cut-elimination strategy chosen.
From this restriction one can see immediately that certain witnesses cannot
be obtained from the above proof, for example odd sums of two squares or
such that represent a Pythagorean triple. Also the more immediate argument
that between n and 2 - n (and thus below m? - n) there is always a power of
two (which is a sum of two squares) cannot be obtained for m > 3.

7 Conclusion

It is possible to extend the results of this paper to non-prenex sequents that
contain only weak quantifiers. For that purpose, it suffices to replace the
Herbrand-set by a suitable structure based on array formulas [4] or expan-
sion trees [28]. An important direction for future work is to further tighten
the constraints on the form of witness terms towards a characterization of the
least upper bound. The structured terms introduced here provide an adequate
technical basis for that purpose.

Another interesting prospect for further research consists in employing
these grammars, or similar structures, for the analysis of mathematical proofs
in the spirit of [25] and [26]. It would be very useful to obtain criteria on
grammars that imply the existence of an Herbrand-disjunction fulfilling the
growth conditions of [25] as those would guarantee that the Herbrand analysis
provides a bound.
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A Appendix

A.1 Proof Reductions in First-Order Logic

The proof reduction rules for first-order logic consist of the those described in Section 2 for
the quantifiers and for contraction and the following. For the case of the cut formula being
introduced by weakening,

(m1)

r—a (m2) (m)
T=2a,A" AISA - ﬁw*
— .
Tl —AA cut ’ ’

If the cut formula appears in an axiom,
() (m)
A—-A AT'—- A — AT — A.
AT —a o

If the cut formula is introduced by propositional rules on both sides immediately above the

cut, then
(m1) (m2) (m3)
I — A,A Iy — AsB A, B, IT — A
I, I — A, A, ANB " AAB,IT— A
Fl,FQ,HHAl,AQ,A

1
cut
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—
(m1) (m3)
(7|—2) F1~>A1,A A,B,HHA
Iy — Ag, B Bl — A A cut
cut

Iy, o, I — Ay, Az, A

The other propositional connectives are treated analogously. We now turn to the rule per-
mutations. For any unary rule p,

(m2) (1) (m2)
(1) A Il — A I'—AA ATl — AN
T . p — ; 7 cut
r—Aa an—a " I — A A
Tl — A A cu ra—aa’

which is a proof as regularity ensures that the eigenvariable condition cannot be violated.
Similarly, for any binary rule p,

(m2) (m3) (m1) (m2)
(71) A Il — Ay Iz — Az r—A,A Al —- /M (73)
P = cut
I — AA A Il — A i — A A Iy — Ag
T = A A cut I — A A p

All the obvious symmetric variants of the above reductions are also included in +.

A .2 Proof Reductions in Peano Arithmetic

The proof reduction rules for Peano arithmetic are those of first-order logic together with
those described in Section 5 for eliminating the inductions as well as the following for shifting
evaluations. If the auxiliary formula of the evaluation is main formula of a unary rule, then
(e.g. for 3;)

' — A F(r,s) I' - A F(r,s)
— 7 'y
I' - A, 3zF(z,s) Y — I' - A F(r,t) '
. i . R A VA —_— 73
I' - A, 3zF(z,t) I' — A JzF(z,t)

If it is main formula of a binary rule except induction, then (e.g. for A;)

I — A A(s) II — A, B(s) A I — A A(s) T — A, B(s)
T Vr Vr

Il — A, A, A(s) A B(s) — I — A, A(t) I — A,B(t)
Vr T

possibly dropping one of the two new evaluation rules if s does not appear in one of A, B.
If it is main formula of a weakening, then

I'— A
I — A

r—a
L=240 . = roaan
F= 4,40

If it is main formula of a contraction, then

I' —» A, A(s), A(s)

I' — A A(s), A(s : Vr
L= 4,40, A6) I — A, A(s), A(t)
I' — A A(s) — —_— v
—_— Vr I' — A, A(t), A(t)
I — A A(t) —

I' — A A(%)
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Furthermore, for any unary rule p,

= A As) I — A, As)
A As) . - T=AAp
-4 Als) L—A4A1
T = A7, AQ) "= A, AQ)

and similarly, for any binary rule p,

F1—>A1,A(S) F2—>A2 F1—>A1,A(S)
e e GO
I — A, A(s) — L — AL At) | Ty — Ag
_— Vv
I — AA®) I — A A(t)

A normal form w.r.t. the rules for shifting evaluations is a proof where evaluations appear

only below axioms and below inductions.



