
HAL Id: hal-00498590
https://hal.science/hal-00498590

Submitted on 7 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiments with Fractal on Modular Reflection
Jérémy Buisson, Fabien Dagnat

To cite this version:
Jérémy Buisson, Fabien Dagnat. Experiments with Fractal on Modular Reflection. Sixth International
Conference on Software Engineering Research, Management and Applications (SERA), Aug 2008,
Prague, Czech Republic. pp.179, �10.1109/SERA.2008.19�. �hal-00498590�

https://hal.science/hal-00498590
https://hal.archives-ouvertes.fr


Experiments with Fractal on modular reflection

Jérémy Buisson and Fabien Dagnat

TELECOM Bretagne / Université Européenne de Bretagne

Technopôle Brest-Iroise – CS83818

29238 Brest Cedex 3, France

Email: first.last@telecom-bretagne.eu

Abstract

In most reflective systems, the model of reflection

objects often mirrors (a part of) the metamodel of

the system. As a result, reflection is commonly tightly

bound to the rest of the system. In this paper, we

investigate the loosening of that coupling.

With the rise of domain-specific modeling the need

for separation of concerns and reuse when designing

metamodels become critical. Therefore, we advocate

the use of general design patterns abstracting the

details of modeling languages when working on cross-

cuting concerns (such as reflection) of a metamodel.

Once the abstract patterns for reflection are built, they

are mapped onto concrete modeling languages thanks

to model engineering tools. In this paper, we apply this

approach to the Fractal component model.

Following this process, reflection mechanisms built

at the abstract level are straightforwardly reused and

the resulting reflection system gains modularity.

1. Introduction

In model-driven approaches for design and engi-

neering, one of the trends advocates for the design of

many domain-specific modeling languages [1], [2]. In

comparison to a single general-purpose language, this

practice allows one to preserve the ontologies used

by domain experts. Parts of the semantics of those

ontologies can be hardcoded in the domain-specific

tools supporting the engineering process, capitalizing

on the experience of domain experts.

One counterpart of this approach is that designing

metamodels becomes quite frequent. Similarly to what

happens in applications, metamodels exhibit several

concerns. Some of them appear to crosscut applica-

tion domains and must be included in many domain-

specific languages. This is for instance the case of

hierarchical decomposition, assembling facilities and

reflection. Despite new technologies help separate

concerns in metamodels [3], [4], [5], those concerns

are commonly hardwired within domain-specific meta-

models. Worse, they are often tightly entangled.

In this paper, we investigate how to raise modularity

of metamodels, considering the example of reflection.

To do so, we propose a collection of metamodel pat-

terns for architectural units, composite structures and

assemblies. The patterns are used to build reflection at

an abstract level. Namely, they abstract a subset of the

capabilities of modeling languages. When designing

reflection, only the ones abstracting the desired capa-

bilities are integrated in order to target specifically the

items that are required to be reflected. Mixed together,

the patterns give an indication of the metadata that

are required by reflection mechanisms. Futhermore,

some of the mechanisms can even be implemented

at the abstract level, allowing for reuse across several

modeling languages. In this paper, we apply a slightly

different process in order to reimplement an abstract

reflective system on top of the Fractal [6] component

model. This experiment still helps having a better

understanding of how the proposed patterns interact

when designing modeling languages. It also contributes

to make the model of Fractal reflection clearer.

The rest of the paper is organized as follows. Sec-

tion 2 depicts the metamodel patterns for building the

abstract reflective system. Section 3 presents Fractal

and a metamodel of that component model. Section 4

details how the above process is applied to rebuild

reflection on top of Fractal. Section 5 compares the

approach with related works. Section 6 gives some

indication of ongoing and future work.

2. Metamodel patterns for an abstract re-

flective system

The general idea underlying the proposed approach

consists in designing the reflective system at an ab-



UnitImplementation Type

Instance

∗

∗∗

Figure 1. Architectural units and runtime entities.

Instance

CompositeInstance ContentInstance
∗ ∗

Figure 2. Hierarchical (composite) entities.

stract level, in an independent manner with regard

to any concrete modeling language. In so doing, the

reflective system can be reused when new domain-

specific modeling languages are designed. In addition,

details of modeling languages are hidden behind the

reflective system when applications are reconfigured.

Thus reconfiguration languages and protocols designed

for that abstract reflective system are straightforwardly

inherited in any concrete modeling language.

To design a reflective system, some knowledge is

required about the entities defined by the concrete lan-

guage. For instance, considering a component model-

ing language, the design of a reflective system requires

to know that components are runtime entities and that

bindings between components can be rearranged. Talk-

ing about components or whatever else is secondary,

as well as the way the modeling language reifies

components and bindings. Indeed, in order to identify

the operations of the reflective system, it is sufficient to

know which runtime entities can be created, destructed

and connected together.

Merging the abstract reflective system with the con-

crete modeling language implies mapping reflective

operations onto the concrete concepts. In component

modeling languages, components are runtime entities.

Therefore, the create and destruct operations of the

reflective system would be merged with the concept

of component. Obviously, that merge action makes

extensive use of the properties of the concepts that have

been identified in each concern. In addition, concept

reification in the concrete modeling language should

not anticipate the design of the reflective system. For

instance, reifying attributes, i.e. breaking encapsulation

in order to expose some parts of the internal state, is

usually specific to reflection. The scope of reification is

typically connected to the operations of the reflective

system, as applying an operation to a concept often

requires that concept to be reified. Again, the choice of

reifying concepts results from the merge action of the

reflective system with the concrete modeling language.

2.1. Metamodel patterns

In order to apply the above methodology, we first

define a collection of metamodels that describe the

properties the abstract reflective system focuses on.

connection

port

role

block

connector

Figure 3. Block and connector units.

Similarly to design patterns in object oriented model-

ing [7], they give some solutions to model some prop-

erties that are common to several modeling languages.

In the following patterns, in order to ease the under-

standing, we adopt a common terminology whatever

the modeled property. It is defined when modeling

the basic concepts of architectural units and runtime

entities in Figure 1. In this pattern, the central concept

is the notion of unit, which denotes what models are

made of1. In object oriented modeling, the concept of

unit would alias the concept of class. Each unit has a

type and is associated with some implementations. A

unit is represented at runtime by instances that model

a state associated with an implementation. Notice that,

beyond the structural aspect described in Figure 1,

associations are constrained. For instance, every unit

implementation must conform to the type of the unit.

Figure 2 models hierarchical runtime entities. This is

a slight variation of the composite pattern found in [7].

The latter defines a recursive tree structure, while

the former only introduces the concept of composite

instance, which has some content. Nevertheless, like

the other patterns, it should not be thought indepen-

dently of any context. In particular, when merging

with a concrete modeling language, some concrete

concept can be said to be both content and composite

instance, resulting in recursive decomposition. Another

specificity of the pattern is the fact that any content

instance can be shared by several composite instances.

The latest pattern concerns the assembling capability

of instances. This pattern is based on the distinction

between connectors and blocks. This distinction is

a standard technique [8], [9] that allows software

architects to model explicit communication objects.

1. Several kinds of unit may coexist.



Instance

Unit

Type

∗

Role

ConnectorInstance

Connector

ConnectorType

RoleType

∗

∗

∗

Port

BlockInstance

Block

BlockType

PortType

∗

∗

∗

∗ ∗

Connection

Figure 4. Block/connector design pattern for as-

sembly.

Figure 3 illustrates these concepts using a very simple

assembly and defining the associated concepts. The

ellipse in the middle models a connector that connects

2 (rectangle) blocks. Connectors reify the semantics of

the communications and the connection rules of legal

assemblies (e.g. relations over the types associated to

the connected ports). Ports and roles are the endpoints

through which blocks and connectors interact. Con-

nections, here drawn as lines, denote which port of

blocks plays each role of the connector. Generalizing

bindings, connectors can be of arbitrary complexity,

possibly having more than 2 roles.

Both concepts (connector and block) specialize the

notion of unit. Together, they are used to describe

software architectures (here called assemblies). As rep-

resented in Figure 4, connectors and blocks introduce

some specificities with regard to type and instance. At

the level of instances, roles (resp. ports) are introduced

in order to reify the interaction points of connectors

(resp. blocks). They are specified in the types of the

connectors (resp. blocks). The association modeling

the assembling capability between roles and ports is

reified by the concept of connection. This association

is constrained by a typing rule.

2.2. Abstract reflective system

Relying on the concepts of the previous patterns,

Figure 5 shows the metamodel for the abstract reflec-

tive system. This metamodel is structured in two parts.

An observability facility is first introduced through

observable instances, which expose a collection of

attributes. Attributes denote the observable part of the

state. Their list and types are specified in the type

of the unit. Attributes can also be used to model the

exposure of connections and composite content. On top

of observability, a reconfigurability facility is added. At

the level of the unit, it allows to create and destruct

instances. At the level of instances, it allows to change

the implementation. At the level of attributes, it allows

to modify the state of instances. At the level of the

type, it allows to change the collection of attributes,

roles and ports. Last, at the level of the system, it

allows to load and unload units dynamically.

2.3. Discussion

The patterns are not supposed to be isolated one

from the others. They would rather be considered in

combination with one another. For instance, combining

composite and content instance as a “component”

concept assumes a recursive hierarchical component

model. Combining connector and composite instance

allows one to model some kind of “composite binding”

concept. Combining several concepts into concrete

entities makes it possible to give a flexible description

of the actual properties of concrete languages.

The proposed metamodel for the abstract reflective

system assumes several design choices. The most im-

portant one is the set of operations and the concepts

to which they apply. The metamodel could have been

made more complete if for instance observable units

and types were added. This would have allowed the

introspection of those concepts. Therefore, the given

abstract reflective system is only one among the many

possible ones. Several reflective systems could even

coexist in a single concrete modeling language. That

way, each concrete concept is equipped with only its

own capabilities, independently of the other concepts.

The approach thus provides high flexibility in order to

make reflective capabilities fit requirements.

Interestingly, the metamodel of Figure 5 does not ex-

plicitly use the metamodels of assembly and hierarchy.

Indeed, we have chosen to rely on the general attribute

framework in order to expose connections and content.

This is a design choice. Connections and content

could have been exposed through specific methods

as well. The chosen design allows to add seamlessly

new observable and reconfigurable properties, such

as concurrency and time constraints. Nevertheless, it

reports most of the difficulty on the implementation

of attributes. Furthermore, interactions between the

concerns do not appear explicitly. Making content and

connections appear in the type as attribute specifiers

may in addition prevent substituability and reuse.

3. The Fractal component model

Fractal [6] is a component model that is intended to

structure applications at runtime. Fractal components



Unit Type

Instance

∗

ReconfigurableSystem

loadUnit

unloadUnit

ReconfigurableInstance

setImplementation

ReconfigurableUnit

createInstance

destructInstance

loadImplementation

unloadImplementation

ReconfigurableType

addAttributeSpecifier

removeAttributeSpecifier

ReconfigurableAttribute

setValue
ObservableInstance

AttributeSpecifier

Attribute

AttributeType

∗ ∗

∗

Figure 5. Metamodel for observability and reconfigurability.

are runtime entities that are bound to one another. Each

component is made of two parts: a content implements

the business logic thanks to explicit dependencies;

a controller encapsulates the content and provides

technical services for component management.

Fractal is a recursively hierarchical model. Each

component can contain an assembly of subcomponents.

Futhermore, each component can be contained by

several components. Usually, two kinds of components

are distinguished in hierarchical architectures: primi-

tive components, the leaves of the hierarchy, do not

expose their subcomponents; while composite compo-

nents expose their subcomponents. It is also commonly

assumed that the content of primitive components

consists in one behavioral entity of some programming

language such as Java or C; and that only composite

components can truly contain Fractal components.

In order to interact, components have interfaces.

Bindings in Fractal are largely inspired from the client-

server and object models. Each binding connect one

client interface to one server interface by forwarding

method calls. To do so, Fractal defines a typing rule for

legal connection of interfaces. Bindings are not reified.

In addition, Fractal introduces the concept of compos-

ite binding as a collection of mediating components

and bindings. As this concept has no concrete existence

in Fractal, we do not consider it in this paper. We

do not consider either collection interface cardinality,

which is mostly a mechanism for spawning similar

interfaces on-the-fly. Nevertheless, these features are

typical applications of the connector concept of our

metamodel pattern for assemblies.

Fractal supports reflection natively. Standard con-

trollers give some means to introspect the architecture

at runtime. One can list the interfaces of a component,

retrieve the component owning an interface, list the

subcomponents of a composite component, list the

components that contain a component, get the server

interface connected to a client one. Standard controllers

also allow to add a component to and remove it from a

Component

Attribute

Behavior

Controller
ComponentType

Interface InterfaceType

ClientInterface ServerInterface

∗ subcomponents
∗

∗

0..1

∗ ∗

∗ ∗

Figure 6. One metamodel of Fractal.

composite component, and to connect and disconnect

interfaces. In addition, Fractal includes a framework

such that components can reflect some attributes.

Fractal has some other features that are not relevant

in this paper, such as the management of components’

life cycle. Readers may refer to [6] for a more complete

description.

Metamodels of Fractal have been rarely proposed.

Figure 6 depicts the one that is used in the rest of the

paper. This metamodel simply formalizes the above

description of Fractal. In comparison to other propos-

als, this one focuses much more on the component

model. For instance, the one of Tibermacine [10] is

much closer to Fractal ADL [11] than to Fractal itself.

4. Mapping patterns onto Fractal

Given the patterns of Section 2 and the metamodel

of Fractal, it is possible to implement the described

abstract reflective system for the Fractal component

model. To do so, the properties modeled in Section 2

have to be mapped onto the concrete concepts of

Fractal. The design of the patterns and the one of

the Fractal metamodel are somewhat different. For

instance, the former one reifies connectors while Frac-

tal does not; the Fractal metamodel hardcodes the

recursivity of the hierarchical decomposition while

the patterns do not; as Fractal components are run-



time entities (i.e. instances), no Fractal entity is the

counterpart of the “unit” concept. These differences

do not matter at the design level. Nevertheless, they

impact on the implementation of the reflective system.

Missing concepts may be built ex nihilo as additions

to the concrete language, while the other concepts are

combined in order to reflect the actual properties of

the concrete language. The following gives the results

of that process when it is applied to Fractal.

The mapping between Fractal and the patterns is

the following one. Regarding the basic metamodel

(Figure 1), a Fractal component is an instance; the

component’s type is a type; and its behavior is an im-

plementation. The “unit” concept is added to aggregate

implementations with a type and a collection of be-

longing instances. Regarding the assembly metamodel

(Figure 4), a Fractal component is a block instance;

its type is a block type; an interface is a port and an

interface type is a port type. As already stated, Fractal

has no counterpart for connectors and related concepts.

Actually, the component model implicitly defines one

single connector for simple client-server connections,

whose instances are the associations between client and

server interfaces. Instead of adding a generic “connec-

tor” concept, an alternative design would consist in

simply defining the only specific connector relevant

for Fractal, depending on the capabilities we require

from the reflective system. Regarding the hierarchy

metamodel (Figure 2), a Fractal component is a com-

posite and a content instance. The “implementation”

concept is specialized such that it denotes assemblies.

Last, regarding the metamodel of the abstract reflective

system (Figure 5), a component is an observable and

a reconfigurable instance; the component’s type is

reconfigurable and Fractal attributes are observable

and reconfigurable. In addition, the “unit” concept is

extended to become a component factory able to create

and destroy components.

Once the mapping is completed, the concrete re-

flective system relies only on the terminology and the

concepts defined in Section 2. The concrete language

of Fractal is abstracted and enriched when components

are manipulated. Consequently, programs using such

a reflective system need not know about the Fractal

component model.

4.1. Implementation considerations

Mirror-based reflection [12] is a natural strategy

for the implementation of a reflective system. The

general idea underneath mirrors consists in separating

the implementation of the reflective system from the

implementation of the (modeling) language. As the

Component ComponentMirror

Instance

BlockInstance

ContentInstance

CompositeInstance

ObservableInstance

ReconfigurableInstance

Fractal

Reflective system

Figure 7. Mirror-based reflection for Fractal.

above methodology enforces the separation at the level

of the design, it is natural to preserve that separation

at the level of the implementation. Nevertheless, as

noticed in [12], a minimal kernel of reflection must

be integrated into the implementation of the concrete

modeling language. In our case, that kernel is inherited

from the native reflective capabilities of Fractal. Re-

sulting from the above mapping and from the adoption

of mirror-based reflection, the implementation of the

reflective system looks like the diagram of Figure 7.

Each mirror object is simply said to inherit the prop-

erties of the generic patterns.

Using mirror-based reflection rises the need for

synchronizing changes in the Fractal components with

the changes in their mirrors. That synchronization is

implemented by a propagation mechanism in both

directions. On one side, mirrors invoke the native

reflective operations of Fractal. On the other side,

Fractal controllers must be enhanced to notify the

mirrors of any change. Further discussion of the causal

connection between Fractal components and their mir-

rors is beyond the scope of this paper.

Fractal and the reflective system are structured dif-

ferently. Consequently, associations between Fractal

runtime entities and mirrors are not necessarily one-to-

one associations. One example appears when reifying

connector instances which have no Fractal counterpart.

The implementation of the reflective system requires

the mirrors of connector instances to be associated to

all of the connected Fractal components.

In addition, the association between runtime entities

and mirrors can be weakened such that one can exist

without the other. This would allow to drop mirrors

during normal execution, and to connect mirrors only

when they are required to perform reflection opera-

tions. Mirrors can either persist in a repository, or be

dynamically instantiated on demand. In our prototype,

the latter facility is implemented thanks to native Frac-



tal introspection facilities, though it could have resulted

from interactions with the development environment.

Mirrors are not required to reify the whole appli-

cation. They would rather focus on the components

involved in reflection operations. Therefore, a specific

view of the application is provided for the design

of reconfigurations. This view focuses on points of

interest, and it is presented thanks to the specific

language defined by the abstract reflective system.

Some concepts of the abstract reflective system

of Section 2 are missing in the Fractal component

model. For instance, Fractal does not model connec-

tors. This does not mean that those concepts have

to be implemented in order to extend the component

model. Indeed, applications are still modeled thanks

to regular Fractal; connectors are only used when ap-

plying reflection operations. Therefore, it is sufficient

to implement a minimal system for a specific Fractal

connector, whose instances mirror the Fractal bindings.

Operations applied to those instances simply reflect as

method calls to the standard Fractal controllers.

4.2. Intrusiveness

Regarding the metamodel, the described approach is

not intrusive at all. The two metamodels, Fractal and

abstract reflective system, are independent. They define

two distinct languages for modeling applications. The

first one, Fractal, is used by designers and developers

for operational purpose. The second one, the abstract

reflective system, is used to design reconfigurations.

Neither the component model nor the programming

model of Fractal are changed.

At the level of the implementation, Fractal needs

to be enhanced even if it natively supports reflection.

Those modifications implement an automatic synchro-

nization scheme of the running application with its

mirrors in the abstract reflective system. New features

such as the concept of connector lie outside the Fractal

implementation. If the choice was made to make the

synchronization explicit, it would not have been re-

quired to update the Fractal implementation. If Fractal

were not natively reflective, larger modifications would

have been required in order to integrate some minimal

support for reflection.

5. Related works

5.1. Reflective systems

Mirror-based reflection [12] is an implementation

strategy that consists in separating the reflective system

from the implementation of the modeling concepts.

Bracha and Ungar advocate for designing the reflective

system in tandem with the programming language. The

size of the reflective API is then considered as a clue of

excessive complexity of the designed language. Even

if this usage must be acknowledged, it should not be

decisive for the design of reflective systems.

In addition, Bracha and Ungar [12] propose that

several reflective systems coexist in order to reflect

both the virtual machine language and the high-level

programming languages. In this paper, we propose to

go one step further as we propose to design a specific

language for the reflective system. Application mod-

els are then automatically mapped onto that specific

language.

Lorenz and Vlissides [13] propose to abstract the

interfaces of the reflective system. This idea mainly

aims at reducing the coupling between reflective sys-

tems and their clients. Our work rather focus on

a methodology for the design of reflective systems.

Working at the metamodel level, it implicitly retains

the idea of defining an abstract interface for the re-

flective system and enforces the separation with the

modeling language.

In Fractal [6], the native reflective system is in-

tegrated within component controllers. It provides

operations to manipulate at runtime the abstractions

introduced by the component model. Despite different

implementation strategies, most of the other reflective

systems are likewise integrated with their respective

programming or modeling language (OpenCOM [14],

Java [15]), or designed specifically for a particular

language (SOUL [16]). Consequently, techniques such

as making components quiescent [17] (or similar prop-

erties) can hardly be reused “off the shelf”, even if they

implement orthogonal concerns.

5.2. Separation of concerns in metamodels

The methodology presented in this paper strongly

relies on separating concerns in model engineering. On

top of metamodelization languages and tools such as

MOF, Kermeta [2] and ATL [18], some projects have

appeared to help the modularization of models and

metamodels. Some of them may support the method-

ology that is depicted in this paper.

Theme/UML [19], [20] and its extension

KerTheme [4] transpose the ideas of aspect oriented

programming [21] to model engineering. Those

projects give a mean to model aspects at the same

level as objects and classes. The considered models

are made of an executable class diagram associated

with some sequence diagrams. Join points and advice

blocks target those two diagrams.



Muller [3] defines the concept of parameterized

model. Parameters consist in a pattern model, which

can be matched against a base model. In order to

compose the parameterized model with a base model,

parameters are substituted by some elements of the

base model that match the pattern. The resulting model

is merged into the base model.

In comparison to KerTheme, Muller proposes that

effective parameters are given explicitly, while aspects

advocate for matching automatically the join points.

Muller focuses on structural models, while KerTheme

considers behaviors.

Aspect oriented programming and templates have

proven useful to express object oriented design pat-

terns. We can therefore expect them to be helpful when

designing and assembling the patterns of Section 2.

France et al. [5], [22] propose a generic model

composition framework. The framework distingues the

selection of elements and the merge of matching

elements. This model composition operator seems to

fit the mapping phase of the abstract reflective system

onto the concrete modeling language of Section 4. That

mapping is actually a selection of matching elements.

In addition, the methodology underlying the work

of France et al. [22] is similar to the one we propose

in this paper. Indeed, France et al. propose that their

generic composition framework is merged into a con-

crete metamodel thanks to some composition strategy.

The composition strategy gives the list of composable

elements and the merge operation, in a similar way we

indicate the list of reflected elements and the reflection

operations.

In the work of France et al., the composition frame-

work has a secondary role as soon as it is merged into

the composable metamodel. Unlike France et al., we

give the abstract reflective system the central place.

Specifically, details of the concrete modeling language

shall be abstracted when reconfigurations are per-

formed. That way, reconfigurations might be expressed

independently of the concrete modeling language.

6. Conclusion and future works

In this paper, we have described an approach that

revisits how to build reflective systems. It has been

experimented with the Fractal component model.

With regard to traditional methods, this approach

abstracts from any concrete modeling or programming

language. The proposed approach fits well the context

of domain-specific modeling languages, as it discour-

ages the common practice consisting in designing

reflective systems specifically to each language. In fact,

language implementers still have to design a reflective

kernel. But that minimal kernel needs only provide

manipulation primitives, while high level operations

are outsourced in the external reflective system. In

addition, the coupling between reflective system clients

and concrete languages is completely removed. There-

fore, mechanisms implemented at the abstract level

can be reused whatever the concrete language is. Last,

the approach gives a mean to describe the reflective

capabilities of existing systems.

Even if we focus in this paper on reflective sys-

tems, the described approach applies to several other

fonctionalities. France et al. [22] follow a similar

method when they design their generic framework for

static composition of model elements. One could also

envision to use the same technique for distribution,

deployment and temporal constraints. All those func-

tionalities have in common to cut across the modeling

languages.

Currently, the proposed approach is manual. Com-

bining metamodel patterns into the abstract reflective

system, mapping the latter onto a concrete language,

identifying missing concepts: everything is done by

hand. The only exception is the abstraction of the

concrete language during reconfigurations, which re-

sults from the mirror-based implementation strategy.

In our ongoing work, we are considering the use of

existing model engineering tools in order to automate

(or at least verify) the process. We are particularly

interested in composition operators and aspect-oriented

modeling, which seem to be good candidates to support

the separation of the reflection concern.

The same methodology is currently applied to other

concrete languages. In order to ensure some kind

of completeness of the abstract reflective system,

we consider languages outside component and ob-

ject paradigms such as functionnal or synchronous

languages. Furthermore, we are working on systems

with no built-in reflective support, where the process

presented in this paper becomes more complex as the

reflection concern has to be implemented from scratch.

We study in addition how to enrich that systems at

the abstract level with properties such as temporal

constraints. Our long-term goal is to target distributed

real-time systems.

Finally, we are beginning work to build a tool

to specify reconfiguration of a system based on its

model. Switching from a patch approach (where the

reconfiguration must be programmed) to an abstract

specification is needed in systems with very complex

architecture, especially when the runtime architecture

does not meet the design time one. In this context, the

presented approach seems to be a good base to make

this tool generic with respect to the modeling language.



Acknowledgement

This work has been funded by the French ministry

of research through the SPaCIFY consortium (ANR 06

TLOG 27).

References

[1] G. Nordstrom, J. Sztipanovits, G. Karsai, and
A. Ledeczi, “Metamodeling: rapid design and evolution
of domain-specific modeling environments,” in Confer-
ence and Workshop on Engineering of Computer-Based
Systems, Nashville, USA, Mar. 1999, pp. 68–74.

[2] P.-A. Muller, F. Fleury, D. Vojtisek, Z. Drey, D. Pollet,
F. Fondement, P. Studer, and J.-M. Jézéquel, “On ex-
ecutable meta-languages applied to model transforma-
tions,” in Model Transformations In Pratice Workshop,
Montego Bay, Jamaica, Oct. 2005.

[3] A. Muller, “Reusing functional aspects: from composi-
tion to parameterization,” in Aspect-Oriented Modeling
Workshop, Lisbon, Portugal, Oct. 2004.

[4] O. Barais, J. Klein, B. Baudry, A. Jackson, and
S. Clarke, “Composing multi-view aspect models,” in
International Conference on Composition-Based Soft-
ware Systems, Madrid, Spain, Feb. 2008, to appear.

[5] R. France, F. Fleurey, R. Reddy, B. Baudry, and
S. Ghosh, “Providing support for model composition
in metamodels,” in International Enterprise Distributed
Object Computing Conference, Annapolis, USA, Oct.
2007, pp. 253–266.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and
J.-B. Stefani, “The Fractal component model and its
support in Java,” Software: Practice and Experience,
vol. 36, no. 11-12, pp. 1257–1284, Sep. 2006, spec.
issue on experiences with auto-adaptive and reconfig-
urable systems.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-oriented
software, ser. Addison-Wesley professional computing
series. Addison-Wesley, 1995.

[8] R. Allen and D. Garlan, “A formal basis for archi-
tectural connection,” ACM Transactions on Software
Engineering and Methodology, vol. 6, no. 3, pp. 213–
249, Jul. 1997.

[9] S. Matougui and A. Beugnard, “How to implement
software connectors? a reusable, abstract and adaptable
proposal,” in Distributed Applications and Interopera-
ble Systems, ser. LNCS, vol. 3543, Athens, Greece, Jun.
2005, pp. 83–94.

[10] C. Tibermacine, “Contractualisation de l’évolution ar-
chitecturale à base de composants: une approche pour
la préservation de la qualité,” Ph.D. dissertation, Uni-
versity of South Brittany, Oct. 2006, in French.

[11] M. Leclercq, A. E. Ozcan, V. Quéma, and J.-B. Stefani,
“Supporting heterogeneous architecture descriptions in
an extensible toolset,” in International Conference on
Software Engineering, Monneapolis, USA, May 2007,
pp. 209–219.

[12] G. Bracha and D. Ungar, “Mirrors: design principles
for meta-level facilities of object-oriented program-
ming languages,” in Conference on Object Oriented
Programming Systems Languages and Applications,
Vancouver, Canada, Oct. 2004, pp. 331–344.

[13] D. Lorenz and J. Vlissides, “Pluggable reflection: de-
coupling meta-interface and implementation,” in Inter-
national Conference on Software Engineering, Port-
land, USA, May 2003, pp. 3–13.

[14] G. Coulson, G. Blair, M. Clarke, and N. Parlavantzas,
“The design of a configurable and reconfigurable mid-
dleware platform,” Distributed Computing, vol. 15,
no. 2, pp. 109–126, Apr. 2002.

[15] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java

Language Specification, 3
rd edition. Addison-Wesley,

2004.

[16] R. Wuyts, “Declarative reasoning about the structure
of object-oriented systems,” in Technology of Object-
Oriented Languages, Santa-Barbara, USA, Aug. 1998,
pp. 112–124.

[17] J. Kramer and J. Magee, “The evolving philosophers
problem: dynamic change management,” IEEE Trans-
action on Software Engineering, vol. 16, no. 11, pp.
1293–1306, Nov. 1990.

[18] F. Jouault, F. Allilaire, J. Bévizin, I. Kurtev, and P. Val-
duriez, “ATL: a QVT-like transformation language,” in
Conference on Object Oriented Programming Systems
Languages and Applications, Portland, Oregon, Oct.
2006, pp. 719–720.

[19] E. Baniassad and S. Clarke, “Theme: An approach for
aspect-oriented analysis and design,” in International
Conference on Software Engineering, Edinburgh, UK,
May 2004, pp. 158–167.

[20] S. Clarke and R. Walker, Aspect-Oriented Software
Developement. Addison Wesley, 2005, ch. Generic
aspect-oriented design with Theme/UML, pp. 425–258.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-
oriented programming,” in European Conference on
Object-Oriented Programming, ser. LNCS, vol. 1241,
Jyväskylä, Finland, Jun. 1997, pp. 220–242.

[22] F. Fleurey, B. Baudry, R. France, and S. Ghosh, “A
generic approach for automatic model composition,” in
Aspect-Oriented Modeling Workshop, Nashville, USA,
Oct. 2007.


