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A BIJECTION FOR TRIANGULATIONS,

QUADRANGULATIONS, PENTAGULATIONS, ETC.

OLIVIER BERNARDI∗ AND ÉRIC FUSY†

Abstract. A d-angulation is a planar map with faces of degree d. We present
for each integer d ≥ 3 a bijection between the class of d-angulations of girth d

and a class of decorated plane trees. Each of the bijections is obtained by
specializing a “master bijection” which extends an earlier construction of the
first author. Bijections already existed for triangulations (d = 3) and for
quadrangulations (d = 4). As a matter of fact, our construction unifies a
bijection by Fusy, Poulalhon and Schaeffer for triangulations and a bijection
by Schaeffer for quadrangulations. For d ≥ 5, both the bijections and the
enumerative results are new.

We also extend our bijections so as to enumerate p-gonal d-angulations,
that is, d-angulations with a simple boundary of length p. We thereby recover
bijectively the results of Brown for p-gonal triangulations and quadrangula-
tions and establish new results for d ≥ 5.

A key ingredient in our proofs is a class of orientations characterizing d-
angulations of girth d. Earlier results by Schnyder and by De Fraisseyx and
Ossona de Mendez showed that triangulations of girth 3 and quadrangulations
of girth 4 are characterized by the existence of orientations having respectively
indegree 3 and 2 at each inner vertex. We extend this characterization by
showing that a d-angulation has girth d if and only if the graph obtained by
duplicating each edge d − 2 times admits an orientation having indegree d at
each inner vertex.

1. Introduction

The enumeration of planar maps (connected planar graphs embedded in the
sphere) has received a lot of attention since the seminal work of Tutte in the
60’s [Tut63]. Tutte’s method for counting a class of maps consists in translat-
ing a recursive description of the class (typically obtained by deleting an edge)
into a functional equation satisfied by the corresponding generating function. The
translation usually requires to introduce a “catalytic” variable, and the functional
equation is solved using the so-called “quadratic method” [GJ83, sec.2.9] or its ex-
tensions [BMJ06]. The final result is, for many classes of maps, a strikingly simple

counting formula. For instance, the number of maps with n edges is 2·3n

(n+1)(n+2)

(
2n
n

)
.

Tutte’s method has the advantage of being systematic, but is quite technical in the
way of solving the equations and does not give a combinatorial understanding of
the simple-looking enumerative formulas. Other methods for the enumeration of

∗Dept. of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge MA 02139, USA,
bernardi@math.mit.edu. Supported by the French ANR project A3 and the European project
ExploreMaps – ERC StG 208471
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2 O. BERNARDI AND É. FUSY

maps were later developed based either on matrices integrals, representations of the
symmetric group, or bijections.

The bijective approach to maps has the advantage of giving deep insights to the
combinatorial properties of maps. This approach was used to solve several statistical
physics models (Ising, hard particles) on random lattices [BMS02, BFG07], and to
investigate the metric properties of random maps [CS04, BFG04]. It also has nice
algorithmic applications (random generation and asymptotically optimal encoding
in linear time). The first bijections appeared in [CV81], and later in [Sch98] where a
more transparent construction was proposed and applied to several classes of maps.
Typically bijections are from a class of “decorated” plane trees to a class of maps
and operate on trees by progressively closing facial cycles. However, even if the
bijective approach was successfully applied to many classes of maps, it is not, up to
now, as systematic as Tutte’s recursive method. Indeed, for each class of maps, one
has to guess (using counting results) the corresponding family of decorated trees,
and then to invent a mapping between trees and maps.

In this article, we contribute to making the bijective approach more systematic
by showing that a single “master bijection” can be specialized in various ways so as
to obtain bijections for several classes of maps. The master bijection Φ presented
in Section 3 is an extension of a construction by the first author [Ber07]. It was
already shown in [BC], that the bijection Φ can be specialized so as to obtain a
famous bijection by Bouttier, Di Francesco, and Guitter [BFG04] between bipartite
maps and certain decorated plane trees called mobiles. To be more exact, the
bijection Φ is between a set O of oriented maps and a set of mobiles. It turns
out that for many classes of maps there is a canonical way of orienting the maps
in the class C, so that C is identified with a subfamily OC of O on which our
bijection Φ restricts nicely. Typically, the oriented maps in OC are characterized by
degree constraints which can be traced through our construction and yields a degree
characterization of the associated mobiles. The mobile family is then specifiable
by a decomposition grammar and amenable to the Lagrange inversion formula for
counting. To summarize, the bijective approach presented here is more systematic,
since it consists in specializing the master bijection Φ to several classes of maps.
The problem of enumerating a class of map C then reduces to guessing a family
of “canonical” orientations (in O) for C (instead of guessing a family of decorated
trees and a bijection, which is harder).

We apply our bijective strategy to an infinite number of classes of maps. More
precisely, we consider for each integer d ≥ 3 the class Cd of d-angulations (planar
maps with faces of degree d) of girth d (i.e., having no cycle of length less than
d). The family C3 corresponds to the simple triangulations (those that have no
loop nor multiple edges). The family C4 also correspond to the class of simple
quadrangulations because quadrangulations are bipartite (hence never have cycles
of odd length). We show in Section 4 that each class Cd is amenable to our bijec-
tive strategy: we obtain a bijection between the class Cd and a class of mobiles by
specializing the bijection Φ. The class of mobiles is characterized by certain de-
gree conditions, hence the generating function of the class Cd is characterized and
shown to be algebraic. Bijections already existed for the class C3 of simple triangu-
lations [PS06, FPS08] and the class C4 of simple quadrangulations [Fus07, Sch98].
Our approach actually coincides (and unify) the bijections presented respectively
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in [FPS08, Theo.4.10] for triangulations and in [Sch98, Sec.2.3.3] for quadrangula-
tions.

In Section 5, we show that our bijective strategy applies even more to generally
d-angulations with boundary of length p ≥ d. More precisely, we give bijections for
the classes of p-gonal d-angulations (maps with inner vertices of degree d and outer-
face of degree p which is simple) of girth d. In particular, we recover bijectively
the enumerative results obtained by Brown (via a recursive approach à la Tutte)
for the cases d = 3, 4 [Bro64, Bro65]. That is, we show that the numbers tp,n of
p-gonal simple triangulations with p+ n vertices and the numbers qp,n of 2p-gonal
simple quadrangulations with 2p+ n vertices are

tp,n =
2(2p− 3)!

(p− 1)!(p− 3)!

(4n+ 2p− 5)!

n!(3n+ 2p− 3)!
, qp,n =

3(3p− 2)!

(p− 2)!(2p− 1)!

(3n+ 3p− 4)!

n!(2n+ 3p− 2)!
.

A bijection (different from ours) for simple triangulations with boundary was al-
ready presented in [PS06], but the proof of the bijectivity was based on the results
of Brown (only injectivity was proved and the bijectivity followed by a cardinality
argument).

Our counting results are new for d ≥ 5. Indeed, due to the constraint on the girth,
it seems tedious to apply a recursive method à la Tutte to d-angulations for d ≥ 5.
Even though there does not seem to be closed-form counting formulas for these
cases (for d = 5 the counting coefficients have large prime factors), the generating
functions follow an amazingly simple uniform algebraic pattern, see Propositions 24
and 25.

Before closing this introduction, we point out one of the key ingredients used
in our bijective strategy. As explained above, for a class C of maps, our bijective
strategy requires to specify a canonical orientation in order to identify C with a
subclass OC ⊂ O of oriented maps. For d-angulations with a simple outer face, a
simple calculation based on the Euler relation shows that the numbers n and m
of inner vertices and edges are related by m = d

d−2n. This suggests a candidate

canonical orientation for a d-angulation G: just ask for an orientation (without
counterclockwise directed cycle) with indegree d

d−2 at each inner vertex. . . or more

reasonably an orientation of the graph (d − 2) · G (the graph obtained from G re-
placing each edge by (d−2) parallel edges) with indegree d at each inner vertex. We
show that such an orientation exists for a d-angulation if and only if it has girth d
(and use these orientations to identify the class Cd with a subfamily OCd

⊂ O). This
extends earlier results by Schnyder for triangulations [Sch89] and by de Fraysseix
and Ossona de Mendez for quadrangulations [dFOdM01].

2. Maps and orientations

In this section we gather our definitions about maps and orientations.

Maps. A (planar) map is a connected planar graph embedded in the oriented
sphere and considered up to continuous deformation. The faces are the connected
components of the complementary of the graph. A plane tree is a map without
cycles (it has a unique face). Cutting an edge e at its middle point gives two
half-edges, each incident to an endpoint of e (they are both incident to the same
vertex if e is a loop). We shall also consider some maps decorated with dangling
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half-edges called buds (see e.g. Figure 3). A corner is the angular section between
two consecutive half-edges around a vertex. The degree of a vertex or face is the
number of incident corners. A d-angulation is a map such that every face has
degree d. Triangulations and quadrangulations correspond to the cases d = 3 and
d = 4 respectively. The girth of a map is the minimal length of its cycles. Obviously
a d-angulation has girth at most d (except if it is a tree). A map is simple if it has
girth at least 3 (i.e., no loop nor multiple edge).

The numbers v, e, f of vertices, edges and faces of a map are related by the Euler
relation: v− e + f = 2. We shall also use the following result.

Lemma 1. If a map with v vertices and e edges has a face f0 of degree p and the
other faces of degree at least d, then

(d− 2)(e− p) ≤ d(v− p) + p− d,

with equality if and only if the faces other than f0 have degree exactly d.

Proof. The incidence relation between faces and edges gives 2e ≥ p+ d(f− 1), with
equality if the faces other than f0 have degree exactly d. Combining this with the
Euler relation (so as to eliminate f) gives the claim. �

A map is said to be vertex-rooted if a vertex is marked, face-rooted if a face
is marked, and corner-rooted if a corner is marked1. The marked vertex, face or
corner are called the root-vertex, root-face or root-corner. For a corner-rooted map,
the marked corner is indicated by a dangling half-edge pointing to that corner;
see Figure 8. A corner-rooted map is said to induce the vertex-rooted map (resp.
face-rooted map) obtained by keeping the root-vertex (resp. root-face) as marked,
but otherwise forgetting the root-corner. Given a face-rooted (or corner-rooted)
map, vertices and edges are said to be outer or inner depending on whether they
are incident to the root-face or not.

Orientations, bi-orientations. Let G be a map. An orientation of G is a choice
of a direction for each edge of G. A bi-orientation of G is a choice of a direction for
each half-edge of G: each half-edge can be either ingoing or outgoing. For i = 0, 1, 2
we call i-way an edge with exactly i ingoing half-edges. In figures, 0-way edges are
represented by directing the two half-edges toward the middle of the edge, the 1-
way edges are represented by directing the ingoing half-edge toward the incident
vertex, and the 2-way edges are represented by directing the two ingoing half-edges
toward their incident vertices; see Figure 1(a). Clearly, orientations can be seen
as a special kind of bi-orientations, in which every edge is 1-way. The indegree
(resp. outdegree) of a vertex v is the number of ingoing (resp. outgoing) half-edges
incident to v. The clockwise-degree of a face f is the number of outgoing half-edges
h incident to f having the face f on their right (the orientation of h is toward the
midpoint of the edge). A directed path in a bi-orientation is a path going through
some vertices v1, . . . , vk+1 in such a way that for all i = 1, . . . , k the edge between
vi and vi+1 is either 2-ways or 1-way oriented toward vi+1. A circuit is a directed
cycle.

1Corner-rooted map are usually simply called rooted maps in the literature. A face-rooted
map can be thought as a plane map (a connected graph embedded in the plane) by thinking of
the root-face as the infinite face.



A BIJECTION FOR TRIANGULATIONS, QUADRANGULATIONS, ETC. 5

3 2

(a) (b)

Figure 1. (a) Bi-orientations: a 0-way edge (left), a 1-way edge
(middle) and a 2-ways edge (right). (b) Correspondence between
N-weighted orientations of a map M and ordinary orientations of
the associated map M ′ (obtained by replacing the edge e by several
edges in parallel).

A planar bi-orientation is a planar map with a bi-orientation. A vertex-rooted
bi-orientation (resp. face-rooted bi-orientation, corner-rooted bi-orientation) is a
planar bi-orientation whose underlying map is vertex-rooted (resp. face-rooted,
corner-rooted). A bi-orientation is accessible from a vertex v if any vertex is reach-
able from v by a directed path. A vertex-rooted (or corner-rooted) bi-orientation is
said to be accessible if it is accessible from the root-vertex. A circuit of a face-rooted
(or corner-rooted) bi-orientation is clockwise if the root-face is on its left and coun-
terclockwise otherwise. The bi-orientation is minimal if it has no counterclockwise
circuit; it is clockwise-minimal if in addition the root-face is a (clockwise) circuit.

Fractional Orientations. A weighted bi-orientation (resp. inner-weighted) is a
bi-orientation together with a weight w(h) associated to each half-edge h (resp. to
each half-edge on inner edges). The weight of an edge is the sum of the weights
of the two half-edges. The weight of a vertex v is the sum of the weights of the
incident ingoing half-edges. The weight of a face f is the sum of the weights of the
outgoing half-edges incident to f and having f on their right.

We call N-weighted bi-orientation a weighted, or inner-weighted, bi-orientation
such that the weight of every outgoing half-edge is 0, and the weight of every
ingoing half-edge is a positive integer. Observe that the weights of a N-weighted bi-
orientation uniquely determine the bi-orientation. Moreover, ordinary orientations
identify with N-weighted bi-orientation such that the weight of every edge is 1
(because in this case every edge is 1-way with weights 0 and 1 respectively on
outgoing and ingoing half-edges). Let G = (V,E) be a map, let α be a function
from the vertex set V to N = {0, 1, 2 . . .} and let β be a function from the edge set
E to N. We call α/β-orientation an N-weighted bi-orientation such that any vertex
v has weight α(v) and any edge e has weight β(e). We now give a criterion for the
existence (and uniqueness) of a minimal α/β-orientation.

Lemma 2. Let M be a map with vertex set V and edge set E, let α be a function
from V to N, and let β be a function from E to N. If there exists an α/β-orientation
of M , then there exists a unique minimal one.

Lemma 3. Let M be a map with vertex set V and edge set E, let α be a function
from V to N, and let β be a function from E to N. The map M admits an α/β-
orientation if and only if

(i)
∑

v∈V α(v) =
∑

e∈E β(e),
(ii) for all subset S of vertices,

∑
v∈S α(v) ≥

∑
e∈ES

β(e) where ES is the set
of edges with both ends in S.
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Moreover, α-orientations are accessible from a vertex u if and only if

(iii) for all subset S of vertices not containing u,
∑

v∈S α(v) ≥
∑

e∈ES
β(e).

Lemmas 2 and 3 are both known for the special case where the function β takes
value 1 on each edge of G (this case corresponds to ordinary orientations and the
weight of a vertex is equal to its indegree); see [Fel04]. The proofs below are simple
reductions to the case β = 1.

Proof of Lemmas 2 and 3. We call β-fractional orientations the N-weighted orien-
tations of M such that every edge e has weight β(e). Let M ′ be the map obtained
by replacing each edge e of M by β(e) edges in parallel. We call locally minimal
the (ordinary) orientations of M ′ such that for any edge e of M , the corresponding
β(e) parallel edges of M ′ do not contain any counterclockwise circuit. Clearly, the
β-fractional orientations of M are in bijection with the locally minimal orientations
of M ′; see Figure 1(b). Thus, there exists an α/β-orientation of M if and only
if there exists an ordinary orientation of M ′ with indegree α(v) at each vertex.
Therefore, Conditions (i),(ii) of Lemma 3 for M immediately follow from the same
conditions for the particular case β = 1 applied to the map M ′ (the case β = 1 is
treated in [Fel04]). Moreover an α/β-orientation of M is accessible from a vertex
u if and only if the corresponding orientation of M ′ is. Hence Conditions (iii) also
follows from the particular case β = 1 applied to the map M ′. Lastly, a β-fractional
orientation of M is minimal if and only if the corresponding orientation of M ′ is
minimal. Hence Lemma 3 immediately follows from the existence and uniqueness
of a minimal orientation in the particular case β = 1 applied to the map M ′. �

We now define several important classes of bi-orientations. A face-rooted bi-
orientation is called clockwise-minimal if it is minimal and its root-face is a clockwise
circuit. A clockwise minimal bi-orientation is called accessible if it is accessible from
one of the outer vertices (in this case, O is in fact accessible from any outer vertex
because the root-face is a circuit). We denote by Bd the set of weighted clockwise-
minimal accessible bi-orientations such that the root-face has degree d. We denote

by B̃d ⊂ Bd the set of inner-weighted clockwise-minimal accessible bi-orientations
such that the root-face has degree d and every outer vertex has indegree 1. Observe

that the outer face of a bi-orientation in B̃d is a simple cycle made of 1-way edges
oriented clockwise and that the inner half-edges incident to the outer vertices are
all outgoing.

For any positive integer k, we call k-fractional orientation a N-weighted bi-
orientation such that the weight of any edge is k. Thus, k-fractional orientations
do not have 0-way edges, their 1-way edges have weight 0 and k respectively on
the outgoing and ingoing half-edges, and their 2-way edges have positive weights
on both half-edges summing to k. The following classes of k-fractional orientations
will play an important role.

Definition 4. Let d, k be positive integers. We denote by Ok
d the set of clockwise-

minimal accessible k-fractional orientations with root-face of degree d. We denote

by Õk
d ⊂ Ok

d the subset of these orientations such that every outer vertex has weight
k. Lastly we omit the superscript k when k = 1 (non-fractional orientations), that

is, we denote Od = O1
d and Õd = Õ1

d.

Examples of orientations inO5, Õ5,O
3
4 and Õ3

4 are represented in Figures 3 and 6.
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Remark 5. The set Ok
d is the subset of N-weighted bi-orientations in B̃d such

that each edge has weight k. Similarly, up to forgetting the weights on the outer

half-edges, the set Õk
d identifies with the subset of N-weighted bi-orientations in B̃d

such that each inner edge has weight k. Indeed, the weight condition on the outer

vertices of the orientations in Õk
d , forces the outer face to be a simple cycle made

of 1-way edges oriented clockwise (with weight 0 and k respectively on the outgoing
and ingoing half-edges), and the inner half-edges incident to the outer vertices to
be outgoing.

3. Master bijections between oriented maps and mobiles

In this section we describe the two “master bijections” Φ−, Φ+. These bijections
will be specialized respectively in Sections 4 and 5 in order to obtain bijections for
d-angulations without and with boundary.

3.1. Master bijections Φ+, Φ− for ordinary orientations.

A properly bicolored mobile is a non-rooted plane tree with vertices colored black and
white, with every edge joining a black and a white vertex. A (properly bicolored)
blossoming mobile is a mobile together with some outgoing buds (dangling outgoing
half-edges) incident to black vertices. An example is shown in Figure 3 (right). The
excess of a blossoming mobile is the number of edges minus the number of outgoing
buds. A mobile with excess δ is called a δ-mobile.

We now define the mappings Φ± using a local operation performed around each
edge.

Definition 6. Let e be an edge of a planar bi-orientation, made of half-edges h and
h′ incident to vertices v and v′ respectively. Let c and c′ be the corners preceding
h and h′ in clockwise order around v and v′ respectively, and let f and f ′ be the
faces containing these corners. Let bf , b

′
f be some vertices placed inside the faces

f and f ′ (with bf = bf ′ if f = f ′). If e is a 1-way edge with h being the ingoing
half-edge (as in Figure 2), then the local transformation of e consists in creating an
edge joining the black vertex bf to the vertex v in the corner c, gluing an outgoing
bud to bf ′ in the direction of c′, and deleting the edge e.

The local transformation of a 1-way edge is illustrated in Figure 2 (ignore the
weights w,w′ for the time being).

h

h
′

bf ′

bf

v
′

v

w
′

w

v
′

v

bf

bf ′

Figure 2. The local transformation of a 1-way edge.

Definition 7. Let O be a face-rooted orientation in Od with root-face f0. We view
the vertices of O as white and place a black vertex bf in each face f of O.
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Figure 3. Top: Mapping Φ+ applied to an orientation in O5.

Bottom: Mapping Φ− applied to an orientation in Õ5. The vertex
bf0 and the incident buds or edges are not represented.

• The embedded graph Φ+(O) is obtained by performing the local transforma-
tion of each edge of O, and then deleting the black vertex bf0 and all the
incident buds (the vertex bf0 is incident to no edge).

• If O is in Õd, the embedded graph Φ−(O) with black and white vertices
is obtained by first returning all the edges of the outer-face (which is a
clockwise circuit), then performing the local transformation of each edge,
and lastly deleting the black vertex bf0 , the white outer vertices of O, and
the edges between them (no other edge or bud is incident to these vertices).

The mappings Φ+, Φ− are illustrated in Figure 3. The following theorem is
partly based on the results in [Ber07] and its proof is delayed to Section 7.

Theorem 8. Let d be a positive integer.

• The mapping Φ+ is a bijection between the set Od of clockwise-minimal
accessible orientations and the set of properly colored d-mobiles.

• The mapping Φ− is a bijection between the subset Õd ⊆ Od and the set of
properly colored (−d)-mobiles.

3.2. Master bijections Φ+, Φ− for weighted bi-orientations. In this subsec-
tion we extend the bijections Φ± to weighted bi-orientations (with in mind the
particular case of k-fractional orientations).

A mobile is a plane tree with vertices colored either black or white (the coloring
is not necessarily proper). A blossoming mobile is a mobile together with some
outgoing buds incident to black vertices. A blossoming mobile is weighted if a
weight is associated to each non-bud half-edge. The indegree of a vertex v is the
number of incident non-bud half-edges, and its weight is the sum of weight of the
incident non-bud half-edges. The outdegree of a black-vertex b is the number of
incident outgoing buds.
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We now define the mappings Φ± for weighted bi-orientations using local op-
erations performed around each edge. We consider an edge e of a weighted bi-
orientation and adopt the notations h, h′, v, v′, c, c′, f , f ′, bf , bf ′ of Definition 6.
We also denote by w and w′ respectively the weights of the half-edges h and h′.
The Definition 6 of the local transformation of a 1-way edge is supplemented with
weights attributed to the two halves of the edge created between v and bf : the
half-edge incident to v receives weight w and the half-edge incident to bf receives
weight w′. If the edge e is 0-way, the local transformation of e consists in creating
an edge between bf and bf ′ with weight w′ for the half-edge incident to bf and
weight w for the half-edge incident to bf ′ , and then deleting edge e; see Figure 4.
If the edge e is 2-ways, the local transformation of e consists in creating outgoing
buds incident to bf and bf ′ respectively in the direction of the corners c and c′, and
leaving intact the weighted edge e.

(a)

h

h
′

bf ′

bf

v
′

v

bf ′

bf

w
′

w

(b)

h

h
′

bf ′

bf

v
′

v

bf ′

bf

w
′ wv

′

v
v
′

v

Figure 4. Local transformation of a 0-way edge (left) and of a
2-ways edge (right).

With these definitions of local transformations, Definition 7 of the mappings Φ−

and Φ+ is extended without change to the case of weighted bi-orientations in B and

B̃ respectively. The mapping Φ+ is illustrated in Figure 5.

µ
λ−1

Figure 5. Top: the bijection Φ+ applied to a bi-orientation in
B (weights are omitted). Bottom: how to reduce the case of bi-
orientations to the case of ordinary orientations.
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Theorem 9. Let d be a positive integer.

• The mapping Φ+ is a bijection between the set Bd of weighted clockwise-
minimal accessible bi-orientations and the set of weighted d-mobiles.

• The mapping Φ− is a bijection between the subset B̃d of inner-weighted
clockwise-minimal accessible bi-orientations and the set of weighted (−d)-
mobiles.

Remark 10. There are many obvious parameter-correspondences for the bijections
Φ±. For a start, the vertices, inner faces, 0-way edges, 1-way edges, 2-ways edges
in a bi-orientation O are in natural bijection with the white vertices, black vertices,
black-black edges, black-white edges, white-white edges of the mobile Φ+(O). The
indegree and weight of a vertex of O are equal to the indegree and weight of the
corresponding white vertex of Φ+(O). The degree, clockwise degree and weight of
an inner face of O are equal to the degree, indegree and weight of the corresponding
black vertex of Φ+(O). Similar correspondences exist for Φ−, and we do not list
them all as they follow directly from the definitions.

Before proving Theorem 9, we state its consequences for k-fractional orientations.
We call k-fractional mobile a weighted mobile without black-black edge such that

• for white-white edges, the weights of the two half-edges are positive integers
summing to k,

• for black-white edges the weights of the half-edges incident to the black and
white vertices are respectively 0 and k.

Observe that 1-fractional mobile can be identified with unweighted properly-colored
mobiles. We now specialize Theorem 9 to k-fractional orientations. Recall from Re-

mark 5 that the subset Ok
d and Õk

d can be seen as subsets of Bd and B̃d respectively.
Given the obvious parameter-correspondence of the master bijections Φ± (see Re-
mark 10) it is clear that specializing Theorem 9 to k-fractional orientations gives
the following extension of Theorem 8.

Theorem 11. Let d, k be positive integers.

• The mapping Φ+ induces a bijection between the set Ok
d of k-fractional

clockwise-minimal accessible orientations and the set of k-fractional d-mobiles.

• The mapping Φ− is a bijection between the subset Õk
d of k-fractional clockwise-

minimal accessible orientations and the set of k-fractional (−d)-mobiles.

Moreover if the orientation O is in Ok
d (resp. Õk

d) and T = Φ+(O) (resp. T =
Φ−(O)), then the degree of the inner faces of O correspond to the degree of the
black vertices of T . Moreover, the weight of vertices (resp. inner vertices) of O
correspond to the weight of the white vertices of T .

The mappings Φ+ and Φ− are applied to some fractional orientations in Figure 6.

Proof of Theorem 9. We will prove Theorem 9 about weighted bi-orientations by a
reduction to the case of ordinary unweighted orientations. The idea of the reduction
is illustrated in Figure 5. First of all, observe that there is no need to consider
weights in the proof. Indeed, through the mapping Φ+ (resp. Φ−) the weight of a

half-edge (resp. inner half-edge) of a bi-orientation O in Bd (resp. B̃d) is given to
exactly one half-edge of the corresponding mobile (so that there is absolutely no
weight constraint on the mobiles).
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Figure 6. Top: Master bijection Φ+ applied to a 3-fractional

orientation in O3
4. Bottom: Φ− applied to an orientation in Õ3

4.
The weights are indicated only for 2-ways edges. The vertex bf0
and the incident buds or edges are not represented.

It remains to prove that the mapping Φ+ (resp. Φ−) is a bijection between

unweighted bi-orientations in Bd (resp. B̃d) and mobiles with excess d (resp. −d).
We call bi-marked orientation an orientation with some marked vertices of degree 2
and indegree 2 and some marked faces of degree 2 and clockwise degree 2. Observe
that two marked vertices cannot be adjacent, two marked faces cannot be adjacent,
and moreover a marked vertex cannot be incident to a marked face. Given a bi-
orientation O we denote by µ(O) the bi-marked orientation obtained by replacing
every 0-way edge by two edges in series directed toward a marked vertex of degree 2
(and indegree 2), and replacing every 2-ways edges by two edges in parallel directed
clockwise around a marked face of degree 2 (and clockwise degree 2). The mapping
µ illustrated in Figure 5 (left) is clearly a bijection between bi-orientations and
bi-marked orientations. We call bi-marked mobile a properly bicolored mobile with
some set of non-adjacent marked vertices of degree 2. Given a mobile T , we denote
by λ(T ) the bi-marked mobile obtained by inserting a marked black vertex at the
middle of each white-white edge, and inserting a marked white vertex at the middle
of each black-black edge. The mapping λ illustrated in Figure 5 (right) is clearly
a bijection between mobiles and bi-marked mobiles. Moreover it is clear from the
definitions that the mapping Φ+ (resp. Φ−) for bi-orientations is equal to the
mapping λ ◦ Φ ◦ µ where the mapping Φ is the restriction of Φ+ (resp. Φ−) to
ordinary orientations. Thus Theorem 5 implies that Φ+ (resp. Φ−) is a bijection

on B (resp. on B̃). �

Before closing this section we state an additional claim which is useful for count-

ing purposes. For any bi-orientation O in B̃d, we call exposed the outgoing buds of
the mobile T = Φ−(O) created by applying the local transformation to the outer
edges of O (which have preliminarily been returned).
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Claim 12. Let O be a bi-orientation in B̃d and let T = Φ−(O). There is a bijection

between the set ~O of corner-rooted maps inducing the face-rooted map O (i.e., the

maps obtained by choosing a root-corner in the root-face of O), and the set ~T of
mobiles obtained from T by marking an exposed bud. Moreover, there is a bijection
between the set T→ of mobiles obtained from T by marking a non-exposed bud, and
the set T→◦ of mobiles obtained from T by marking a half-edge incident to a white
vertex.

We point out that there is a little subtlety in the Claim 12 related to the possible
symmetries (for instance, it could happen that the d corners of the root-face of O
give less than d different corner-rooted maps).

Proof. The natural bijection γ between the d exposed buds of T and the d corners
in the root-face of O (in which an exposed bud b points toward the vertex incident
to the corner γ(b)) does not require any “symmetry breaking” convention. Hence
the bijection γ respects the possible symmetries of O and T , and therefore it induces

a bijection between ~T and ~O. We now prove the second bijection. Let B be the
set of non-exposed bud of T , and let H be the set of half-edges incident to a white
vertex. Using the fact that the local transformation of each inner i-way edge of O
gives i buds in B and i half-edges in H (and that all buds in B, and all half-edges in
H are obtained in this way), one can easily define a bijection γ′ between B and H
without using any “symmetry breaking” convention. Since the bijection γ′ respects
the eventual symmetries of T it induces a bijection between T→ and T→◦. �

4. Bijections for d-angulations of girth d

In this section, we prove the existence of a canonical class of fractional ori-
entations for d-angulations of girth d. This allow us to identify the class Cd of

d-angulations of girth d with a class of orientations in Õd. We then obtain a bi-
jection between Cd and a class of blossoming mobiles by specializing of the master
bijection Φ− to these orientations.

4.1. Fractional orientations for d-angulations of girth d.
Let D be a face-rooted d-angulation. A d/(d−2)-orientation of D is a (d − 2)-
fractional orientation such that each inner vertex has weight d and each outer
vertex has weight d− 2. Thus d/(d−2)-orientation are particular cases of α/beta-
orientations where α(v) = d for inner vertices, α(v) = d − 2 for outer vertices
and β(e) = d − 2 for each each edge. By Lemma 2 , if D admits a d/(d−2)-
orientation, then there exists a unique minimal one. A minimal d/(d−2)-orientation
is represented in Figure 7 (top-left).

Theorem 13. A face-rooted d-angulation admits a d/(d−2)-orientation if and only

if it has girth d. In this case, the minimal d/(d−2)-orientation is in Õd−2
d .

Proof. We first prove the necessity of the girth d. If D has not girth d, then it is
either a tree (its girth is infinite), or it has a cycle of length c < d. If D = (V,E) is
a tree, then |E| = (|V |−1). This prevents the existence of a d/(d−2)-orientation for
D because in such an orientation the sum of weights of the edges (d− 2)|E| should
equal the sum of weights of the vertices (d− 2)|V |. We now suppose that D has a
simple cycle C of length c < d. Let D′ be the submap of D enclosed by C which
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does not contain the root-face of D. Let V ′, E′ be respectively the set of vertices
and edges strictly inside C. By Lemma 1, (d − 2)|E′| = d|V ′| + c − d < d|V ′|.
This prevents the existence of a d/(d− 2)-orientation for D because in such an
orientation (d− 2)|E′| corresponds to the sum of weights of the edges in E′, while
d|V ′| corresponds to the sum of weights of the vertices in V ′.

We now consider a d-angulation D of girth d and want to prove that D has a
d/(d−2)-orientation. We use Lemma 3 with the map D = (V,E), the function
α taking value d on inner vertices and d − 2 on outer vertices, and the function
β taking value d on every edge. We first check Condition (i). First observe that
D has d distinct outer vertices (otherwise the outer-face would create a cycle of
length less than d). Hence

∑
v∈V α(v) = d(|V | − d) + (d − 2)d. This is equal to

(d− 2)|E| =
∑

e∈E β(e) by Lemma 1 (with p = d), hence Condition (i) holds. We
now check Condition (ii). Let S be a subset of vertices. We first suppose that the
induced subgraph GS = (S,ES) is connected. If this is the case, either GS is a tree
and (ii), (iii) clearly hold (since

∑
v∈S α(v) ≥ (d − 2)|S| > (d − 2)|ES |), or it is a

map with faces of degree at least d (since the girth of G is d). In the second case,
Lemma 1 implies (d − 2)|ES | ≤ d(|S| − p) + p − d + p(d − 2) ≤ d|S| − 2d, where
p ≥ d is the degree of the outer face of GS . Moreover,

∑
v∈S α(v) ≥ d|S| − 2d

with equality only if S contains every outer vertex of D. Thus (ii) holds and (iii)
holds for any outer vertex v0. Now, if the induced subgraph GS = (S,ES) is
not connected, knowing that (ii), (iii) holds for every connected component of GS

ensures that it holds for GS (since both sides of the inequalities are additive over
components). This proves that D admits some d/(d−2)-orientations and that they
are all accessible from any outer vertex.

We now consider the minimal d/(d−2)-orientations O of D. Since every outer
vertex of O has weight d − 2, its outer-face is a simple cycle made of 1-way edges
oriented clockwise (this is the only way of avoiding a counterclockwise circuit). Thus
O is clockwise-minimal and every outer vertex has indegree 1. The orientation O

is also accessible from any outer vertex, hence O is in Õd−2
d . �

4.2. Bijection for d-angulations of girth d.
By Theorem 13, the class Cd of d-angulations of girth d can be identified with the

subset Ed of orientations in Õd−2
d such that every face has degree d and every inner

vertex has weight d (the weight of the outer vertices is d− 2 for any orientation in

Õd−2
d ). We now characterize the mobiles that are in bijection with the subset Ed.
We call d-branching mobile a blossoming (d−2)-fractional mobile such that every

black vertex has degree d and every white vertex has weight d. A 5-branching mobile
is shown in Figure 7 (top-right). By Theorem 11 the master bijection Φ− induces
a bijection between the orientations in Ed with n inner faces and the d-branching
mobiles of excess −d with n black vertices. The additional condition of having
excess −d is in fact redundant (hence can be omitted) as claimed below.

Claim 14. Any d-branching mobile has excess −d.

Proof. Let e, e′, o be respectively the number of edges, white-white edges and out-
going buds of a d-branching mobile. By definition, the excess is δ = e + e′ − o.
Let b and w be respectively the number of black and white vertices. The degree
condition for black vertices gives e− e′ + o = db, so that δ = 2e− db. The weight
condition on white vertices gives (d − 2)e = dw and combining this relation with
b + w = e + 1 (so as to eliminate w) gives b = 2

de + 1, hence δ = −d. �



14 O. BERNARDI AND É. FUSY
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Figure 7. Top: a 5-angulation D of girth 5 and the 5-branching
mobile Φ−(D). Bottom: a non-separated 6-annular 5-angulation
A and the (6,5)-branching mobile Φ+(A). The weights are only
indicated on 2-ways edges.

From Claim 14 and the preceding discussion we obtain:

Theorem 15. For d ≥ 3 and n ≥ 0, face-rooted d-angulations of girth d with n
inner faces are in bijection with d-branching mobiles with n black vertices.

Theorem 15 is illustrated by Figure 7 (top-part). Before closing this section
we mention that a slight simplifications appears in the definition of d-branching
mobiles when d is even.

Proposition 16. If d = 2b is even, then every half-edge of the d-branching mobile
has an even weight (in {0, . . . , d − 2}). In particular, the 4-branching mobiles are
properly-bicolored mobiles with weight 0 on half-edges incident to black colored and
weight 2 on half-edges incident to white vertices. Similarly the minimal d/(d−2)-
orientation of any d-angulation has only even weights. In particular, for d = 4 the
minimal d/(d−2)-orientation does not have 2-ways edges.

Proof. Let d be even and let M be a d-branching mobile. Edges of M have either
two half-edges with even weights or two half-edges with odd weights, in which case
we call them odd. We suppose by contradiction that the set of odd edges is non-
empty. In this case, there exists a vertex v incident to exactly one odd edge (since
the set of odd edges form a non-empty forest). Hence, the weight of v is odd, which
is impossible since the weight of black vertices is 0 and the weight of white vertices
is d.

Similarly, the edges of a d/(d−2)-orientation have either two half-edges with
even weights or two half-edges with odd weights, in which case we call them odd.
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Moreover odd edges are 2-ways hence they form a forest in the minimal d/(d−2)-
orientation (otherwise there would be a counterclockwise circuit). Hence, if there
are odd edges, there is a vertex v incident to only 1 odd edge, contradicting the
requirement that every vertex has weight d. �

5. Bijections for d-angulations of girth d with a p-gonal boundary

In this section we deal with d-angulations with a boundary. For any integers
p ≥ d ≥ 3, we call p-gonal d-angulation a map having one face of degree p whose
contour is simple (its vertices are all distinct) and all the other faces of degree
d. Our bijective strategy for p-gonal d-angulations is similar to the case with-
out boundary: we first exhibit a canonical orientation for these maps and then
characterize the bijection induced by a master bijection. However, an additional
difficulty arises: one needs to factorize p-gonal d-angulations into two parts, one
being a d-angulation without boundary and the other being a non-separated p-gonal
d-angulations. The master bijections Φ− and Φ+ then gives bijections for each part.

5.1. Orientations for p-gonal d-angulations.
Let A be a p-gonal d-angulation. The face of A of degree p is called boundary-
face and the p incident vertices are called boundary vertices. A pseudo d/(d−2)-
orientation of A is a (d− 2)-fractional orientation such that non-boundary vertices
have weight d and the boundary-face is a circuit of 1-way edges. By Lemma 1, the
number v of vertices and e of edges of A satisfy (d − 2)e = d(v − p) + dp − p − d.
Since d(v − p) is the sum of the weights of the non-boundary vertices, this proves
the following claim.

Claim 17. The sum of the weights of the boundary vertices in a pseudo d/(d−2)-
orientation of a p-gonal d-angulation is dp− p− d.

We now prove that the existence of a pseudo d/(d−2)-orientation characterizes
the p-gonal d-angulations of girth d.

Lemma 18. Let p ≥ d ≥ 3 be integers. A p-gonal d-angulation A admits a pseudo
d/(d−2)-orientation if and only if it has girth d. In this case, every pseudo d/(d−2)-
orientation is accessible from any boundary vertex.

Proof. The proof of the necessity of girth d is the same as in the proof of Theorem 13.
We now consider a p-gonal d-angulation A of girth d and prove that it admits a
pseudo d/(d−2)-orientation. From A we construct a d-angulation D of girth d
as follows. First we insert vertices and edges inside the boundary-face fb so as
to d-angulate the interior of fb while keeping the girth equal to d. This yields a
d-angulation D of girth d. We can suppose that one of the faces created inside fb is
not incident to fb and we choose such a face as the root-face of D. By Theorem 13,
the face-rooted d-angulation D admits a minimal d/(d− 2)-orientation O. The
orientation O induces an orientation OA of A in which every non-boundary vertex
has weight d. Let O′

A be the orientation of A obtained from OA by reorienting the
edges incident to the boundary-face fb into a circuit of 1-way edges. By definition,
O′

A is a pseudo d/(d−2)-orientation.
It remains to show that any pseudo d/(d−2)-orientation of A is accessible from

any boundary vertex. We first show that the property holds for the orientation O′
A.

Recall from Theorem 13 that the d/(d−2)-orientation O is accessible from any outer
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vertex of D. Thus, for any vertex v of A, there is a directed path of O from an outer
vertex of D to v. Hence, there is a directed path of O′

A from a boundary vertex to
v. Since the boundary-face of O′

A is a circuit, it means that there is a directed path
of O′

A from any boundary vertex to v. Thus, O′
A is accessible from any boundary

vertex. We now consider another pseudo d/(d−2)-orientation O′′
A of A. We want to

show that O′′
A is also accessible from the boundary vertices. Suppose the contrary

and consider the set U of vertices u such that there is no directed path from a
boundary vertex to u. Clearly any edge of O′′

A from a vertex u in U to a vertex not
in U is 1-way and is oriented away from u. Thus, in O′′

A the sum of weights of the
vertices in U is (d − 2)eU , where eU is the number of edges with both ends in U .
Since U contains no boundary vertex the sum of weights of the vertices in U is the
same for O′

A and O′′
A. Thus the sum of weights of the vertices in U is (d − 2)eU

in O′
A, implying that any edge of O′

A from a vertex u in U to a vertex not in U is
1-way and is oriented away from u. This contradicts the fact that the vertices in U
are reachable from the boundary vertices by a directed path of O′

A. �

We call p-annular d-angulation a face-rooted p-gonal d-angulation of girth d
whose root-face is not the boundary-face. For a p-annular d-angulation, a cycle of
length d is said separating if one of the boundary vertex lies strictly on one side
of C and one of the outer vertex lies strictly on the other side of C. A p-annular
d-angulation is non-separated if it has no separating cycle.

Proposition 19. Let p > d ≥ 3. Any p-annular d-angulation A admits a unique
minimal pseudo d/(d−2)-orientation. This orientation is clockwise-minimal acces-

sible (i.e., in Od−2
d ) if and only if A is non-separated.

Proof. Let A be a p-annular d-angulation. The map A admits some pseudo d/(d−2)-
orientations by Lemma 18. The existence and uniqueness of a minimal one is not
directly granted by Lemma 2 because the definition of pseudo d/(d−2)-orientations
includes the requirement that the boundary-face is a circuit of 1-way edges. Instead,
we consider the map Â obtained from A by contracting into a vertex, denoted vb,
the boundary-face of A (together with the p incident edges). The mapping σ which

associates to a pseudo d/(d−2)-orientations of A the induced orientation of Â is a
bijection between the (non-empty) set S of pseudo d/(d−2)-orientations of A with
a boundary-face directed clockwise (there exists such orientations by Lemma 18)

and the set Ŝ of orientations of Â such that every vertex other than vb has weight d
(while vb has weight p− d). Moreover, an orientation O ∈ S is minimal if and only
if σ(O) is minimal (indeed, the fact that the boundary-face of O is a circuit implies
that any counterclockwise circuit of σ(O) is part of a counterclockwise circuit of

O). Thus, applying Lemma 2 on the set Ŝ of orientations implies that A admits a
unique minimal pseudo d/(d−2)-orientation.

We now prove second assertion of the proposition. Suppose first that A has a
separating cycle C: a boundary vertex ub lies on one side and an outer vertex uo

lies on the other side. We now prove that the minimal pseudo d/(d−2)-orientation
O is not accessible from uo. Let D be the d-gonal d-angulation made of C and all
the edges and vertices on the side of ub (the side containing the boundary-face).
By Lemma 1, the numbers e of edges and v of vertices in D satisfy (d − 2)e =
d(v − p) + dp − p − d. Moreover the right-hand-side is the sum of the weight of
the vertices in D (by claim 17). Thus every edge incident to C and lying in the
region containing uo are 1-way edges oriented away from C. Thus uo cannot reach
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the vertices of D by a directed path. The orientation O is not accessible from the
outer vertex uo, hence O is not clockwise-minimal accessible.

Suppose conversely that A is not separating. We first prove that the minimal
pseudo d/(d−2)-orientation O is accessible from any outer vertex. We reason by
contradiction and suppose that O is not accessible from one of the outer vertex
uo. In this case, uo cannot reach the boundary vertices by a directed path (since
Lemma 18 ensures that the boundary vertices can reach all the other vertices).
We consider the set U of vertices of A that can reach the boundary vertices by a
directed path. This set contains all the boundary vertices but not the outer vertex
uo. Let AU = (U,EU ) be the map induced by the vertices in U (it is clear from the
definitions that AU is connected). Clearly, every edge between a vertex u in U and
a vertex not in U is oriented away from U . Thus (d− 2)|EU | equals the sum of the
weight of the vertices in U . By claim 17 we get (d−2)|EU | = d(|U |−p)+pd−p−d
hence

(1) (d− 2)(|EU | − p) = d(|U | − p) + p− d.

Now, since A has girth d, the non-boundary faces of AU have degree at least d.
Therefore by Lemma 1, the equality (1) ensures that every face of AU has degree d.
In particular, the cycle C corresponding to the contour of the face of AU in which
the outer vertex uo lies has length d. This cycle C is separating: a contradiction.

It remains to prove that the outer face of O is a clockwise cycle. Suppose the
contrary. In this case, there is an outer edge e which is 1-way and has the root-face
on its right. Let v, v′ the end and origin of O. By accessibility from v there is
a simple directed path P from v to a boundary vertex u. By accessibility from
boundary vertices, there is a path simple directed P ′ from u to v′. The paths P
and P ′ do not contain the 1-way edge e. Thus, there is circuit C containing e in
the concatenation of P , P ′ and e. Since e has the root-face on its right, the circuit
C is counterclockwise, contradicting the minimality of O. �

5.2. Bijection for p-gonal d-angulations of girth d.
We call (p, d)-branching mobile a (d− 2)-fractional blossoming mobile such that:

• every black vertex has degree d except for one, called the special vertex s,
which has degree p and is incident to no bud,

• every white vertex which is not a neighbor of s has weight d, and the weights
of the neighbors of s add up to pd− p− d.

An example of (6, 5)-branching mobile is represented in Figure 7(bottom-right).

By Proposition 19, the non-separated p-annular d-angulations can be identified
with the class Op,d of orientations in Od−2

d such that

• every face has degree d except for one non-root face of degree p, called
boundary-face, whose contour is a clockwise circuit of 1-way edges

• every non-boundary vertex has weight d (and the sum of weights of the
boundary vertices is pd− p− d by Claim 17).

By Theorem 11 (and the definition of Φ+ which implies that an inner face of degree
p whose contour is a clockwise circuit of 1-way edges corresponds to a black vertex
of the mobile incident to p edges and no bud), the class Op,d of orientations are
in bijection with the class of (p, d)-branching mobiles of excess d. As in the case
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of d-angulations without boundary, the additional requirement on the excess is
redundant as claimed below.

Claim 20. Any (p, d)-branching mobile has excess d.

Proof. By definition, the excess is δ = e + e′ − o, where e, e′, o are respectively
the number of edges, white-white edges and outgoing buds. Let b and w be the
number of black and white vertices. The condition on black vertices gives e−e′+o =
d(b − 1) + p, so that δ = 2e − db + d − p. The condition on white vertices gives
(d− 2)e = d(w− p) + pd+−p− d and combining this relation with b + w = e + 1
(so as to eliminate w) gives b = 2

de +
p
d , hence δ = d. �

To summarize, by specialization of the master bijection Φ+ in the (d − 2)-
fractional setting, Proposition 19 gives the following result.

Theorem 21. Let p > d ≥ 3 and n be positive integers. The non-separated p-
annular d-angulations (of girth d) with n inner faces are in bijection with (p, d)-
branching mobiles with n black vertices.

Theorem 21 is illustrated in Figure 7 (bottom). As in the case without boundary,
a slight simplification appears in the definition of (p, d)-branching mobiles when d
is even. First observe that when d is even the p-gonal d-angulations are bipartite
(since the inner faces generate all cycles). Thus, there is no p-gonal d-angulations
when p is odd and d even. Similarly there is no (p, d)-branching mobiles with p odd
and d even. There is a further simplification:

Proposition 22. If d = 2b is even, then for any p ≥ b, the weights of half-edges
of (2p, d)-branching mobiles are even. Similarly, the weights of the half-edges in
minimal pseudo d/(d−2)-orientations are even.

Proof. The proof is the same as the proof of Proposition 16. �

We now explain how to deal bijectively with general (possibly separated) p-
annular d-angulations. We call pseudo-separating a cycle of a p-annular d-angulations
which is either separating or the contour of the root-face. A pseudo-separating cycle
C of A defines:

• a p-annular d-angulation, denoted AC , corresponding to the map on the
side of C containing the boundary face (C is the contour of the root-face),

• a d-annular d-angulation, denoted A′
C , corresponding to the map on the

side of C containing the root-face (C is the contour of the boundary face).

In order to make the decomposition (A,C) 7→ (AC , A
′
C) injective we consider

marked maps. We call a p-annular d-angulation marked if a boundary vertex is
marked. We now consider an arbitrary convention for each marked p-annular d-
angulations by distinguishing one of the outer-vertices as co-marked (the co-marked
vertex is entirely determined by the marked vertex). We then define for a marked
p-annular d-angulation A• and a pseudo-separating cycle C, the marked annular
d-angulations A•

C and A•
C
′ obtained by marking AC at the marked vertex of A•

and marking A•
C
′ at the co-marked vertex of A•

C .

Proposition 23. Let p > d ≥ 3. Any p-annular d-angulation A has a unique
pseudo-separating cycle C such that AC is non-separated. Moreover, the mapping
∆ which associates to a marked p-annular d-angulation A• the pair (A•

C , A
•
C
′) is
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a bijection between marked p-annular d-angulations and pairs made of a marked
non-separated p-annular d-angulation and a marked d-annular d-angulation.

Proposition 23 gives a bijective approach for general p-annular d-angulations:
apply the master bijection Φ+ (Theorem 21) to the non-separated p-annular d-
angulation AC , and the master bijection Φ− (Theorem 15) to the d-angulation
A′

C .

Proof. The set C of pseudo-separating cycles of A is non-empty (it contains the
cycle corresponding to the contour of the root-face) and is partially ordered by the
relation � defined by setting C � C′ if AC ⊆ AC′ (here the inclusion is in terms
of the vertex set and the edge set). Moreover, AC is non-separated if and only if C
is a minimal element of (C,�). Observe also that for all C,C′ ∈ C, the intersection
AC ∩AC′ is non-empty because it contains the boundary vertices and edges. Thus,
if C,C′ are not comparable for �, then the cycles C,C′ must intersect. Since they
have both length d and A has no cycle of length less than d, the only possibility is
that AC ∩AC′ is delimited by a separating cycle C” of length d: AC ∩AC′ = AC”.
This show that (C,�) has a unique minimal element, or equivalently, that A has a
unique pseudo-separating cycle C such that AC is non-separated.

We now prove the second statement. The injectivity of ∆ is clear: the markings
allow to glue back the maps A•

C , A
•
C
′ by identifying the root-face C of A•

C with the
boundary-face of A•

C
′, and identifying the co-marked vertex of A•

C with the marked
vertex of A•

C
′. To prove surjectivity we only need to observe that gluing a non-

separated p-annular d-angulation and a marked d-annular d-angulation as described
above preserves the girth d (hence the glued map A• is a p-annular d-angulation)
and makes C a pseudo-separating cycle of A•. �

6. Counting results

In this section, we establish equations for the generating functions of d-angulations
without and with boundary (Subsections 6.2 and 6.1). We then obtain closed for-
mulas in the cases d = 3 and d = 4. We call generating function, or GF for
short, of a class C counted according to a parameter P the formal power series
C(x) =

∑
n∈N

cnx
n, where cn is the number of objects c ∈ C satisfying P (c) = n.

We also denote [xn]G(x) the coefficient of xn in a formal power series G(x).

6.1. Counting rooted d-angulations of girth d.
By Theorem 15, counting d-angulations of girth d reduces to counting d-branching
mobiles. We will characterize the generating function of d-branching mobiles by a
system of equations (obtained by a straightforward recursive decomposition). We
first need a few notations. For a positive integer j we define the polynomial hj in
the variables w1, w2, . . . by:

(2) hj(w1, w2, . . .) := [tj ]
1

1−
∑

i>0 t
iwi

=
∑

r>0

∑

i1,...,ir>0
i1+...+ir=j

wi1 · · ·wir .

In other words, hj is the (polynomial) generating function of integer compositions
of j where the variable wi is conjugated to the number of parts of size i.

We call planted d-branching mobile a (d−2)-fractional blossoming mobile with a
marked leaf (vertex of degree 1) such that non-marked black vertices have degree d
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and non-marked white vertices have weight d. For i ∈ {0, . . . , d− 2}, we denote by
Wi the family of planted d-branching mobiles where the marked leaf has weight i
(the case i = 0 correspond to a black marked leaf). We also denote by Wi ≡ Wi(x)
the generating function ofWi counted according to the number of non-marked black
vertices.

For i = d − 2, the marked leaf of a mobile in Wi is a white vertex connected
to a black vertex b. The d − 1 other half-edges incident to b are either buds or
belong to an edge e leading to white vertex w. In the second case the sub-mobile
planted at b and containing w belongs toW0. This decomposition gives the equation
Wd−2 = x(1 +W0)

d−1.
For i ∈ {0, . . . , d− 3}, the marked leaf of a mobile in Wi is connected to a white

vertex w. Let v1, . . . , vr the other neighbors of w. For j = 1 . . . , r the sub-mobile
planted at w and containing vj belongs to one of the classes Wα(j), and the sum of

the weights
∑r

j=1 α(j) is d− (d− 2− i) = i+ 2. This decomposition gives

Wi =
∑

r>0

∑

i1,...,ir>0
i1+...+ir=i+2

Wi1 · · ·Wir = hi+2(W1, . . . ,Wd−2).

Hence, the series W0,W1, . . . ,Wd−2 satisfy the following system of equations:

(3)





Wd−2 = x(1 +W0)
d−1,

Wi = hi+2(W1, . . . ,Wd−2) ∀i ∈ {0, . . . , d− 3},
Wi = 0 ∀i > d− 2.

Observe that the system (3) determinesW0,W1, . . . ,Wd−2 uniquely as formal power
series. Indeed, it is clear that any solutions W0,W1, . . . ,Wd−2 of this system have
zero constant coefficient. And from this observation it is clear that the other coef-
ficients are uniquely determined by induction.

The following table shows the system for the first values, d = 3, 4, 5:

d = 3 d = 4 d = 5

W1 = x(1 +W0)
2 W2 = x(1 +W0)

3 W3 = x(1 +W0)
4

W0 = W 2
1 W0 = W 2

1 +W2 W0 = W 2
1 +W2

W1 = W 3
1 + 2W1W2 W1 = W 3

1 + 2W1W2 +W3

W2 = W 4
1 + 3W 2

1W2 + 2W1W3 +W 2
2

In the case where d is even, d = 2b, one easily checks that Wi = 0 for i odd
(this follows from the fact that, for odd i, all monomials in hi+2(W1, . . . ,Wd−2)
contain a Wj with odd j, and is related to Proposition 16). Hence the system can
be simplified. The series Vi := W2i satisfy the system:

(4)





Vb−1 = x(1 + V0)
2b−1,

Vi = hi+1(V1, . . . , Vb−1) ∀i ∈ {0, . . . , b− 2},
Vi = 0 ∀i > b− 1.

The following table shows the system for the first values, b = 2, 3, 4:

b = 2 b = 3 b = 4

V1 = x(1 + V0)
3 V2 = x(1 + V0)

5 V3 = x(1 + V0)
7

V0 = V1 V0 = V1 V0 = V1

V1 = V 2
1 + V2 V1 = V 2

1 + V2

V2 = V 3
1 + 2V1V2 + V3
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Let Md be the family of d-branching mobiles rooted at a corner incident to a
black vertex, and let Md(x) be the GF of Md counted according to the number of
non-root black vertices. Since each of the d half-edges incident to the root-vertex
is either a bud or is connected to a planted mobile in W0 we have

Md(x) = (1 +W0)
d.

Proposition 24 (Counting d-angulations of girth d). For d ≥ 3, the generating
function Fd(x) of corner-rooted d-angulations of girth d counted according to the
number of inner faces has the following expression:

Fd = Wd−2 −
d−3∑

i=0

WiWd−2−i,

where the series W0, . . . ,Wd−2 are the unique power series solutions of the sys-
tem (3) (which simplifies to (4) in the even case d = 2b). Therefore Fd is algebraic.
Moreover it satisfies

F ′
d(x) = (1 +W0)

d.

Proof. Theorem 15 and Claim 12 (first part) imply that Fd is the series counting
d-branching mobiles rooted at an exposed outgoing bud. Call B (resp. H) the GF
of d-branching mobiles (counted according to the number of black vertices) with a
marked outgoing bud (resp. marked half-edge incident to a white vertex). Claim 12
(second part) yields Fd = B −H . A mobile with a marked outgoing bud identifies
to a planted mobile in Wd−2 (planted mobile where the vertex of attachment is
black), hence B = Wd−2. A mobile with a marked half-edge incident to a white
vertex identifies with an ordered pair of planted mobiles (w,w′) in Wi × Wd−2−i

for some i in {0, . . . , d− 3}, hence H =
∑d−3

i=0 WiWd−2−i.
For the expression of F ′(x), observe that this is the GF of corner-rooted d-

angulations of girth d with a secondary marked inner face. Equivalently, F ′
d(x)

counts face-rooted d-angulations of girth d with a secondary marked corner not
incident to the root-face. By the master bijection Φ−, marking a corner not incident
to the root-face in the d-angulation is equivalent to marking a corner incident to
a black vertex in the corresponding mobile. Hence, Theorem 15 gives F ′

d(x) =
Md(x) = (1 +W0)

d. �

The cases d = 3 and d = 4 correspond to simple triangulations and simple
quadrangulations; we recover (see Section 6.3) exact-counting formulas due to
Brown [Bro64, Bro65]. For d ≥ 5 the counting results are new (to the best of
our knowledge). For d = 5 and d = 6, one gets F5 = x + 5x3 + 121x5 + 4690x7 +
228065x9+O(x11), and F6 = x+3x2 +17x3 +128x4 +1131x5 +11070x6 +O(x7).

For any d ≥ 3 a simple analysis based on the Drmota-Lalley-Wood theorem [FS09,
VII.6] ensures that for odd d, the coefficient [x2n]F ′

d(x) (from the Euler relation the

odd coefficients of F ′
d(x) are zero) is asymptotically cdγd

nn−3/2 for some com-
putable positive constants cd and γd depending on d; and for even d, the coefficient
[xn]F ′

d(x) is asymptotically cdγd
nn−3/2 again with cd and γd computable constants.

Since [xn]Fd(x) =
1
n [x

n−1]F ′
d(x), the number of corner-rooted d-angulations of girth

d follows (up to the parity requirement for odd d) the asymptotic behavior cγnn−5/2

which is universal for planar map families.
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6.2. Counting rooted p-gonal d-angulations of girth d.
We start by characterizing the generating function of (p, d)-branching mobiles. A
(p, d)-branching mobile is said marked if one of the p corners incident to the special
vertex is marked. Let Mp,d be the class of marked (p, d)-branching mobiles, and let
Mp,d(x) be the GF of this class counted according to the number of non-special black
vertices. Given a mobile inMp,d, we consider the (white) neighbors v1, . . . , vp of the
special vertex s. For i = 1 . . . p the sub-mobiles M1, . . . ,Mri planted at vi (and not
containing s) belong to some classesWα(i,1), . . . ,Wα(i,ri), where d−2+

∑ri
j=1 α(i, j)

is the weight of vi. Moreover, by definition of (p, d)-branching mobiles, the sum of
the weights of v1, . . . , vp is pd− p− d = (d− 2)p+ p− d. This decomposition gives
for all p ≥ d ≥ 3

(5) Mp,d(x) = h
(p)
p−d(W1, . . . ,Wd−2),

where for j ≥ 0 the polynomial h
(p)
j is the generating function of p-tuples of com-

positions of integers i1, . . . , ip with i1 + . . . + ip = j, where wi marks the number

of parts of size i. It is clear that h
(1)
j = hj and that h

(p)
j satisfies:

(6) h
(p)
j (w1, w2, . . .) := [tj ]

1

(1−
∑

i>0 t
iwi)p

.

Observe that in the special case p = d, there is a unique (d, d)-branching mobile,

hence Md,d(x) = 1 (which is coherent with (5) since h
(p)
0 = 1).

We now turn to annular d-angulations. For p ≥ d ≥ 3, we denote by Ap,d

the family of marked p-annular d-angulations of girth d (a boundary vertex is
marked, or equivalently a corner of the boundary face is marked), and we denote
by Np,d the subfamily of those that are non-separated. Let Ap,d(x) and Np,d(x)
be the GF of these classes counted according to the number of non-boundary inner
faces. By Theorem 21, the marked non-separated p-annular d-angulations are in
bijection by Φ+ with the marked (p, d)-branching mobiles (since marking the mobile
is equivalent to marking the p-annular d-angulation on a boundary vertex) for
p > d ≥ 3. Thus, Np,d(x) = Mp,d(x) for all p > d ≥ 3. Moreover, Proposition 23
directly implies:

Ap,d(x) = Mp,d(x)F
′
d(x),

since the series F ′
d(x) (defined in Proposition 24) counts marked d-annular d-

angulations. This relations also holds for p = d since Md,d(x) = 1. We summarize:

Proposition 25 (Counting p-gonal d-angulations of girth d). For p ≥ d ≥ 3, the
generating function Fp,d(x) of p-gonal d-angulations of girth d rooted at a corner
incident to the boundary-face, counted according to the number of non-boundary
faces satisfies

F ′
p,d(x) = h

(p)
p−d(W1, . . . ,Wd−2) · (1 +W0)

d,

where h
(p)
j is defined in (6) and the series W1, . . . ,Wd−2 are specified by (3).

In the bipartite case, d = 2b the expression simplifies to

F ′
2p,2b(x) = h

(2p)
p−b(V1, . . . , Vb−1) · (1 + V0)

2b,

where the series V1, . . . , Vb−1 are specified by (4).

Proof. By definition, a p-annular d-angulation is a p-gonal d-angulation of girth d
with a secondary marked face of degree d. Hence, Fp,d

′(x) = Ap,d(x) = Mp,d(x)F
′
d(x).
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Moreover F ′
d(x) = (1+W0)

d by Proposition 24 and Mp,d(x) = h
(p)
p−d(W1, . . . ,Wd−2)

by (5). �

6.3. Exact-counting formulas for triangulations and quadrangulations.

In the case of triangulations and quadrangulations (d = 3, 4) the system of equations
given by Proposition 25 takes a form amenable to the Lagrange inversion formula.
We thus recover bijectively the counting formulas established by Brown [Bro64,
Bro65] for simple triangulations and quadrangulations with boundary.

Proposition 26 (Counting simple p-gonal triangulations). For p ≥ 3, n ≥ 0,
let tp,n be the number of corner-rooted p-gonal triangulations with n + p vertices
which are simple (i.e., have girth 3) and have the root-corner in the p-gonal face
(no restriction on the root-corner for p = 3). The generating function Tp(x) =∑

n≥0(2n+ p− 2) tp,nx
n satisfies

Tp(x) :=

(
2p− 4

p− 3

)
u2p−3, where u = 1 + xu4.

Consequently, the Lagrange inversion formula gives:

tp,n =
2(2p− 3)!

(p− 1)!(p− 3)!

(4n+ 2p− 5)!

n!(3n+ 2p− 3)!
.

Proof. By the Euler relation, a p-gonal triangulation with n+ p vertices has 2n+ p
faces. Hence Tp(x

2)xp−3 = F ′
p,3(x). By proposition 25,

Fp,3
′(x) =

(
2p− 4

p− 3

)
W p−3

1 (1 +W0)
3 = xp−3

(
2p− 4

p− 3

)
(1 +W0)

2p−3,

where W0,W1 are specified by {W1 = x(1 + W0)
2, W0 = W 2

1 }. Thus, Tp(x
2) =(

2p−4
p−3

)
(1 + W0)

2p−3. Moreover, 1 + W0 = 1 + W 2
1 = 1 + x2(1 + W0)

4, hence

1 +W0(x) = u(x2), where u ≡ u(x) is the series specified by u = 1 + xu4. Thus,
Tp(x) =

(
2p−4
p−3

)
u(x)2p−3. �

Proposition 27 (Counting simple 2p-gonal quadrangulations). For p ≥ 2, n ≥ 0,
let qp,n be the number of corner-rooted 2p-gonal quadrangulations with n+2p vertices
which are simple (i.e., have girth 4) and have the root-corner incident to the 2p-
gonal face (no restriction on the root-corner for p = 2). The generating function
Qp(x) =

∑
n≥0(n+ p− 1)qp,nx

n satisfies

Qp(x) =

(
3p− 3

p− 2

)
u3p−2, where u = 1 + xu3.

Consequently, the Lagrange inversion formula gives:

qp,n =
3(3p− 2)!

(p− 2)!(2p− 1)!

(3n+ 3p− 4)!

n!(2n+ 3p− 2)!
.

Proof. By the Euler relation, a 2p-gonal quadrangulation with n+ 2p vertices has
n+ p faces. Hence Qp(x)x

p−2 = F ′
2p,4(x). By Proposition 25,

F ′
2p,4(x) =

(
3p− 3

p− 2

)
V p−2
1 (1 + V0)

4 = xp−2

(
3p− 3

p− 2

)
(1 + V0)

3p−2,

where V0, V1 are specified by {V1 = x(1+V0)
3, V0 = V1}. Thus, Qp(x) =

(
3p−3
p−2

)
(1+

V0)
3p−2. Moreover, 1+V0 = 1+V1 = 1+x(1+V0)

3, hence 1+V0(x) = u(x), where

u ≡ u(x) is the series specified by u = 1+xu3. Thus, Qp(x) =
(
3p−3
p−2

)
u(x)3p−2. �
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7. Proof that the mappings Φ+, Φ− are bijections

In this section, we prove Theorem 8 thanks to a reduction to a bijection Ψ
described in [Ber07]. In this section, the orientations are non-fractional, and the
mobiles are properly bicolored. The relation between Ψ and the master bijections
Φ+, Φ− involves duality.

Duality. The dual O∗ of an orientation O is obtained by the process represented
in Figure 8(a):

• place a vertex vf of O∗ in each face f of O,
• for each edge e of O having a face f on its left and f ′ on its right, draw a
dual edge e∗ of O∗ oriented from vf to vf ′ across e.

Note that the duality (as defined above) is not an involution (applying duality
twice inverse the direction of every edge). Duality maps vertex-rooted orientations
to face-rooted orientations. It is easy to check that a face-rooted orientation O
is minimal if and only if O∗ is accessible, that is, accessible from the root-vertex.
Similarly, a vertex-rooted orientation O is accessible if and only if O∗ is maximal,

that is, has no clockwise circuit. We denote by Sd and S̃d respectively the set

of orientations which are the image by duality of the sets Od and Õd. Thus, Sd

is the set of vertex-rooted orientations which are accessible, have a root-vertex of
indegree 0, and which are maximal for one of the faces incident to the root-vertex

(it is maximal for each of these faces in this case); see Figure 8(b). The set S̃d is
the subset of Sd made of the orientations such that each of the faces incident to
the root-vertex have counterclockwise degree 1 (only one edge is oriented in coun-
terclockwise direction around these faces).

∗ ∗

(a) (b)

Figure 8. The dual of an orientation.

Partial closure and partial opening.

We now present the bijection Ψ from [Ber07] between corner-rooted maximal ac-
cessible orientations and mobile of excess 1. The presentation of Ψ below is in fact
taken from [BC, Section 7].

Let M be a blossoming mobile with p edges and q outgoing buds (hence excess
δ = p − q). The corresponding fully blossoming mobile M ′ is obtained from M
by inserting ingoing bud (dangling ingoing half-edge) in each of the p corners of
M following an edge in counterclockwise direction around a black vertex. A fully
blossoming mobile is represented in solid lines in Figure 9(b). A counterclockwise
walk around M ′ (with the edges of the mobile M ′ on the left of the walker) sees a
succession of outgoing buds and ingoing buds. Associating an opening parenthesis
to outgoing buds and a closing parenthesis to ingoing buds, one obtains a cyclic
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(b) (c)(a)

Figure 9. The rooted-closure of a mobile of excess δ = 1.

binary word with q opening and p closing parentheses. This yields in turn a partial
matching of the buds (an outgoing bud is matched with the next free ingoing bud
counterclockwise around the mobile), leaving |δ| buds unmatched (the unmatched
buds are ingoing if δ > 0 and outgoing if δ < 0).

The partial closure C of the blossoming mobile M is obtained by forming an
oriented edge out of each matched pair of buds. Clearly the oriented edges can be
formed in a planar way, and this process is uniquely defined (recall that all our
maps are on the sphere). The partial closure is represented in Figure 9(a)-(b). We
consider the partial closure C as a planar map with two types of edges (those of the
mobile, which are non-oriented, and the new formed edges, which are oriented) and
|δ| buds which are all incident to the same face, which we take to be the root-face
of C. Note that, if δ ≥ 0, there are δ white corners incident to the root-face of
C, because initially the number of such corners is equal to the number of edges of
the mobile, and then each matched pair of buds decreases this number by 1. These
corners, which stay incident to the root-face throughout the partial closure, are
called exposed white corners.

Let O be an oriented map. The partial opening of O is the map C with vertices
colored black or white and with two types of edges (oriented and non-oriented)
obtained as follows.

• Color in black the vertices of O and insert a white vertex in each face of O.
• Around each vertex v of O draw a non-oriented edge from any corner c
which follows an ingoing edge in clockwise order around v to the white
vertex in the face containing c.

If O is corner-rooted, then the bud indicating the root-corner is interpreted as an
ingoing half-edge and gives rise to an edge of C. For instance, the partial opening
of the corner-rooted map in Figure 9(c) is the map in Figure 9(b).

The rooted-, positive- and negative- openings and closures

We now recall and extend the results given in [Ber07] about closures and openings.
Observe that the partial closure C of a 1-mobile M has one dangling ingoing bud.
The rooted-closure of M , denoted Ψ(M), is obtained from the partial closure C by
erasing every white vertex and every edge of the mobile; see Figure 9(b)-(c). The
embedded graph Ψ(M) is always connected (hence a map) as explained below and
the dangling ingoing bud is considered as indicating the root-corner of Ψ(M). The
rooted-opening of a corner-rooted orientation O is obtained from its partial opening
C by erasing all the ingoing half-edges of O (this leaves only the non-oriented edges



26 O. BERNARDI AND É. FUSY

of C and some outgoing buds incident to black vertices). The following result was
proved in [Ber07] (see also [BC]).

Theorem 28. The rooted-closure Ψ is a bijection between 1-mobiles and corner-
rooted maximal accessible orientations. The rooted-opening is the inverse mapping.

We now present the mappings Ψ+ and Ψ− defined respectively on blossoming
mobiles of positive and negative excess; see Figure 10.

Definition 29. Let M be a blossoming mobile of excess δ 6= 0 and let C be its
partial closure.

• If δ > 0, then C has δ ingoing buds (incident to the root-face). The positive-
closure of M , denoted Ψ+(M), is obtained from C by first creating a root-
vertex v of Ψ+(M) in the root-face of C and connecting it to each ingoing
bud (buds thus become part of an edge of O oriented away from v); second
erasing the edges and white vertices of the mobile.

• If δ < 0, then C has δ outgoing buds (incident to the root-face). The
negative-closure of M , denoted Ψ−(M), is obtained from C by first creating
a root-vertex v of Ψ−(M) in the root-face of C and connecting it to each
outgoing bud and then reorienting these edges (buds thus become part of an
edge of Ψ−(M) oriented away from v); second erasing the edges and white
vertices of the mobile.

(a)

C

v

Φ+(M)

(b)

v

C Φ
−
(M)

Figure 10. (a) Positive-closure Ψ+. (b) Negative-closure Ψ−.

Theorem 30. Let d be a positive integer.

• The positive-closure Ψ+ is a bijection between the set of d-mobiles and
the set Sd of orientations. Moreover, the mapping defined on Od by first
applying duality (thereby obtaining an orientation in Sd) and then applying
the inverse mapping Ψ−1

+ is the mapping Φ+ defined in Definition 7. Thus,
Φ+ is a bijection between Od and the set of d-mobiles.

• The negative-closure Ψ− is a bijection between the set of (−d)-mobiles and

the subset S̃d of orientations. Moreover, the mapping defined on Õd by first

applying duality (thereby obtaining an orientation in S̃d) and then applying
the inverse mapping Ψ−1

− is the mapping Φ− defined in Definition 7. Thus,

Φ+ is a bijection between Õd and the set of (−d)-mobiles.

Theorem 30 clearly implies Theorem 8 (indeed the correspondence of parameters
mentioned in Theorem 8 is obvious from the definitions). It only remains to prove
Theorem 30. Before doing so, we mention that a result can be stated for 0-mobiles:
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(a) (b) (c)

Figure 11. Formulation of the positive-closure Ψ+ by reduction
to the rooted-closure Ψ. Figure (a) shows generically the partial
closure of a d-mobile for d = 4. In (b) one creates a black vertex b
with d outgoing buds, and connects it to an exposed white corner.
In (c) one performs the remaining matchings of buds to complete
the positive-closure.

b

C Ψ−(M)C
′

θ Ψ+

Figure 12. Formulation of the negative-closure Ψ−, by reduction
to the positive-closure Ψ+.

the 0-closure obtained by performing the partial closure and then erasing the edges
of the mobile is a bijection between 0-mobiles and the set

⋃
d∈N

Sd.

Proof. •We first treat the case of the positive-closure Ψ+. We begin by showing
that the positive-closure of a d-mobile M is in Sd. Let C be be partial closure of M
and let O = Ψ+(M) be its positive-closure. As observed above, the mobile M has
d > 0 exposed white corners. Let M ′ be the blossoming mobile obtained from M
by creating a new black vertex b, joining b to an exposed white corner, and adding d
outgoing buds to b; see Figure 11. The excess of M ′ is 1, hence by Theorem 28 the
rooted-closure O′ = Ψ(M ′) is maximal and accessible. Moreover, it is easily seen
(Figure 11) that b is the root-vertex of O′ (because the ingoing bud incident to b is
not matched during the partial closure) and has indegree 0. Thus, the orientation
O is in Sd.

We also make the following observation (useful for the negative-closure):

Fact. the positive closure O = Ψ+(M) is in S̃d if and only if each of the exposed
white corners of M is incident to a (white) leaf of M .
Indeed, a white vertex wf of M has an exposed white corner if and only if it
corresponds to a face f of O incident to the root-vertex b. Moreover, the clockwise
degree of f is (as always) the degree of wf .

We now prove that the positive-closure is a bijection by defining the inverse
mapping. Let O be a vertex-rooted orientation in Sd. We define the positive-opening
of O, as the embedded graph with buds M obtained by applying the partial opening
of O, and then erasing every ingoing half-edge of O as well as the root-vertex b (and
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the incident outgoing half-edges). In order to prove that M is a blossoming mobile
(i.e. a tree with buds), we consider a minimal accessible orientation O′ obtained
from O by choosing a root-corner for O among the corners incident to the root-
vertex b. By Theorem 28, the rooted-opening of O′ gives a blossoming mobile M ′.
It is clear from definitions that M is obtained from M ′ by erasing the root-vertex b.
Moreover, b is a leaf ofM ′ (since b is incident to no ingoing half-edge except the bud
indicating the root-corner of O), hence M is a mobile. Moreover, since the rooted-
closure and rooted-opening are inverse bijections, it is clear that positive-closure
and positive-opening are inverse bijections.

Lastly, it is clear from the definitions that taking an orientation O in Od, and
applying the positive-opening Ψ−1

+ to the dual orientation O∗ gives the mobile
Φ+(O) as defined in Definition 7.

•We now treat the case of the negative-closure Ψ−. Let M be a (−d)-mobile.
We denote by θ(M) the d-mobile obtained from M by transforming each of its d
unmatched outgoing buds into an edge connected to a new white leaf. It is clear
(Figure 12) that the positive-closure of θ(M) is equal to the negative-closure of M ,
hence Ψ− = Ψ+ ◦ θ. Moreover, θ is clearly a bijection between the set of (−d)-
mobiles and the set of d-mobiles such that every exposed white corner belongs to
a leaf (the inverse mapping θ−1 replaces each edge incident to an exposed leaf by
an outgoing bud). By the fact underlined above, this shows that Ψ− = Ψ+ ◦ θ is a

bijection between the set of (−d)-mobiles and the set S̃d.
Lastly, by denoting ∗ the duality mapping, one gets from the above Ψ−1

− ◦ ∗ =

θ−1 ◦ Ψ−1
+ ◦ ∗ = θ−1 ◦ Φ+. In other words, taking an orientation O in Õd, and

applying the negative-opening Ψ−1
− to O∗, is the same as applying the mapping

Φ+ and then replacing each edge of the mobile incident to an outer vertex by an
outgoing bud. By definition, this is the same as applying the mapping Φ− to O.
This completes the proof of Theorem 30 and of Theorem 8. �

8. Additional remarks

We have presented a general bijective strategy for planar maps that relies on
certain orientations with no counterclockwise circuit. We have applied the ap-
proach to an infinite collection (Cd,p)d≥3,p≥d of families planar maps, where Cd,p
denotes the set of d-angulations of girth d with a boundary of size p. For this pur-
pose we have introduced the d/(d−2)-orientations on d-angulations of girth d. In
future work we shall further explore and exploit the properties of these orientations:

d/(d−2)-orientations and Schnyder decompositions. Schnyder showed in [Sch89]
that the 3-orientations of triangulations (case d = 3) can be given more structure by
adding a coloring of the edges. More precisely, for each 3-orientation, it is possible
to color the edges with three colors in such a way that each color defines a spanning
tree of the triangulation oriented away from the outer vertices. Moreover, there is
a precise rule for the crossing of the 3 spanning-trees making the correspondence
between the orientations and the colorings bijective. As detailed in an article to
come [BFc], a similar property holds for any d ≥ 3. More precisely, it is shown
there that given an d/(d−2)-orientation of a d-angulation G (seen as an orientation
of the graph (d−2) ·G) it is possible to color the edges of (d−2) ·G with d colors, in
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such a way that each color is a spanning tree oriented away from the outer vertices.
Moreover, there is a precise rule for the crossing of the d spanning-trees making the
correspondence between the fractional-orientations and the colorings bijective.

Extension of the bijections to planar maps of fixed girth. For each integer
d ≥ 3, we have presented a bijection for the class of d-angulations of girth d. In
the articles [BFa, BFb] we show that this bijection can be extended to the class
Gd of all maps of girth d. The maps in Gd have faces of degree at least d, and our
bijections allows for a counting of the maps in Cd according to the number of faces
of each degree. The strategy in the articles [BFa, BFb] parallel the one initiated
here: we characterize the maps in Gd by certain (generalized) orientations and then
obtain a bijection by specialization of the master bijections Φ−,Φ+. The bijection
obtained for Gd associates to any map of girth d a mobile such that an inner face
of degree i in the map corresponds to a black vertex of degree i in the mobile.
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