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Université européenne de Bretagne

{Jeremy.Buisson,Fabien.Dagnat}@telecom-bretagne.eu

Abstract

In the case of critical systems and dynamic environments,

it is necessary to apply bug fixes and functional enhance-

ments at runtime. Mainly due to technical difficulties, up-

dating active code is usually considered impractical. Most

of researches on dynamic software update therefore prevent

changing active code. In this paper, we study how to express

manipulations of the execution state in terms of operations

on continuations, thus enabling update of active code. We

explore how language support can help doing so in a type-

safe manner thanks to specific operators.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features; D.2.7

[Software Engineering]: Distribution, Maintenance, and En-

hancement; D.2.9 [Software Engineering]: Management

General Terms dynamic update of active code, continua-

tion, introspection of execution states, language construct

Keywords DSU, control operator, continuation, typing

1. Introduction

Software evolution and maintenance is continuously re-

quired in order to fix bugs and to add new features. In many

cases, despite the need for updates, applications cannot be

stopped. Updates must therefore occur during software exe-

cution. Beyond critical systems, it is also desirable to update

from one alternative implementation to another one when

applications adapt to dynamic execution contexts. In any

case, preserving the consistency of the code that is effec-

tively executed is one of the main challenges. To this end,

researchers work on finding the right timing for updates.

In this area, it is commonly assumed that updates can

hardly occur while any of the changed pieces of code is ac-

tive, i.e., being executed. This is what has led to definitions

[Copyright notice will appear here once ’preprint’ option is removed.]

like the one of quiescent states (Kramer and Magee 1990).

Basically, the idea consists in defining some state properties

that ensure that the updated pieces of code are not active nor

get activated during updates. The update mechanism can ac-

tively bring the execution in a safe state (Kramer and Magee

1990; Polakovic et al. 2007) for instance stopping compo-

nents in component-based software. A variant (Hoareau and

Mahéo 2008) enriches the semantic of (component) client

interfaces in order to detect when server components are un-

available, for instance when they are involved in updates.

The status is propagated back to clients, therefore ensuring

quiescence. Alternatively, the mechanism can passively wait

and detect when the execution reaches a safe state (Gilmore

et al. 1997; Ensink and Adve 2004; Neamtiu et al. 2006;

Stoyle et al. 2007) for instance introducing an update in-

struction explicitly put by developers. In specific cases such

as parallel programs, actions such as synchronizations can

be taken in order to help safe states emerging from the exe-

cution (Buisson et al. 2006).

Building on previous results, it has been observed that re-

quiring all of the updated pieces of code to be inactive is

too strong. It indeed results in some updates being delayed,

possibly for unbounded time. On one side, Java HotSwap

(Dmitriev 2001), Proteus (Stoyle et al. 2007) and Erlang (Er-

icsson AB 2008) allow several versions of classes, modules

and functions to coexist in an execution. Activations that ex-

ist at the time of the update continue their execution using

the old version of the code, even after update completion.

The new code is executed either at any next call (Java) or

at so-called external calls, i.e., calls that come from out-

side the module (Erlang). The old code is garbage collected

when it cannot be reached anymore. In both cases, the sys-

tem implicitly assumes that nesting new versions within old

version does not break consistency. On the other side, tran-

quility (Vandewoude et al. 2007) and transactional version

consistency (Neamtiu et al. 2008) relax constraints on safe

states. The overall idea of those two relies on atomic trans-

action interleaving. The software shall behave as if updates

were occurring out of any applicative transaction, instead of

actually doing so. Intuitively, an update shall not impact both

what has been already executed and what has still to be exe-

cuted in active transactions, hence ensuring atomicity.
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In addition, preventing the update of active code makes

it almost infeasible to update certain functions such as the

main one and interactive loops. As in Ginseng (Neamtiu

et al. 2006) for instance, common workarounds consist in

slicing those pieces of code into functions, which can there-

fore be updated independently. Nevertheless, updates have to

be anticipated and code slicing results in runtime overhead.

In this paper, we envision the other direction: we con-

sider that active code can be updated consistently. Actually,

doing so runs into low-level technical issues such as adjust-

ing instruction pointers, and reshaping and relocating stack

frames. Building on previous work on control operators and

continuation, we outline how language support could help

dealing with those difficulties thanks to continuation manip-

ulation operators. We do not claim that updating active code

is made easy. But giving the opportunity of doing so may re-

lax even more the constraints on update timing. It would also

allow updates without having sliced the code in anticipation.

The rest of the paper is structured as follows. Section 2

presents an overview of current continuation frameworks.

Section 3 depicts the design of operators for the manipu-

lation of continuation objects. Section 4 shows how the out-

lined operators could be used at the time of updates. Sec-

tion 5 concludes the paper with a discussion of the proposal.

2. Continuations

At an abstract level, a continuation denotes what remains to

compute. As such, it captures the state of the execution ma-

chine when it is created. Later, this state can be restored (re-

instated) in order to resume execution. The mechanism gen-

eralizes many control operators such as exception dispatch-

ing. Concretely, a continuation may be for instance a record

containing an instruction pointer, a call stack, local variables

and captured environments. While the call/cc Scheme

function captures the whole continuation, prompts (Felleisen

1988) formalize a lower bound that delimits captured contin-

uations, thus giving type and result to reinstating. In the lat-

ter case, continuation operators works in triplets for setting a

prompt, capturing the delimited continuation and reinstating

a continuation. Examples of continuation capturing opera-

tors are shift (Danvy and Filinski 1990), cupto (Gunter

et al. 1995) and withSubCont (Dybvig et al. 2007). They

mainly differ in whether the prompt survives the capture and

whether it is saved at the bottom of the continuation.

In most continuation systems, the continuation object

is an opaque object. Usually, no accessor or manipulation

function is provided except for resuming continuations. No-

table exceptions are Smalltalk systems, which provide a

programming interface (ContextPart, BlockContext and

MethodContext classes) for iterating and modifying stack

frames. Nevertheless, Smalltalk has the usual drawbacks of

dynamic typing. Strongtalk, a strongly typed Smalltalk sys-

tem, withdraws such support. The internal representation

used by (Dybvig et al. 2007) provides functions to split and

α

β

1. capture the

continuation

α

β

α

γ1

γ2

2. pop stack frames

β

γ2

α

γ1

γ2

3. reload values

from popped frames

in order to build a

replacement

Figure 1. Manipulating stack frames in a type-safe manner.

append sequences of prompt-delimited stack frames. Yet

those facilities are not intended to be used by applications.

No introspection facility is provided.

3. Using continuations for updates

We assume a continuation framework similar to the one

of (Dybvig et al. 2007). The withSubCont operator captures

the continuation up to a prompt and aborts the captured con-

tinuation. The pushSubCont operator reinstates a continua-

tion on top of the current one with a given expression. Using

this framework, the update operator is implemented as the

following OCaml code.

let update v = if update pending & safe

then withSubCont root prompt (fun k −>
apply update (); update tail k v)

else v

In this code, root_prompt is a prompt at the root of the

execution. It delimits the part of the continuation that can be

altered by updates. We assume the prompt is suitably placed.

In normal operations, the update operator behaves like

the identity function (else branch). If an update is pending

and the state is safe, the update is applied. The process

completes with an update tail, which aims at compensating

explicitly the update in the flow of execution. The tail is

specific to each update. In simple cases, it straightforwardly

reinstates the continuation, resulting in the regular update

operator. The tail mechanism gives also the opportunity to

walk and change the continuation according to the captured

state and to the specific update in more complex situations.

In the following, Greek letters denote types. α → β is

the type of functions mapping α parameters to β results.

β prompt is the type of a prompt set at a β expression.

(α, β) cont is the type of a continuation that expects an α

value to fill in the captured context, and that produces a β

value, i.e., a continuation captured up to a β prompt prompt.

Walking through the stack frames of a continuation

actually means slicing the continuation into subcontinua-

tions. Therefore, a new operator with type (α, β) cont →
(α, γ) cont × (γ, β) cont shall be introduced in order to
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(1) Γ ⊢ e1 : (α, β) cont (2) Γ ⊢ <label> : Γ<label> (3) Γ ⊢ Γ<label>.par <: α (4) Γ ⊢ e3 : τ
(5) Γ ∪ Γ<label>.locals ∪ {ihd : (Γ<label>.par,Γ<label>.res) cont; itl : (Γ<label>.res, β) cont} ⊢ e2 : τ

Γ ⊢ match cont e1 with (<label> as ihd) :: itl -> e2 | -> e3 : τ

Figure 2. One possible typing rule for match cont.

pop stack frames from continuations. If the type γ could

be statically determined, then the traversal of continuations

could be statically typed. In addition, changing stack frames

requires reloading local and environment-captured values

from popped frames. Enforcing static typing of such ma-

nipulations would help building correct new stack frames

as replacements. Figure 1 illustrates those operations. The

proposal builds on the following observation.

If the popped stack frame is one activation of a single

function f, knowing the call site in f that has activated

withSubCont suffices to determine α, γ and the types

of local variables stored in the popped stack frame.

Indeed, α is the return type of the called function; γ is the

return type of f; local variables are the ones existing at the

call site in f. In addition, the call site gives an indication of

what remains to do in the activation that has been popped,

hence an indication of what the update tail has to compute.

For instance, assume the following Fibonacci code where

<L0> and <L1> name the call sites.

let rec fib = function

0 −> 0 | 1 −> 1

| n −> let fn 1 = <L0> fib (n−1) in

let fn 2 = <L1> fib (n−2) in

fn 1 + fn 2

If a continuation of type (α, β) cont has <L1> as its top

level call site, then we can deduce that this continuation

assumes an int value when reinstated (adding constraint

α = int); and that the popped frame produces an int value

(adding constraint γ = int). We therefore know that the pop

operation results in continuations of types (int, int) cont
and (int, β) cont for the popped frame and the remainder

respectively. In addition, at the <L1> call site, the set of exist-

ing local and environment variables is {fib, n, fn 1}. This

set shapes the stack frame and the types of the variable are

known, thus providing sufficient information to reload vari-

ables in a type-safe manner. Last, the popped frame captures

the let fn_2 instruction and the fn_1+fn_2 addition. The

update tail has still to evaluate these instructions.

The above example outlines the overall idea of the pro-

posed mechanism. It consists in providing a language sup-

port in order to match the call site on top of a continuation

against the call sites of the code. Hardcoding the mechanism

in the language permits to enrich the environment (includ-

ing the typing environment) of the right-hand sides of match

clauses with information saved from the matched call sites.

A new kind of expression is introduced in the language for

the continuation match and pop operator.

expr ::= ... | match cont expr with clause∗

clause ::= pattern -> expr

pattern ::= | (label as ident) :: ident

In addition, each call site <label> is associated with a

record Γ<label> that holds the α (par field) and γ (res field)

type constraints along with the types of variables stored in

the stack frame. For example, the following record results

from typing fib.

Γ<L1> =







par = int; res = int;

locals =

[

fib : int → int;
n : int; fn 1 : int

]







In the right-hand side of each clause, we enforce con-

straints and type information stored in Γ<label> records. Fig-

ure 2 shows one possible typing rule for the match cont

operator. Premise 1 ensures that the operand is a continu-

ation; premise 2 that patterns are made of call site labels

with known Γ<label> records; premise 3 that the type of the

operand continuation is compatible (<:) with the recorded

constraints for the call site. The two last premises ensure that

the right-hand sides can be typed consistently when the en-

vironment of the popped frame (premise 5) is reloaded. The

res constraint of the call site is used when binding the sliced

continuations in that updated environment.

From the point of view of the implementation, a continu-

ation is a sequence of stack frames. As depicted in Figure 3,

each stack frame is made of an instruction pointer upon re-

turn (ipr) and of the values of variables (locals). This struc-

ture is in line with existing execution machines such as the

ZINC (Leroy 1990) one underlying the OCaml bytecode in-

terpreter. Storage could in addition be added for registers in

order to mimic current real processors.

Given that each call site can be identified by a unique re-

turn address, the match cont operator can be implemented

as comparisons with the ipr field on top of the stack frame.

Labels are symbolic names used in order to refer conve-

niently to call site return addresses. They have no existence

in the code of the application. When developing updates, the

development environment can support developers in identi-

fying relevant call sites, assigning labels and generating up-

date tail skeletons.

Once the matching clause is identified thanks to the ipr

field, splitting the sequence of stack frames implements con-

tinuation slicing. Last, local variables and environment of

the popped frame are reloaded from the locals field. Holes
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...

tail of the continuation top of the continuation

iprlocalsiprlocalsiprlocalsipr

<L1>fib n fn 1

one example stack frame, shaped by the compiler

Figure 3. One possible implementation of continuations.

in that field hold temporary variables generated by the com-

piler. The compiler should therefore save in Γ<label> records

the positions of values in the stack frame (the shape of the

frame) in addition to their types.

4. Using the operator in updates

In the following, we show examples that use the match cont

operator in updates. We consider again the above Fibonacci

code and assume first that the function has to be updated in

order to use arbitrary-precision integers for the result. In the

updated code fib’, big_int_of_int converts OCaml in-

tegers into arbitrary-precision ones and add_big_int adds

two arbitrary-precision integers.

let rec fib ’: int −> big int = function

(0 | 1) as n −> big int of int n

| n −> let fn 1 = fib ’ (n−1) in

let fn 2 = fib ’ (n−2) in

add big int fn 1 fn 2

With usual approaches, the application cannot be updated

while the fib function is active. In the case of Erlang,

recursive calls must be internal calls (of the old version). In

the context of other approaches, type consistency is violated.

With the approach described in this paper, an update

tail gives the opportunity to manipulate the continuation

captured at the time of the update. The following listing

shows how the update tail can be implemented in a type-safe

manner thanks to the match cont operator.

let rec update tail k r =

match cont k with

(<L0> as hd ):: tl −> tail of L0 tl n r

| (<L1> as hd ):: tl −> tail of L1 tl fn 1 r

and tail of L0 k n r =

let fn 1 = r in

let fn 2 = fib ’ (n−2) in

let r’ = add big int

( big int of int fn1) fn 2

in match fib callers k r’

and tail of L1 k fn 1 r =

let fn 2 = r in

let r’ = add big int

( big int of int fn 1 )

( big int of int fn 2 )

in match fib callers k r’

and match fib callers k r =

match cont k with

(<L0> as hd ):: tl −> tail of L0 tl r

| (<L1> as hd ):: tl −> tail of L1 tl fn 1 r

| −> pushSubCont k r

In the update_tail frontend function, the top stack

frame is matched against <L0> and <L1>. In case <L1> is

matched, the value of fn_1 is reloaded from the popped

frame; parameter r is the result of fib (n-2). Those val-

ues are used in order to evaluate tail_of_L1, the new tail

of the fib function starting at <L1>. That new tail performs

the conversion to arbitrary-precision integers in accordance

to the new version of the fib function. tail_of_L0 per-

forms similarly; it uses the new version for the recursive

call in the tail. Stack frames are recursively popped by

the match_fib_callers as long as <L0> and <L1> are

matched, calling back the update tails. In so doing, update

tail functions trace back the call graph of the application.

Last, when there is evidence that the update has no more

impact, the remainder of the continuation is reinstated.

Now assume that the fib function is updated to a bet-

ter linear-time algorithm fib’’, not changing types. In

this case, following options are equally correct: complete

activations and do recursive calls with the old version

(tail_continue); use the new version at any forthcoming

call (tail_immediate); or cancel activations and restart

with the new version (tail_cancel). Those update tails

are implemented as follows.

let tail continue k r = pushSubCont k r

let tail immediate k r =

match cont k with

(<L0> as hd ):: tl −>
tail immediate tl (r+(fib ’’ (n−2)))

| (<L1> as hd ):: tl −>
tail immediate tl ( fn 1 +r)

| −> pushSubCont k r

let tail cancel k r =

match cont k with

((<L0>|<L1>) as hd ):: tl −>
let rec tail restart k i =

match cont k with

((<L0>|<L1>) as hd ):: tl −>
tail restart tl n

| −> pushSubCont k (fib ’’ i)

in tail restart tl n

| −> pushSubCont k r

Previous approaches only permits the two first options.

In Erlang, that choice is hardwired in the initial appli-

cation code: tail_continue if internal calls are used;

tail_immediate otherwise. With Java HotSwap, the sys-

tem imposes tail_immediate.

In contrast, the approach described in this paper allows

the three options. Furthermore, the choice is made in the

update tail, not in the application. Consequently, different

choices can be made for different updates. For instance the

Java HotSwap semantic can be chosen for the fib’’ update,

even if it is incorrect with the fib’ one.
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5. Conclusion

In this paper, we have explored how language support could

help updating active code at runtime. Among difficulties, do-

ing so requires to update the execution state, including call

stack and instruction pointers. As preliminary results, we

describe type-safe manipulation of the execution state that

builds on previous work on continuations. In comparison to

existing Smalltalk systems, static typing would help detect-

ing incorrect manipulations of execution states.

We have outlined a possible implementation strategy for

the proposed match cont operator. The foreseen strategy

does not involve any specific code generation scheme. As

a result, no anticipation is required by updates. Furthermore,

Γ<label> records can even be generated afterward, when up-

dates are compiled. Thus high flexibility is provided.

Examples show how the proposed match cont operator

can be used in order to update active code. Examples empha-

size some of the advantages with regard to other approaches.

In addition to allowing updates of active code, the approach

avoids requiring anticipating updates in the code of the ap-

plication e.g., slicing the code into functions. While other

approaches usually tangle consistency constraints into the

code e.g., explicit external calls of Erlang and transactions

in (Neamtiu et al. 2008), our approach extracts this con-

cern in the update itself, in the update tail. As benefit, it al-

lows to adapt consistency constraints to each specific update.

The counterpart is that the update tail function implements a

traversal of the reversed call graph of the application, leading

to high complexity. With traditional approaches, the diffi-

culty merges into the complexity of the application, resulting

in apparent ease. Yet, demarcating transactions is not trivial.

Practical implications have to be assessed in order to pro-

pose tools, e.g., generation / checking of the reversed call

graph traversal. Mutable continuation, i.e., writing values in

stack frames, may also be valuable. Continuation implemen-

tation has to be adjusted (e.g., cloning stacks or not) accord-

ing to realistic needs. These ideas are part of our future plans.
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