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Jérémy Buisson Cecilia Carro Fabien Dagnat

Institut TELECOM / TELECOM Bretagne
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Abstract

Satellite software has to deal with specific needs including

high integrity and dynamic updates. In order to deal with

these requirements, we propose working at a higher level

of abstraction thanks to model-driven engineering. Doing so

involves many technologies including model manipulation,

code generation and verification. Before we can implement

the approach, there is a need for further research in these

areas, e.g., about meta-transformations in order to maintain

several consistent related code generators. We highlight such

issues in regard to the current state of the art.

Categories and Subject Descriptors D.2.9 [Software En-

gineering]: Management; D.2.7 [Software Engineering]:

Distribution, Maintenance, and Enhancement; K.6.3 [Man-

agement of Computing and Information Systems]: Software

Management—Software process

General Terms maintenance, design process, satellite

Keywords reconfiguration, MDE, real-time

1. Introduction

In satellite architectures, the flight software is a real-time

software that provides services that are common to whatever

mission-specific payload the spacecraft is assigned. Typical

services include driving the desired orbit and flight, control-

ling thermal regulation systems, managing power sources

and communicating with ground stations. Even after the

satellite has been launched, flight software must be adjusted.

Satellites are subject to particles that may damage hard-

ware components. Such damages cannot be fixed except in-

stalling software workarounds. Bug fixes and software up-

dates should be propagated to flying satellites. In addition,

[Copyright notice will appear here once ’preprint’ option is removed.]

mission extensions may require functional enhancements.

All of these reasons motivate the need for reconfiguration.

As flight software is critical to the success of the mission,

space industries and agencies have worked on engineering

processes in order to help increase confidence. For instance,

the European space agency has published standards (ECSS-

E-40A; ECSS-E-40B) on software engineering and (ECSS-

Q-80B) on product assurance. These standards do not pre-

scribe a specific process. They rather formalize documents,

list requirements of the process and assign responsibilities

to involved partners. Regarding updates, standards state for

instance that the type, scope and criticality must be docu-

mented; that updates must be validated; and so on.

Current industrial practices for updates are restricted by

technological choices resulting from the document driven

V process. Modifications are done by-hand either on the

compiled assembly code or on the C/Ada source code. In

order to take into account constraints such as the scarcity of

the ground-satellite link, only differences between old and

new binary images are sent to the satellite. Coding rules that

reduce these differences are an important know-how of space

companies. Trivial rules consist, for instance, in overwriting

operators or inserting “nop” instructions in order to avoid

moving the code. Similar practices are also employed in

other areas. In the area of wireless embedded systems such

as mobile phones, (von Platen and Eker 2006) have worked

on specific linking schemes and MMU usage in order to

minimize data movements at the time of the update.

Current approaches have two main drawbacks. First, de-

veloping such patches requires a high level of expertise.

While managing small changes is somewhat easy, it is dif-

ficult to get confidence in case of complex patches due to

the burden of patch efficiency. Second, each software ver-

sion and memory mapping requires a specific patch. The ap-

proach does not scale to either satellite families or constel-

lations, as for instance damages on memory banks result in

each satellite having a unique memory mapping.

With regard to updates, switching to MDE gives the op-

portunity to increase abstraction up to the level of models

when designing and developing reconfigurations. Technical
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details of patch development would be downgraded as model

transformations and code generation, which would in addi-

tion capture most of the involved expertise.

In collaboration with major European manufacturers, the

SPaCIFY project (The SPaCIFY Consortium 2008) aims at

bringing advances in MDE to the satellite flight software

industry. It focuses on software development and mainte-

nance phases of satellite lifecycles. The project advocates a

top-down approach built on a domain-specific modeling lan-

guage named Synoptic. In line with previous approaches to

real-time modeling such as Statecharts and Simulink, Syn-

optic features hierarchical decomposition in synchronous

block diagrams and state machines. SPaCIFY also empha-

sizes verification, validation and code generation.

In this exploratory paper, we focus on the case of recon-

figuration. We first emphasize specific considerations and re-

quirements when updating the software of flying satellites

(Section 2). Then we consider the design process as laid out

in the SPaCIFY project (Section 3). Given the current state

of the art, we aim at highlighting challenges that we have

to overcome in order to implement the SPaCIFY MDE pro-

cess. Step by step, we depict the needs of each phase of the

process. For each phase, we discuss how previous works can

contribute to the process and we present issues that remain to

be solved. That way, sharing our experience, we give some

directions and motivations for future research.

2. Satellite-specific needs

In European satellites, the execution platform is resource

constrained, typically made of a radiation hardened ERC32

or LEON processor with up to 10MB memory. Flight soft-

ware consists of communicating periodic tasks that run on

top of a fixed-priority real-time kernel. Depending on the

implementation strategy, the number of tasks ranges from

a dozen to nearly 40. Activation periods range from 50ms

to 10s. In addition to periodic tasks that implement control

laws, the software has to handle asynchronous events sent by

operators (telecommand requests) and onboard devices.

Some vital tasks must not have their execution affected,

otherwise the satellite’s operation might be compromised.

Despite reconfigurations, these tasks must respect real-time

constraints. In case they have to be updated, constraints shall

propagate to reconfigurations, which have then to complete

upon given deadlines.

Real-time and criticality constraints also restrict code

generation in the mainstream development process. In order

to obtain high integrity in the generated code, it is required

that the behavior of any piece of code can be determined

statically. Among important properties, execution time must

be statically bounded. Hence features such as indirect func-

tion calls, dynamic binding, dynamic memory allocation,

dynamic task creation are not allowed.

In addition, the quality of the communication link be-

tween ground stations and satellites is commonly poor. The
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Figure 1. Overview of the workflow for reconfigurations.

bandwidth is low in comparison to current wired networks.

Furthermore, communication can only occur while the satel-

lite is in range of at least one ground station. Therefore, the

size of reconfigurations shall be kept as low as possible.

In the case of telecommunication satellites and position-

ing systems, several satellites are manufactured from the

same design. However, equipment aging and hardware dam-

ages make each satellite unique, even in a single series. Soft-

ware has to be adapted specifically to each satellite. Con-

sequently, copies of software tend to diverge, though some

updates like bug fixes are relevant for whole families. In or-

der to avoid duplicating development effort, reconfigurations

shall be easily adaptable to variants of the software.

3. Relevant works to support the process

As outlined in (The SPaCIFY Consortium 2008), the process

consists in enriching Synoptic models with non-functional

properties such as the mapping of software elements onto

tasks. The resulting architecture is then used in order to gen-

erate the source code of the application and the configuration

of the runtime support environment.

We rely on the main phases of the process (Figure 1) to

structure the discussion. Starting from the requirements and

from the previous version of the application, a reconfigura-

tion plan is designed (Section 3.1). Working at the level of

models, the plan describes how the logical architecture of

the application has to be updated. Hardware and dynamic

constraints are used in order to enrich models with con-

crete architecture details (Section 3.3). Based on informa-
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Figure 2. Design driven by the model of the software.

tion gathered during code generation and on the actual state

of the executing software, the reconfiguration plan is trans-

lated (Section 3.2) into a script that works at the level of the

code. A second validation step occurs on this new represen-

tation of the reconfiguration (Section 3.3). Last, the script is

packaged (Section 3.4) along with the required binary code.

Section 3.5 discusses involved reconfiguration languages.

3.1 Design of reconfiguration plans

The design of reconfiguration plans is triggered when the

need for maintenance arises. Requirements result from either

problem diagnosis, requests for improvements or problem

prevention. Based on these requirements, the design phase

consists in identifying the impact of reconfigurations on the

model of the software. To do so, we present two alternative

processes, which involve different tools.

In Figure 2, maintainers produce a fresh model. Doing

so straightforwardly reuses the same tools as in the main-

stream process. In order not to start over, a reference previ-

ous version of the application model can be used. As a sec-

ond step, previous and new versions of the application model

are compared. The reconfiguration plan is the resulting list

of differences, i.e., instructions for adding and removing

components and bindings. Several proposals exist to com-

pute the differences between models. (Kim et al. 2007; Xing

and Stroulia 2007) focus on finding structural differences be-

tween two class diagrams. In the context of object-oriented

languages, (Apiwattanapong et al. 2007) try to highlight be-

havioral changes resulting from structural differences, e.g.,

due to subtyping and dynamic binding. (Phung-Khac et al.

2008) propose to memorize design choices such that differ-

ences are emphasized by the design process.

In Figure 3, maintainers design the reconfiguration plan

by hand. The language shall be richer than the one of the

first alternative, as maintainers can use sophisticated control

structures that difference computing algorithms could hardly

emit. As highlighted in FPath and FScript (Polakovic et al.

2007), a convenient way to refer to components is also de-

sirable. Given the plan, new version models can be obtained

thanks to simulations of the reconfiguration.

Options mainly differ in the involved reasoning. While

the first one makes maintainers think of the resulting appli-

cation model, the second option rather puts the focus on the

Previous Syn-

optic model

Reconf. requirements

Reconf. req. analysis

& reconf. design
Reconf. plan

Reconf. simulation
Synoptic model

Figure 3. Design driven by the reconfiguration.

deltas to reach that resulting model. Requirements can be ex-

pressed in both manners: extending mission statements spec-

ifies the result of a reconfiguration; fixing a bug specifies a

difference. Options also impact the approach to validation.

In the first option, reconfiguration plans are correct by con-

struction, while in the second alternative one must ensure

that plans can execute on given application models.

With regard to considerations of Section 2, the main chal-

lenge is to deal with many software variants. This involves

propagating changes modeled by reconfiguration plans to

the collection of variants. Model merging and composi-

tion (Brunet et al. 2006; Fleurey et al. 2007) allow as-

sembling several pieces of models, some of them coming

from the reconfigurations. Propagating model transforma-

tions (Alanen and Porres 2004; Tratt 2008) are transforma-

tions that propagate changes in source models while pre-

serving modifications of target models, hence propagating

reconfigurations over several version branches. As (Tratt

2008) acknowledges, results in this area are in an early stage.

3.2 Script generation

Previous works (Ketfi and Belkhatir 2005; Buisson and Dag-

nat 2008) abstract concrete component models in unified

frameworks. Script generation is parameterized in order to

map reconfigurations down to the concrete model.

In our case, concrete code results from well-known trans-

formations of abstract models. Hence the challenge is to map

these transformations from the application domain to the

reconfiguration domain, as Figure 4 depicts. Meta-transfor-

mations, i.e., transformations of transformations (Varró and

Pataricza 2004; Ward and Zedan 2005; Balogh and Varró

2006) have been used mainly as demonstrations for reflective

transformation languages. In our case, we need a systematic

approach such that code generation and script generation re-

main consistent.

Traditionally, reconfiguration of component-based soft-

ware relies on dynamic memory management in order to in-

stantiate components. However, as mentioned in Section 2,

such techniques cannot be used in the context of satellite

software. The replaceable unit and cell (Gagliardi et al.

1996) and service (Rasche and Polze 2005) concepts do

not solve the above restrictions, despite their focus on re-

configuring real-time applications. (Zalila et al. 2008) have
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Figure 4. Application and reconfiguration code generation.

proposed a component implementation scheme that adheres

to memory management restrictions, but they have not con-

sidered the case of reconfigurations. In order to apply the

same restrictions to reconfigurations, one must do memory

management offline, while the reconfiguration is being pre-

pared. We are not aware of previous work about this topic.

3.3 Verification and validation

We emphasize two steps in verifications. The first one aims

at asserting the application resulting from the reconfigura-

tion. Standard verification techniques apply. The second step

validates the reconfiguration itself. Several properties have

been formalized as candidate correctness criteria: the future

of the execution shall conform to the specification (Bloom

and Day 1993); it should reach a reachable state of the new

version (Gupta et al. 1996); or effective executions shall con-

form to specifications (Zhang and Cheng 2005).

In order to deal with real-time constraints, (Rasche and

Polze 2005) have worked on bounding the reconfiguration

time. However their model is coarse: stopping all the re-

quired components; then reconfiguring; then restarting com-

ponents. The finer approach of FScript (Polakovic et al.

2007) does not provide any study about its predictability.

In Simplex, (Gagliardi et al. 1996; Lee and Sha 2005) do

not describe how to make reconfigurations fit real-time con-

straints. If bounding the reconfiguration time allows schedu-

lability analyses, scheduling reconfigurations in a running

system it usually not addressed. Sacrificing some application

components would in addition allow some reconfigurations

that would otherwise break schedulability of the system and

therefore be rejected.

3.4 Reconfiguration packaging

During the design of a reconfiguration, the need for new

pieces of code arises. The development of these pieces of

code follows the mainstream process. As we have already

mentioned in Section 2, it is essential to reduce the length

of transmissions. In order to address this issue, current prac-

tices (e.g., computing binary differences – see Section 1) can

be reused. Instead of applying them to the whole software,

they are used on the code of each structural element inde-

pendently one of the others. Last, the result is packaged with

the reconfiguration script and uploaded to the satellite.

3.5 Reconfiguration languages

In the above description, several languages are used to ex-

press reconfigurations. Reconfiguration plans and reconfig-

uration scripts differ in the target they address. The for-

mer, targeting models, expresses reconfigurations in terms

of adding and removing blocks and connectors (in block di-

agrams) and states and transitions (in state machines). The

latter, targeting code, expresses reconfigurations in terms of

overwriting values, loading code and changing the targets

of control and memory instructions. Depending on whether

plans are automatically generated or hand-written, high level

constructs (such as control structures, functions, filtering)

shall be relevant or not. Similarly, the manner to designate

reconfigured elements can range from identifiers (e.g., in

reconfiguration scripts) to pattern matching (e.g., in hand-

written reconfiguration plans).

Having a modular way to build reconfiguration languages

would ease obtaining all of the variants involved in the de-

sign process. We have observed that reconfiguration lan-

guages contain 3 fragments: reconfiguration instructions; ex-

pressions to designate reconfigured elements; constructs to

combine instructions. Similarly, (Colosi and Smith 2008)

have identified the need for combining several orthogonal

domains in a single domain-specific language. This issue

instantiates the “extensible expression” problem (Garrigue

2000; Zenger and Odersky 2004), which emphasizes the fact

that it should be possible to build languages incrementally,

i.e., that extending a language must not require to recompile

the code that handle preexisting language fragments.

4. Conclusion

Satellite software has specific characteristics. In addition to

being subject to resource constraints, it has to meet high in-

tegrity requirements. It must also support dynamic updates

without hazarding satellites. Using a model-driven approach

as the SPaCIFY project advocates increases the level of ab-

straction. Nevertheless, as we have shown, given the current

state of the art in the relevant areas, there are still issues that

have first to be solved in order to implement such a process.

In the area of models, it appears that there is a lack of tools

for comparing models and propagating changes. There is

also a need for enforcing consistency between several trans-

formations, in our case between code generation and script

generation. Regarding verifications, we need finer analyses

that would allow better insertion of reconfigurations in com-

ponents’ execution. In some situations, it is also desirable to

be able to override real-time constraints of the application in

a controlled manner. Last, as we have shown, several related

reconfiguration languages are used. Increasing the modular-

ity would help us obtain all of them.

In future work, we plan to focus on how to derive gen-

eration rules for reconfiguration scripts from code genera-

tion. To do so, we will build on our current work on abstract

reconfiguration models (Buisson and Dagnat 2008) and on
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reconfiguration languages. In the context of validation, re-

configuration models have to be enhanced in order to ease

interleaving reconfigurations with application tasks. We plan

to work on the runtime support for such models.
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