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Abstract We use geometrical methods adapted from Borel-Weil-Bott theory to compute
the character of every finite dimensional simple module over a basic classical Lie superal-
gebra.

The answer is given by a combinatorial algorithm in terms of weight and cap diagrams,
which were defined by Brundan and Stroppel for the general linear superalgebra.

AMS subject classification 20G05, 14F05.

1. Introduction

The famous Borel-Weil-Bott theorem states that, for a reductive complex algebraic
group G, the cohomology groups of any invertible sheaf on the flag variety G/B are non
zero in at most one degree, and in this degree the cohomology group is a simple G-module.
This statement is no longer true for Chevalley groups in characteristic p, the cohomology
group is non-zero only in one degree (for a dominant weight) but it is not a simple G-
module anymore. Its structure is rather complicated and interesting, and studying it leads
to Kazhdan-Lusztig theory.

Let now G be a complex basic classical supergroup. Studying the cohomology groups on
the flag supervariety G/B was initiated by Penkov and others ([20], [23]). They discovered
that the Borel-Weil-Bott theorem is not always true in this case and proved that it is true
for so called typical invertible sheaves.

This question is closely related to the representation theory of the corresponding basic
classical Lie superalgebra g. The category of finite-dimensional g-modules is not semi-
simple, only typical simple modules do not have extensions with other simple modules.
The problem of computing characters of atypical simple finite dimensional g-modules is a
full-time occupation for several persons since 1977. The formula for typical highest weight
modules was found in [17]. In 1980 Bernstein and Leites found the character formula for
g = sl(1, n) ([2]), later this formula was generalised to osp(2, 2n) and for the so called
singly atypical modules and generic atypical modules (see [29] and [30]). Similar type
formulae were conjectured in [18] for affine superalgebras. In 1996, the second author [24]
solved the problem completely for gl(m,n) using the geometry of flag supervarieties. Later
Brundan [3] solved this problem by a different, purely algebraic, method and discovered
a remarkable connection with the representation theory of gl(∞). Brundan’s method was
developed further in [8], [4], [5], [6], [7].

In this paper we generalise the method of [24] to the orthosymplectic supergroups
OSP (m, 2n). The results were announced in [25] without proof and one statement (typical
lemma) was formulated there with a mistake. We take a different Borel subgroup in this
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paper and use the language of weight diagrams (invented by Brundan and Stroppel for
GL(m,n)). This makes the combinatorics much easier and allows one to formulate a
precise algorithm for the computation of the characters of all simple modules. In the
gl case, there exist finite dimensional analogues of Verma modules, called Kac modules,
which can be interpreted as cohomology groups of bundles over the flag supermanifold,
and which also have a nice algebraic behavior. Unfortunately (?), there is no such analogue
in the orthosymplectic case, so we use the geometrical method.

Let us explain the main idea of the method. As was pointed out by Penkov, one can
easily write down the character of the Euler characteristic for any invertible sheaf on a flag
supervariety using classical Borel-Weil-Bott theory. Thus, if one knows the multiplicities
of simple modules in cohomology groups, one hopes to express the characters of simple
modules as linear combinations of characters of the Euler characteristic of some invertible
sheaves. We manage to find these multiplicities for some generalized supergrassmannians
G/P for certain parabolic subgroups P , and use this information to compute characters.

There are several complications in the case of OSP (m, 2n) compared with GL(m,n).
First, in many cases the Euler characteristic is zero on G/B, and one should consider
instead G/Q for a suitable choice of a parabolic subgroup Q which depends on the module
whose character we want to calculate. Next, there is no distinguished Borel subgroup in
OSP (m, 2n), hence there are non-vanishing cohomology groups in many degrees. Finally,
the recursion process involving the computation of the cohomology is more complicated
due to the existence of the so-called exceptional pairs (see Section 10 in the paper for
details). On the other hand, there is one advantage: the character of a simple OSP (m, 2n)
-module is always a finite linear combination of Euler characteristics, in contrast with the
GL(m,n) case where the combination is always infinite.

The organisation of the paper is as follows. In Section 2 we fix the notations. Section 3
contains general statements about cohomology groups of vector bundles on a supergrass-
mannian G/P . In Section 4 we compute the character of the Euler characteristic, and, for
parabolic subgroups P ⊂ Q ⊂ G, relate the cohomology on G/P with those on G/Q and
Q/P , using Leray spectral sequence. Section 5 contains a complete classification of the
blocks in the category of finite-dimensional g-modules (Theorem 2) and introduces trans-
lation functors. In Section 6, we introduce weight diagrams and translate the results of
Section 5 into this language. In Section 7 we explain how to reduce the computation of the
cohomology to the case of the most atypical blocks of gl(k, k), osp(2k+ 1, 2k), osp(2k, 2k)
and osp(2k + 2, 2k). (Afterwards we concentrate on the orthosymplectic case, since the
general linear case is done in [24]). This last computation is done recursively in Sections
8,9 and 10 starting with osp(2k + 1, 2k) (resp. osp(2k, 2k), osp(2k + 2, 2k)) and getting
down to osp(2k − 1, 2k − 2) (resp. osp(2k − 2, 2k − 2), osp(2k, 2k − 2)). In Section 11,
the recursion is solved. We construct a graph whose vertices are weight diagrams and
describe a combinatorial algorithm for the computation of cohomology groups, in terms
of paths in this graph (Proposition 7 and Theorem 3). Section 12 presents an algorithm
for calculating characters (Theorem 4) and contains some examples. In Section 13, we
present a simplfication of the algorithm given in Section 11. In the general linear case,
this simplification leads to the equivalence (proven in [22]) of algorithms appearing in [24]
and [3].

We thank Laurent Gruson for hospitality and stimulating discussions and Ian Musson
for explaining the method of weight diagrams and fruitful discussions on supergeometry.
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2. Notations

Let g = g0 ⊕ g1 be a basic classical complex Lie superalgebra, i.e. g = gl(m,n) or
osp(m,n). By G we denote the linear algebraic groups GL(m,n) and OSP (m,n) respec-
tively [19]. For a Lie subalgebra (e.g. a ⊂ g), we denote with the capital Latin letter
(in this case A ⊂ G) the connected complex algebraic supergroup with the given Lie su-
peralgebra. For all the superalgebras considered in this paper such supergroups are well
defined.

We fix a Cartan subalgebra h of g. Denote by ∆ the set of roots of g with respect to h.
Let b be a Borel subalgebra of g containing h, it defines a set of positive roots ∆+, and
we define ρ = ρ0 − ρ1, where ρ0 is the half sum of the positive even roots and ρ1 is the
half sum of positive odd roots. Recall that since g is basic classical, it is equipped with
a non degenerate invariant bilinear form and the restriction of this bilinear form to h is
also non degenerate. We will denote this form by ( , ). We denote by W the Weyl group
of the even part g0. Recall that in our case the Cartan subalgebra h of g is also a Cartan
subalgebra of g0. For a Lie subalgebra a ⊂ g such that h ⊂ a we denote by ∆(a) ⊂ ∆ the
set of roots of a.

A weight λ ∈ h∗ is integral if it induces a one-dimensional representation of the Cartan
subgroup H. In the paper we consider only integral weights. Thus, by a weight we always
mean an integral weight. Moreover, we only consider modules which are integrable with
respect to the group G: all those have integral weights. Define the standard order on
the set of integral weights: λ ≤ µ iff µ − λ =

∑

α∈∆+ nαα where all nα are non-negative
integers.

For any integral weight λ, we will denote by Lλ the simple g-module with highest weight
λ, and if a is a Lie subalgebra of g for which it makes sense, we will denote by Lλ(a) the
irreducible a-module with highest weight λ. Recall that λ is called dominant (resp. a-
dominant) if Lλ (resp. Lλ(a)) is finite-dimensional (in this case Lλ (resp. Lλ(a)) has a
natural structure of G-module (resp. A-module)).

Let U(g) be the universal enveloping algebra of g and Z(g) be its center. For every
weight λ, we write χλ for the corresponding central character. A central character χ is
dominant if there exists a dominant λ such that χ = χλ.

Finally, let us recall the description of ∆ (see [16]). Let g = gl(m,n), osp(2m, 2n) or
osp(2m+ 1, 2n). Then dim h = m+ n and one can choose a basis ε1, ..., εm, δ1, ..., δn of h∗

such that

(εi, εj) = δij , (εi, δj) = 0, (δi, δj) = −δij .

The even roots ∆0 of gl(m,n) are all vectors of the form εi − εj and δi − δj with i 6= j.
The odd roots ∆1 of gl(m,n) are all vectors of the form εi − δj and δi − εj .

The even roots ∆0 of osp(2m, 2n) are all vectors of the form ±εi ± εj , ±δi ± δj (the
signs can be chosen independently) with i 6= j and 2δi. The odd roots ∆1 of osp(2m, 2n)
are all vectors of the form ±εi ± δj .

The even roots ∆0 of osp(2m+1, 2n) are all vectors of the form ±εi ± εj , ±δi ± δj with
i 6= j, ±εi and ±2δi. The odd roots ∆1 of osp(2m + 1, 2n) are all vectors of the form
±εi ± δj and ±δi.

We define a parity on the weight lattice by saying that εi (resp. δj) is even (resp. odd).
Then the category of finite dimensional G-modules splits as the direct sum of two parts,
one in which the weight spaces have the same parity as the corresponding weight, and one
in which the parities differ. In this paper, we will only consider the first part.
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3. Geometric induction

Let p be any parabolic subalgebra of g containing b and l denote the reductive part of
p.

For a P -module e.g. V , we denote by the calligraphic letter V the vector bundle G×P V
over the generalized grassmannian G/P . Note that the space of sections of V on any open
set has a natural structure of g-module, in other words the sheaf of sections of V is a
g-sheaf. Therefore the cohomology groups H i(G/P,V) are g-modules. For details see [19],
[23], [20].

Define the functor Γi from the category of p-modules to the category of g-modules by

Γi(G/P, V ) := (H i(G/P,V∗))∗.

Lemma 1. - The functors Γi have the following properties:
1) if

0 → U → V →W → 0

is a short exact sequence of P -modules, then one has

. . .→ Γ1(G/P,W ) → Γ0(G/P,U) → Γ0(G/P, V ) → Γ0(G/P,W ) → 0

(long exact sequence).
2) if M is a g-module and V is a P -module, the following holds :

Γi(G/P, V ⊗M) = Γi(G/P, V ) ⊗M.

The proof is an adaptation of standard arguments (see [15]).

Lemma 2. - The module Γ0(G/P, V ) is the maximal finite-dimensional quotient of
U(g) ⊗U(p) V .

Proof. - Let Ṽ be the maximal finite-dimensional quotient of U(g)⊗U(p) V . By duality Ṽ ∗

is the maximal finite-dimensional submodule in the coinduced module HomU(p)(U(g), V ∗).

Let Γ(V ∗) := H0(G/P,V∗). By definition

Γ(V ∗) =
{

γ ∈ C[G] ⊗ V ∗|γ(gp) = p−1γ(g), g ∈ G, p ∈ P
}

.

Let π denote the composition of the standard maps V → U(g) ⊗U(p) V → Ṽ and

π∗ : Ṽ ∗ → V ∗ be the dual map. Then γv(g) = π∗(g−1v) is a vector in Γ(V ∗). Hence we

can define a G-module homomorphism ϕ : Ṽ ∗ → Γ(V ∗) by putting ϕ(v) := γv. We claim
that ϕ is injective. Indeed, assume X = Kerϕ 6= 0. But π∗(X) 6= 0 for every non-trivial

G-submodule X ⊂ Ṽ ∗. Therefore X contains v such that γv(e) 6= 0, hence ϕ(X) 6= 0.
Contradiction.

On the other hand, the map ev : Γ(V ∗) → V ∗ defined by ev(γ) := γ(e) induces a
homomorphism of g-modules j : Γ(V ∗) → HomU(p)(U(g), V ∗). Since Γ(V ∗) is finite-

dimensional j(Γ(V ∗)) ⊂ Ṽ ∗. Again we claim that j is injective. Indeed, choose a nilpotent
superalgebra m− such that g = p ⊕ m−, and let M− be the corresponding supergroup.
It is known that (exactly as in classical case) M−P is dense in G (see [21]). Hence ev is

injective on the subspace of invariants Γ(V ∗)m−

. Let Y = Ker j. Then Y m−

= 0. That
implies Y = 0.

Thus, we have two injective morphisms ϕ : Ṽ ∗ → Γ(V ∗) and j : Γ(V ∗) → Ṽ ∗. Since
the spaces are finite-dimensional, both ϕ and j are isomorphisms. Therefore, the dual
modules Ṽ and Γ0(G/P, V ) are also isomorphic.

�
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Definition 1. (Penkov’s remark [23]) - Let (X,OX) be a generalized grassmannian, and
(X0,OX0) be the underlying algebraic variety, V be a G-vector bundle on X. Then the

corresponding sheaf Ṽ on X0 has a filtration by OX0-modules such that the associated

graded module (in degree i) is isomorphic to the G0-bundle VX0 ⊗ Si(N ∗
X0
X) =: Ṽ i. The

whole module will be denoted by IX0(V ⊗ S•(N ∗
X0
X)).

By definition Hk(X,V) = Hk(X0, Ṽ). We have, if we denote by Ch(V ) the character
of a g module V ,

Ch(Hk(X0, Gr(Ṽ))) ≥ Ch(Hk(X,V))

as can be seen with the long exact sequence coming with the filtration of Ṽ. The ≥ means
that each g0-module occurring in Hk(X,V) appears in Hk(X0, Gr(Ṽ)) with at least the
same multiplicity. Note that the inequality becomes an equality when computing the Euler
characteristic.

Lemma 3. - If Lµ occurs in Γi(G/P,Lλ(p)) with non-zero multiplicity, then µ + ρ =
w(λ+ ρ) −

∑

α∈I α for some w ∈W of length i and I ⊂ ∆+
1 .

Proof. - We make use of Penkov’s remark. First, note that

Gr(Si(NX0X)) = G0 ×P0 S
i(g/(g0 ⊕ p1))

which is a G0-bundle on G0/P0, so:

Ch(Hk(G/P,Lλ(p)∗)) ≤ Ch(Hk(G0/P0, IG0/P0
L∗

λ(p) ⊗ S•(g/(g0 ⊕ p1))
∗)).

Assume Lµ occurs in Γi(G/P,L
∗
λ(p)). It means that L∗

µ occurs in H i(G/P, IG0/P0
L∗

λ(p)).

Therefore Lµ(g0)
∗ occurs in H i(G0/P0,L

∗
λ(p) ⊗ S•(g/(g0 ⊕ p1))

∗). The latter sheaf has a
filtration by G0-bundles whose simple quotients are of the form L∗

λ−
P

γ∈J⊂∆+
1

γ(p0). By the

usual (non-graded) Borel-Weil-Bott theorem, if w(ν+ρ0)−ρ0 is regular and g0-dominant,
then

H i(G0/P0,Lν(p0)
∗) =

{

Lw(ν+ρ0)−ρ0
(g0)

∗ if l(w) = i
0 otherwise

Therefore

µ = w(λ−
∑

γ∈J⊂∆+
1

γ + ρ0) − ρ0.

Using ρ0 = ρ+ ρ1, we obtain

µ = w(λ+ ρ) − ρ−
∑

α∈I⊂∆+
1

α,

where I = (w(J) ∩ ∆+
1 ) ∪ −(w(∆+

1 − J) ∩ ∆−
1 ). �

Write p = l ⊕ m, g = m− ⊕ l ⊕ m, where m is the nilpotent part of p. Consider the
projection

φ : U(g) = U(m−)U(l)U(m) → U(m−)U(l)

with the kernel U(g)m. The restriction of φ to Z(g) induces the injective homomorphism
of centers Z(g) → Z(l). We denote by Φ the dual map

Φ : Hom(Z(l),C) → Hom(Z(g),C).

Lemma 4. - If V is an irreducible p-module admitting a central character χ, then the
g-module Γi(G/P, V ) admits the central character Φ(χ).
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Proof. - Consider another projection

ψ : U(g) = U(m) ⊗ U(l) ⊗ U(m−) → U(l)U(m−)

with the kernel mU(g), and the corresponding dual map

Ψ : Hom(Z(l),C) → Hom(Z(g),C).

Note that any element x ∈ U(g) acts on the set of sections of the vector bundle V∗ over
any open subset U ⊂ G/P . We denote this action by Lx.

We claim that if γ is a section of V∗ over any open subset U ⊂ G/P and z ∈ Z(g)
belongs to the kernel of ψ, then Lz(γ) = 0. Since z commutes with the group action,
it suffices to prove that Lz(γ) ∈ IP , where IP stands for the subspace of sections which
are zero at P . Our claim now follows immediately from the facts that, if x ∈ m, then
Lx(γ) ∈ IP , and if x ∈ l, then the value of Lx(γ) at p ∈ P equals x(γ(p)). Thus, if ζ is
the central character of l-module V ∗, then the space of sections Γ(U,V∗) (as a g-module)
admits central character Ψ(ζ).

Using the Chech complex for the computation of the cohomology groups of V∗, one can
show easily that the cohomology groups H i(G/P,V∗) also admit central character Ψ(ζ).
Going to the dual modules provides the statement. �

The following corollary of Lemma 1(2) and Lemma 4 will be used a lot in this paper.

Corollary 1. - For any finite-dimensional g-module M (resp. finite-dimensional p-module

V ) let Mχ (resp. V Φ−1(χ)) denote the component with generalized central character χ (resp.
with generalized central character lying in Φ−1(χ)). Then

Γi(G/P, (V ⊗M)Φ
−1(χ)) = (Γi(G/P, V ) ⊗M)χ.

Let F be the category of finite dimensional g-modules semisimple over h; this category
decomposes into blocks Fχ, where Fχ consists of all finite dimensional modules with
(generalized) central character χ.

Remark - Let l be the Levi subalgebra of p. If V is a module belonging to the block Fτ (l)
consisting of all finite dimensional modules with (generalized) central character τ , then

Γi(G/P, V ) belongs to the block FΦ(τ). That provides a correspondence between blocks
of l and blocks of g.

Definition 2. - Let λ be a g-dominant weight. Define A(λ) to be a maximal possible set
of mutually orthogonal positive isotropic roots αi of g such that (λ + ρ, αi) = 0, A(λ) =
{α1, . . . αl}. We put #A(λ) = #λ, and call it the degree of atypicality of λ (say it is 0 if
A(λ) = ∅: then λ is called typical).

Although the choice of A(λ) is not unique, the degree of atypicality does not depend
on it.

Then, for any weight µ, χλ = χµ is equivalent to the fact that µ can be written as
w(λ+ ρ+ n1α1 + . . .+ nlαl) − ρ, where w ∈W and ni ∈ C for all i = 1, . . . , l (see [26]).

Notice that if χλ = χµ, then λ and µ have the same degree of atypicality. So the degree
of atypicality is a well defined notion for a central character.

For any non-isotropic β ∈ ∆ put β̌ := 2β
(β,β) .

Definition 3. - A parabolic subalgebra p ⊂ g with Levi part l is called admissible for a
central character χ if, for any dominant λ such that χλ = χ, one has (λ + ρ, β̌) ≥ 0 for
all β ∈ ∆+

0 − ∆(l).
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For example, if g = gl(m,n), then the distinguished Borel subalgebra ([16]) is admissible
for any central character, and therefore so is any parabolic subalgebra containing this
distinguished Borel subalgebra. If the simple roots of a Borel subalgebra are all isotropic,
then ρ = 0 and any parabolic subalgebra containing this Borel subalgebra is admissible
for any central character.

Lemma 5. (Typical lemma) - Let λ be a dominant weight, let p be a parabolic subalgebra
of g admissible for χλ. Assume A(λ) ⊂ ∆(l) and (λ+ ρ, β̌) > 0 for all β ∈ ∆+

0 −∆(l) (in
this case we will call λ p-typical). Then,

Γi(G/P,Lλ(p)) =

{

0 if i > 0
Lλ(g) if i = 0

Proof. - Let Lµ be an irreducible subquotient in Γi(G/P,Lλ(p)). Then by Lemma 3 there
exist w ∈W and I ⊂ ∆+

1 such that

(1) µ = w(λ+ ρ) − ρ−
∑

α∈I

α.

Choose an element h ∈ h∗ such that

∆(p) = {α ∈ ∆|(α, h) ≥ 0}.

Note that ∆(l) = {α ∈ ∆|(α, h) = 0}.
We claim that (µ, h) ≤ (λ, h). Indeed, let s ∈ W be such that s(λ + ρ) belongs to the

positive Weyl chamber. Since (λ+ ρ, β̌) ≥ 0 for all β ∈ ∆+
0 − ∆(l), s belongs to the Weyl

group of l0. Since s(h) = h we have (s(λ+ ρ), h) = (λ+ ρ, h). Then

w(λ+ ρ) = s(λ+ ρ) −
∑

β∈∆+
0

kββ.

with some non-negative kβ since s(λ+ ρ) lies in the positive Weyl chamber. Therefore

(w(λ+ ρ), h) = (s(λ+ ρ), h) −
∑

β∈∆+
0

kβ(β, h) ≤ (s(λ+ ρ), h) = (λ+ ρ, h).

Therefore by (1)

(µ+ ρ, h) = (w(λ+ ρ), h) −
∑

α∈I

(α, h) ≤ (w(λ+ ρ), h) ≤ (λ+ ρ, h).

On the other hand, χλ = χµ implies

u(µ+ ρ) = λ+ ρ+
∑

α∈A(λ)

kαα

for some u ∈W . Since µ is dominant, we obtain by the same argument as above

(µ+ ρ, h) ≥ (u(µ+ ρ), h) = (λ+ ρ, h) +
∑

α∈A(λ)

kα(α, h) = (λ+ ρ, h).

Hence (µ, h) ≥ (λ, h). Thus, in fact (λ, h) = (µ, h).
That implies that (w(λ + ρ), h) = (λ + ρ, h) and I ⊂ ∆+

1 (l). Since (λ + ρ, β̌) > 0 for
all β ∈ ∆+

0 − ∆(l), w belongs to the Weyl group of l0. It follows from the construction of
w in the proof of Lemma 3 that w = id and i = 0. By Lemma 2, Lµ is a subquotient of
U(g) ⊗U(p) Lλ(p). Therefore µ = λ. �

Note that the proof of the above lemma implies the following
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Corollary 2. - Let λ be a dominant weight, p be admissible for χλ and h ∈ h∗ be such that
∆(p) = {α ∈ ∆|(α, h) ≥ 0}. If Lµ occurs in Γi(G/P,Lλ(p)) with non-zero multiplicity, then

(µ, h) ≤ (λ, h). If, in addition, (λ + ρ, β̌) > 0 for all β ∈ ∆+
0 − ∆(l), then (µ, h) = (λ, h)

implies i = 0 and µ = λ.

4. Induction for geometric induction

We choose two parabolic subalgebras of g containing b such that b ⊂ p ⊂ q ⊂ g.
The aim of the present section is to relate, for a p-dominant weight µ, the cohomology

Γ•(G/Q,Lλ(q)) with both Γ•(G/P,Lλ(p)) and Γ•(Q/P,Lµ(p)).

Definition 4. - For A,B any P,Q,G such that B ⊂ A, we define the Poincaré polynomial
in the variable z:

Kλ,µ
A,B(z) :=

∑

i≥0

[Γi(A/B,Lλ(b)) : Lµ(a)]zi.

We denote by iKλ,µ
A,B the coefficient of zi.

The following result was first stated in [25]:

Proposition 1. (Euler caracteristic formula) - Let p be a parabolic subalgebra of g, denote
by l its Levi part and set

D0 = Πα∈∆+
0
(eα/2 − e−α/2), D1 = Πα∈∆+

1
(eα/2 + e−α/2), D =

D1

D0
.

For any p-dominant weight λ, one has :

(2)
∑

µ

Kλ,µ
G,P (−1)Ch(Lµ) = D

∑

w∈W

ε(w)w(
eρCh(Lλ(p))

Πα∈∆+
1 (l)(1 + e−α)

).

Proof. - The left hand side of the formula is

dimG0/P0
∑

i=0

(−1)iCh(H i(G/P,Lλ(p)∗).

Using Definition 1, one gets that the left hand side becomes

dimG0/P0
∑

i=0

(−1)iCh(H i(G0/P0, (⊕kL̃λ(p)k)∗)∗).

We use the classical Borel-Weil-Bott theory to get

dimG0/P0
∑

i=0

(−1)iCh(H i(G0/P0, (⊕kL̃λ(p)k)∗)∗) =
1

D0

∑

w∈W

ε(w)w(Ch(⊕kL̃λ(p)k)eρ0).

Remember now that ⊕kL̃λ(p)k = IG0/P0
(Lλ(p) ⊗ S•(g/(g0 ⊕ p1))). A direct computation

gives the proposition.
�

Theorem 1. - One has :

Kλ,µ
G,P (−1) =

∑

ν

Kλ,ν
Q,P (−1)Kν,µ

G,Q(−1).
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Proof. - Denote by π : G/P −→ G/Q the canonical projection. The fibre of π is isomorphic
to Q/P . Consider the derived functor (of sheaves) R•π∗, it transforms Lλ(p)∗ into a
complex of sheaves R•π∗(Lλ(p)∗) over G/Q.

Take an injective resolution Lk of Lλ(p)∗, over G/P and then an injective resolution
of π∗(Lk) over G/Q. This gives a bicomplex of sheaves over G/Q, and its cohomology is
isomorphic to H•(G/P,Lλ(p)∗).

On the other hand, the Leray spectral sequence of this bicomplex has the term

Ep,q
2 = Hp(G/Q,Rqπ∗(Lλ(p)∗)).

One has ([15])
Rqπ∗Lλ(p)∗ = Hq(Q/P,Lλ(p)∗|fibre).

By definition of the coefficient qKλ,µ
A,B, we have the following identities in the Grothendieck

groups:

[Hq(Q/P,Lλ(p)∗|fibre)] =
∑

ν

qKλ,ν
Q,P [Lν(q)

∗],

[Ep,q
2 ] =

∑

µ

∑

ν

pKν,µ
G,Q

qKλ,ν
Q,P [L∗

µ].

The theorem follows when one computes the Euler characteristic. �

5. Blocks

Recall that we let U(g) be the universal enveloping algebra of g and Z(g) be its center.
For every weight λ, we write χλ for the corresponding central character.

The aim of the present section is to prove the following:

Theorem 2. - Let λ be a dominant weight with atypicality degree k, then the block Fχλ

is equivalent to the maximal atypical block of gk containing the trivial module, where
if g = gl(m,n) then gk = gl(k, k)
if g = osp(2m+ 1, 2n) then gk = osp(2k + 1, 2k)
if g = osp(2m, 2n) then gk = osp(2k, 2k) or osp(2k + 2, 2k)

In what follows the Borel subalgebra b is such that every simple root of b0 is either a
simple root of b or a sum of two odd simple roots of b.

Lemma 6. - A weight λ is dominant, i.e. Lλ is finite-dimensional if and only if, for any
simple root α of b0,

• (λ+ ρ, α̌) ∈ Z>0 if α or α
2 is simple in b;

• if α = γ+β is a sum of two isotropic simple roots then (λ+ρ, α̌) ∈ Z>0 or (λ+ρ, β) =
(λ+ ρ, γ) = 0;

• Finally if α = β + γ where γ is an odd isotropic simple root and β is an odd non-
isotropic simple root, then (λ+ ρ, α̌) ∈ Z>0 or (λ+ ρ, α̌) = −1 and (λ+ ρ, γ) = 0.

Proof. - For an arbitrary Borel subalgebra b′ containing b0 let λ(b′) denote the highest
weight of Lλ with respect to b′ and ρ(b′) be the analogue of ρ for b′. A weight λ is
dominant (see [27]) if for any simple root α of b0 there exists a Borel subalgebra b′ such
that α or α

2 is simple in b′ and (λ(b′) + ρ(b′), α̌) ∈ Z>0.
If α or α

2 is a simple root of b, then we are in the situation of the first two cases and the
statement is straightforward. If α = β + γ, then choose b′ obtained by the odd reflection
with respect to γ. Then the statement follows from the following formulae

λ(b′) + ρ(b′) = λ+ ρ if (λ+ ρ, γ) 6= 0,
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λ(b′) + ρ(b′) = λ+ ρ+ γ if (λ+ ρ, γ) = 0.

�

Remark - Note that our choice of b implies that for any simple root α of b0, (ρ, α̌) =
1, 0,−1 if α is a simple root of b, a sum of two isotropic simple roots or a sum of one
isotropic and one non-isotropic odd simple roots respectively. The latter case is possible
only for osp(2m + 1, 2n). In particular, in the cases of gl(m,n) and osp(2m, 2n), every
parabolic subalgebra of g containing b is admissible for all central characters.

The above conditions on a Borel subalgebra determine b uniquely up to an automor-
phism of g if g = osp(m, 2n). In the case of g = gl(m,n) we choose the distinguished
b.

Here we list the simple roots for our choice of Borel subalgebra:
• If g = gl(m,n), m ≥ n, the simple roots are

ε1 − ε2, ε2 − ε3, ..., εm − δ1, δ1 − δ2, ..., δn−1 − δn,

ρ =
m− n− 2

2
ε1 +

m− n− 4

2
ε2 + ...+

−m− n

2
εm +

m+ n

2
δ1 + ...+

m− n+ 2

2
δn;

• If g = osp(2m+ 1, 2n) and m ≥ n, the simple roots are

ε1 − ε2, ..., εm−n+1 − δ1, δ1 − εm−n+2, ..., εm − δn, δn,

ρ = −
1

2

m
∑

i=1

εi +
1

2

n
∑

j+1

δj +

m−n
∑

i=1

(m− n− i+ 1)εi;

• If g = osp(2m+ 1, 2n) and m < n, the simple roots are

δ1 − δ2, ..., δn−m − ε1, ε1 − δn−m+1, ..., εm − δn, δn,

ρ = −
1

2

m
∑

i=1

εi +
1

2

n
∑

j+1

δj +
n−m
∑

j=1

(n−m− j)δj ;

• If g = osp(2m, 2n) and m > n, the simple roots are

ε1 − ε2, ..., εm−n − δ1, δ1 − εm−n+1, ..., δn − εm, δn + εm,

ρ =
m−n
∑

i=1

(m− n− i)εi;

• If g = osp(2m, 2n) and m ≤ n, the simple roots are

δ1 − δ2, ..., δn−m+1 − ε1, ε1 − δn−m+2, ..., δn − εm, δn + εm,

ρ =

n−m
∑

i=1

(n−m− i+ 1)δi.

Corollary 3. Let

λ+ ρ = a1ε1 + ...+ amεm + b1δ1 + ...+ bnδn.

Then λ is integral iff ai, bj ∈ Z for g = gl(m,n) or osp(2m, 2n), ai, bj ∈ 1
2 + Z for

g = osp(2m+ 1, 2n). Furthermore, λ is dominant iff the following conditions hold
• If g = gl(m,n),

a1 > a2 > ... > am and b1 > b2 > ... > bn;
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• If g = osp(2m+ 1, 2n), either

a1 > a2 > ... > am ≥
1

2
, b1 > b2 > ... > bn ≥

1

2
,

or

a1 > a2 > ... > am−l−1 > am−l = ... = am = −
1

2

and b1 > b2 > ... > bn−l−1 ≥ bn−l = ... = bn = 1
2 for some 0 ≤ l ≤ min(m,n);

• If g = osp(2m, 2n), either

a1 > a2 > ... > am−1 > |am| and b1 > b2 > ... > bn > 0,

or

a1 > a2 > ... > am−l−1 ≥ am−l = ... = am = 0

and b1 > b2 > ... > bn−l−1 > bn−l = ... = bn = 0 for some 0 ≤ l ≤ min(m,n).

Let χ = χν be a central character with atypicality degree k. Choose a self-commuting
element x =

∑

α∈A(ν)Xα. Let C(x) denote the centralizer of x in g. Then [x, g] is an ideal

in C(x) and one can choose a reductive subalgebra gx ⊂ C(x) such that C(x) = gx ⊕ [x, g]
(see [9]). This choice is canonical if the Cartan subalgebra is fixed. Denote by U(g)x the
set of adx-invariants in U(g). One can prove ([9]) that U(g)x = U(gx) ⊕ U(gx)[x,U(g)].
Consider the projection p : U(g)x → U(gx) with the kernel U(gx)[x,U(g)]. The restriction
of p to the center of Z(g) defines a homomorphism Z(g) → Z(gx). Consider the dual map

p∗ : Hom(Z(gx),C) → Hom(Z(g),C).

It was shown in [9] that the preimage (p∗)−1(χ) consists of one central character χ′ ∈
Hom(Z(gx),C) unless g = osp(2m, 2n). If g = osp(2m, 2n) then (p∗)−1(χ) might consist
of two central characters χ′ and χ′′ such that one is obtained from another by an involutive
outer automorphism of gx ≃ osp(2m − 2k, 2n − 2k) (induced by an automorphism of
o(2m− 2k)). In the latter case by χ′ we denote the central character corresponding to a
dominant weight with non-negative marks.

Terminology - We call χ′ the core of χ.

If hx = h ∩ gx, ρ′ = 1
2(

∑

α∈∆+
0 (gx) α −

∑

α∈∆+
1 (gx) α), then χ′ = χµ, where µ + ρ′ is the

restriction of ν + ρ to hx. It is a simple but very important observation that the central
character χ is uniquely determined by its core χ′.

Lemma 6 and Corollary 3 imply the following

Lemma 7. - The core χ′ is a typical dominant central character of gx.

Assume that χ has degree of atypicality k > 0. Then, independently of the choice of λ
such that χλ = χ, the Lie superalgebra gx is isomorphic to one of the following (see [9])

• if g = gl(m,n) then gx ≃ gl(p, q) with p = m− k, q = n− k;
• if g = osp(2m+ 1, 2n) then gx ≃ osp(2p+ 1, 2q) with p = m− k, q = n− k;
• if g = osp(2m, 2n) then gx = osp(2p, 2q) with p = m− k, q = n− k.
In all cases it will be convenient to encode the core χ′ by the corresponding dominant

typical weight µ+ ρ′ of gx. In what follows we write

χ′ := µ+ ρ′ = a1ε1 + · · · + apεp + b1δ1 + · · · + bqδq,
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where ai, bj satisfy the additional assumptions of dominance and typicality with respect
to gx (and additional positivity condition for gx ≃ osp(2p, 2q)), more precisely

(3) a1 > · · · > ap, b1 > · · · > bq,

(4) ai, bj ∈ Z, ai 6= −bj if g = gl(m,n),

(5) ai, bj ∈
1

2
+ Z≥0, ai 6= bj if g = osp(2m+ 1, 2n),

(6) ai ∈ Z≥0, bj ∈ Z>0, ai 6= bj if g = osp(2m, 2n).

We call the numbers ai, bj the marks of the core.
Now we define gχ ⊂ g corresponding to a connected sub-Dynkin diagram containing

the last node(s) of the diagram of g in the following way:
• if g = gl(m,n) then gχ ≃ gl(k, k);
• if g = osp(2m+ 1, 2n) then gχ ≃ osp(2k + 1, 2k);
• if g = osp(2m, 2n) and ap > 0,then gχ ≃ osp(2k, 2k);
• if g = osp(2m, 2n) and ap = 0,then gχ ≃ osp(2k + 2, 2k).
Let p be the parabolic subalgebra containing b whose Levi part is l = gχ + h. Assume

that χ is such that p is admissible for χ and λ is a dominant weight such that χλ = χ.

Terminology - If in addition λ is p-typical, we call λ stable.

Let Fχ
≤λ denote the subcategory in Fχ consisting of all g-modules with all weights ≤ λ. It

is not hard to see that if λ is stable then the highest weight of any simple g-module in Fχ
≤λ

is also stable. By Fχ
≤λ(l) we denote the corresponding truncated category of l-modules

with central character from the set Φ−1(χ) (Φ was defined just before Lemma 4).
Define the functors Res : Fχ → Fχ(l) and Ind : Fχ(l) → Fχ by

ResN = Nm, IndM = Γ0(G/P,M),

recall that m stands for the nilpotent radical of p.

Lemma 8. - Assume that λ is stable. Then the functors Res and Ind establish an equiv-
alence between the categories Fχ

≤λ and Fχ
≤λ(l).

Proof. - The statement easily follows from the typical lemma, (Lemma 5). Indeed for any
simple module Lµ(p), IndLµ(p) = Γ0(G/P,Lµ(p)) = Lµ is the unique simple quotient of
U(g) ⊗U(p) Lµ(p). All the higher cohomology groups vanish. Therefore Ind is an exact
functor which maps a simple module to a simple module. Clearly,

IndRes(Lµ(p)) ≃ Lµ(p),ResInd(Lµ) ≃ Lµ,

therefore the lemma holds. �

Our next step in the proof of Theorem 2 is “to move” any simple module to Fχ
≤λ using

translation functors. Recall the definition of translation functors (see [1]): let V be a
finite-dimensional g-module. One defines a functor T (V )χ,τ : Fχ → Fτ by T (V )χ,τ (M) =
(M ⊗ V )τ . It is not difficult to see that T (V )χ,τ is exact and T (V ∗)τ,χ is left adjoint to
T (V )χ,τ . The following lemma is also straightforward (see for example [1]).

Lemma 9. - If both T (V ∗)τ,χ and T (V )χ,τ move a simple module to a simple module,
then they establish an equivalence between the categories Fχ and Fτ .
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Lemma 10. - Let τ and χ be central characters. Assume
• for any dominant µ with χµ = χ there exists a unique weight γ of V , such that µ+ γ

is dominant and χµ+γ = τ ;
• for any dominant ν with χν=τ there exists a unique weight γ′ of V ∗ such that ν + γ′

is dominant and χν+γ′ = χ;
• the multiplicities of γ in V and γ′ in V ∗ are 1.
Then T (V )χ,τ and T (V ∗)τ,χ establish an equivalence between the categories Fχ and Fτ .

Proof. - It suffices to prove that T (V )χ,τ (Lµ) = Lµ+γ for any Lµ ∈ Fχ.
First we note that a b-singular vector in (Lµ⊗V )τ has weight µ+γ. Hence T (V )χ,τ (Lµ)

has a unique up to proportionality b-singular vector. Since T (V )χ,τ (Lµ) is contragredient,
it is either zero or Lµ+γ . It is left to prove that T (V )χ,τ (Lµ) 6= 0.

Let Cµ denote the one-dimensional b-module of weight µ. Since

Γ0(G/B,Cµ ⊗ V ) = Γ0(G/B,Cµ) ⊗ V,

and (Cµ ⊗ V )Φ
−1(τ) has only one dominant component Cµ+γ , Corollary 1 and Lemma 2

imply the isomorphism

T (V )χ,τ (Γ0(G/B,Cµ)) ≃ Γ0(G/B,Cµ+γ).

Assume that T (V )χ,τ (Lµ) = 0. Then, since T (V )χ,τ is exact, there must be a simple
subquotient Lµ′ in Γ0(G/B,Cµ)) such that T (V )χ,τ (Lµ′) = Lµ+γ . Therefore µ′ + δ =
µ + γ for some weight δ of V . But the conditions of the lemma imply that µ′ = µ.
Contradiction. �

Let E denote the standard g-module.

Lemma 11. - Let χ be a central character with degree of atypicality k > 0 and core
χ′ = a1ε1 + ...+ apεp + b1δ1...+ bqδq. Let V = E or E∗ and δ be a weight of V . Assume
that χ′+δ satisfies the conditions (3)-(6) and in addition for g = osp(2m, 2n) the numbers
of zero marks in χ′ + δ and in χ′ are the same. Let τ be the central character such that
τ ′ = χ′ + δ. Then T (V )χ,τ and T (V ∗)τ,χ establish an equivalence between Fχ and Fτ .

Proof. - Since V = E or E∗, every weight γ of V has multiplicity 1, moreover γ = ±εi,±δj
or 0. The proof can be reduced to checking the conditions of Lemma 10 for any Lµ ∈ Fχ.
We will consider here the most tedious case of g = osp(2m, 2n), δ = ±εi, the other cases
are completely analogous and we leave them to the reader.

Since χµ = χ there are the following two possibilities: either (µ+ρ, εj) = ai for a unique
j ≤ m or (µ+ ρ, εm) = −ai (in the latter case (µ+ ρ, εj) > ai for all j < m).

Let δ = εi. In the former case take ν = µ+ εj if (µ+ρ, εj−1) > ai +1. If (µ+ρ, εj−1) =
ai + 1, there exists l such that (µ + ρ, εj−1 + δl) = 0 and one should take ν = µ − δl. In
the latter case take ν = µ− εm if (µ+ ρ, εm−1) > ai + 1. If (µ+ ρ, εm−1) = ai + 1, there
exists k such that (µ+ ρ, εm−1 + δl) = 0, take ν = µ− δl.

Now deal similarly with the case δ = −εi. In the former case take ν = µ − εj if
|(µ+ρ, εj+1)| < ai−1. If (µ+ρ, εj+1) = ai−1, there exists l such that (µ+ρ, εj+1+δl) = 0
and choose ν = µ+ δl. If (µ+ ρ, εj+1) = −ai + 1, then j+ 1 = m, there exists k such that
(µ+ ρ, εm − δl) = 0 and choose ν = µ+ δl. Finally in the latter case take ν = µ+ εm. �

Lemma 12. - Let k be the degree of atypicality of χ, χ′ = a1ε1 + ...+apεp + b1δ1...+ bqδq.
Let p be the parabolic subalgebra with Levi part l = h + gχ which contains b. Let λ be
a dominant weight such that χλ = χ. There exist a central character τ such that p is
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admissible for τ , and a dominant stable weight µ, such that χµ = τ and Fχ
≤λ is equivalent

to Fτ
≤µ.

Proof. - Let

χ′ = a1ε1 + ...+ apεp + b1δ1 + ...+ bqδq.

If a1 > b1 in the osp case, a1 > −bq in gl case, put χ′
1 = χ′ + ε1, let χ1 be the central

character with core χ′
1. In this way proceed to increase a1 so that it is bigger than the

absolute value of any coordinate of λ plus p + q. If a1 < b1 in the osp case, increase b1
in the same manner. In the gl case, if a1 < −bq decrease bq. After this, pick up the next
mark in χ′ and increase (decrease) it following the same method to the absolute value of
the previous mark -1. Proceed in the same manner with all marks of χ′ increasing the
absolute value of each mark (except ap = 0 in the osp(2m, 2n) case). Call the resulting
core τ ′, and let τ be the corresponding central character. As follows from Lemma 11 the
categories Fχ and Fτ are equivalent via a composition of translation functors, which we
denote by T . Then T (Lλ) = Lµ and one can easily check that µ is stable and p-typical.
Hence Fχ

≤λ is equivalent to Fτ
≤µ. �

We would like to illustrate the above argument with few examples.
Let g = gl(3, 2), λ+ ρ = (2, 0|3, 0,−1), then µ+ ρ = (7,−1|1,−5,−6).
Let g = osp(5, 4), λ+ ρ = (5

2 ,−
1
2 |

5
2 ,

3
2 ,

1
2), then µ+ ρ = (3

2 ,−
1
2 |

9
2 ,

3
2 ,

1
2).

Let g = osp(4, 6), λ+ ρ = (4,−2|3, 2, 1), then µ+ ρ = (7,−1|6, 5, 1).
Lemma 12 and Lemma 8 imply Theorem 2. Indeed, by Lemma 12 for any dominant λ

with χλ = χ the truncated category Fχ
≤λ is equivalent to the “stable” truncated category

Fτ
≤µ for a suitable choice of µ. The latter category is equivalent to Fτ

≤µ(l) by Lemma 8.

Finally, Fτ
≤µ(l) is equivalent to the truncated part of the most atypical block of gχ since l

is the direct sum of gχ and a center. Since λ is arbitrary one can extend this equivalence
to the whole Fχ.

6. Weight diagrams and translation functors

In this section we define an alternative way to describe dominant weights following
Brundan and Stroppel (see [4], [5], [6]). Their method allows one to visualize the action
of the translation functors defined in the previous section.

Let T ⊂ R be a discrete set, X = (x1, ..., xm) ∈ T
m, Y = (y1, ..., yn) ∈ T

n. A diagram
fX,Y is a function defined on T whose values are multisets with elements <,>,× according
to the following algorithm.

• Put the symbol > in position t for all i such that xi = t.
• Put the symbol < in position t for all i such that yi = t.
• If there are both > and < in the same position replace them by the symbol ×, repeat

if possible.
Thus, fX,Y (t) may contain at most one of the two symbols >,<. We represent fX,Y by

the picture with 0 standing in position t whenever f(t) is an empty set.
Let g = gl(m,n). Let λ be a dominant integral weight such that

λ+ ρ = a1ε1 + ...+ amεm + b1δ1 + ...+ bnδn.

Set T = Z,

Xλ = (a1, ..., am), Yλ = (−b1, ...,−bn).

The diagram fλ = fXλ,Yλ
is called the weight diagram of λ.
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A diagram is the weight diagram of some dominant weight if and only if f(t) is empty or
is a single element set since both sequences a1, ..., am and b1, ..., bm are strictly decreasing
and hence do not have repetitions.

Each dominant weight is uniquely determined by its weight diagram. The number of <
is n, the number of > is m (counting × as both < and >). The number of × equals the
degree of atypicality. Replacing all × in the diagram by zeros gives a diagram of the core.
For example, the diagram

. . . , <,×, 0, 0, >,×, . . .

where . . . stand for empty positions and the left × is at position 0, corresponds to the
weight

λ+ ρ = (4, 3, 0|1, 0,−4).

The translation functor T (V )χ,τ described in Lemma 11 moves a simple module Lλ ∈ Fχ

to Lµ ∈ Fτ such that fµ is obtained from fλ by moving a symbol < or > at position t
to the next right position t + 1 or to the next left position t − 1 (the position t and the
direction are determined by a choice of the core τ ′). Assume that the chosen direction
is to the right. If the next to the right position has 0 or ×, we exchange the symbols in
position t and t+ 1. For instance,

. . . , <, 0, . . . −→ . . . , 0, <, . . .

. . . , <,×, . . . −→ . . . ,×, <, . . . .

The situation when the next to the right symbol is < or > is forbidden by the conditions
on χ and τ (see Lemma 11). We move < or > to the left using the analogous rule.

Now for any dominant weight λ, let λ̄ be the corresponding weight in the equivalent
most atypical block of gχ. Then fλ̄ is obtained from fλ by moving all symbols <, > to
the right of all crosses by the procedures described above and then replacing all of them
by 0. In our example fλ̄ is

. . . ,×, 0, 0,×, . . .

with left × at position −1.
Note also that shifting a weight diagram by one position to the right corresponds to

tensoring the corresponding module with the one dimensional representation of weight
(1, ..., 1| − 1, ...,−1).

Now let g = osp(2m, 2n). Set T = Z≥0. For a dominant weight λ such that λ + ρ =
a1ε1 + ...+ amεm + b1δ1...+ bnδn let

Xλ = (|a1|, ..., |am|), Yλ = (b1, ..., bn), fλ = fXλ,Yλ
.

It is not difficult to see that fλ is a weight diagram of a dominant λ if and only if
• for any t 6= 0, fλ(t) is empty or a single element set;
• the multiset fλ(0) does not contain <, contains > with multiplicity at most 1 (it can

contain any number of ×).
For example, if λ = (2, 0, 0|3, 0), then fλ = >

×, 0, >,<, . . . . However, in this situation
a weight is not uniquely determined by its weight diagram. More precisely, if f(0) 6= 0,
there is exactly one weight with the weight diagram f , since all the coordinates of such a
weight are non-negative. If f(0) = 0, then the coordinate a corresponding to the first >
or × can be chosen positive or negative. For instance if

f = 0, 0, <,×, >, . . . ,

then the two weights (4, 3|3, 2) and (4,−3|3, 2) are dominant and have f as their weight
diagram.
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Terminology - To distinguish those two weights we call a dominant weight positive if it
does not have negative coordinates, and negative otherwise.

The core of a weight can be obtained by replacing by 0 all × in the diagram. The
translation functors from Lemma 11 can be described in the same way as in the previous
case, except that we do not allow a symbol to move from or to the zero position. Indeed,
if we want to move > from the zero position, we can get two weights corresponding to the
same diagram, which means that the translation functor does not provide an equivalence
of blocks. Thus, in this case we have two types of blocks, one with zero mark at its
core (> at the zero position), and another without it. The former case corresponds to
gχ = osp(2k+2, 2k), the latter corresponds to gχ = osp(2k, 2k). Note that the atypicality
degree k, as before, is the number of × in a weight diagram. Finally, in order to get the
weight λ̄ corresponding to λ in the most atypical block, as in the gl case, we move all <,>
to the right of all × (except one at zero position) and then replace them by 0. A positive
weight goes to a positive one, and a negative weight goes to a negative one under this
correspondence.

Below are two examples:
if fλ = 0, 0, <,×, >,×, . . . , then fλ̄ = 0, 0,×,×, . . . ;
if fλ = <

×, 0, >,<, . . . , then fλ̄ = <
×, 0, . . . .

Now let us discuss the case osp(2m+1, 2n). We assume that λ is dominant and atypical,
then all coordinates ai, bj of λ+ ρ belong to −1

2 + Z≥0. Let T = 1
2 + Z≥0 and define Xλ,

Yλ and fλ as in the case g = osp(2m, 2n). The dominance condition is equivalent to the
following condition on a weight diagram f

• f(t) is empty or a single element set for any t 6= 1
2 ;

• f(1
2) may contain at most one of < or > and any number of ×.

As in the previous case, it is possible that two dominant weights have the same weight
diagram. That may happen if f(1

2) does not contain > or < and has at least one ×. For

example, the diagram with two × at 1
2 corresponds to (1

2 ,−
1
2 |

1
2 ,

1
2) and to (−1

2 ,−
1
2 |

1
2 ,

1
2).

The translation functors, unlike in the previous case, mix those two types of weights. So if
the weight diagram has at least one × and no <,> at the position 1

2 we put an indicator
(which we sometimes refer to as ”sign”) ± before the weight diagram in parentheses. Its
value is + if the corresponding weight has the form

λ+ ρ = (a1, ..., am−s,
1

2
,−

1

2
, ...,−

1

2
|b1, ..., bn),

and − if the corresponding weight has the form

λ+ ρ = (a1, ..., am−s,−
1

2
,−

1

2
, ...,−

1

2
|b1, ..., bn),

where s is the number of crosses at the position 1
2 .

The translation functors of Lemma 11 act on the diagrams, as in the previous case. The
only difference is that one allows to move < or > from the position 1

2 to the right but

such move transforms a diagram without indicator to one with it. If f(3
2) = 0, then the

indicator of the new diagram is −, if f(3
2) = ×, then the indicator is +. For example

<
×, 0, . . . −→ (−)×, <, . . .

<
×,×, . . . −→ (+)××, <, . . .
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Moving < (resp. >) at the position 3
2 to the left is possible if f(1

2) does not have < or

> already, and therefore either f(1
2) = 0 or f(1

2) must have an indicator. If the indicator

of f is − we just move < (resp. >) to the position 1
2 and put f(3

2) = 0. If the indicator

of f is +, one should exchange < (resp. >) at the position 3
2 with one × at the position

1
2 . For example,

(−)×, <, 0, . . . −→ <
×, 0, . . .

(+)×, <, 0, . . . −→<,×, . . .

To get the weight λ̄ in the most atypical block corresponding to λ, one does the same
as in the two previous cases (one moves all < and > to the right of all crosses and then
replaces them by 0).

Remark - It is clear from above that the most atypical blocks with trivial central char-
acters of the Lie superalgebras osp(2k + 1, 2k + 2) and osp(2k + 1, 2k) are equivalent.

7. Reduction to the most atypical case

Lemma 13. - Let α be a simple root of b0 such that either α is a simple root of b or
α is a sum of two isotropic simple roots α1 + α2. Let q be the parabolic subalgebra with
Levi part l containing b such that α, respectively α1, α2 are orthogonal to all roots in ∆(l).
Assume that ν is a l-dominant weight, such that (ν + ρ, α) = 0 (and (ν + ρ, αj) 6= 0 at
least for one j in the second case). Then Γi(G/Q,Lν(q)) = 0 for all i ≥ 0.

Proof. - Consider the parabolic subalgebra p obtained from q by adding the roots −α,
(−α1,−α2 in the second case). The fibres of the canonical projection π : G/P → G/Q
are isomorphic to G′/B′, where g′ is isomorphic to sl(2) in the first case and to sl(1, 2)
in the second case, b′ = g′ ∩ b. We claim that Lν(p)∗|fibre is acyclic. Indeed, in the first

case Lν(p)∗|fibre is an invertible sheaf on P
1, and the condition (ν + ρ, α) = 0 immediately

implies that it is acyclic. In the second case the underlying variety (G′/B′)0 is isomorphic

to P
1. To calculate the cohomology we use Penkov’s remark. The sheaf L̃ν(p)∗|fibre has

a filtration with four simple terms, one dominant Oν , two acyclic terms Oν−α1 , Oν−α2 ,
and one antidominant Oν−α1−α2 . If the cohomology groups of Lν(p)∗|fibre are non-trivial,

they must be one-dimensional. But that would imply (ν + ρ, α1) = (ν + ρ, α2) = 0.
Contradiction.

Now the statement follows from Leray spectral sequence. �

Lemma 14. - Let g = gl(m,n). Let λ be a dominant weight and χ = χλ. Let V, δ and τ
satisfy all the conditions of Lemma 11, T (V )χ,τ (Lλ) = Lµ. Then

Γi(G/B,Lµ(b)) = T (V )χ,τ (Γi(G/B,Lλ(b))).

Proof. - By Corollary 1, one has

Γi(G/B, (V ⊗ Lλ(b))Φ
−1(τ)) = T (V )χ,τ (Γi(G/B,Lλ(b))).

We note that (V ⊗ Lλ(b))Φ
−1(τ) has a filtration with simple quotients Lν(b) such that all

ν 6= µ are not dominant and satisfy the conditions of Lemma 13. Hence Γi(G/B,Lν(b)) =
0 for all ν 6= µ. The statement follows. �
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Corollary 4. - Let g = gl(m,n). Let λ be a dominant weight with atypicality degree k,
T be the functor which establishes an equivalence between Fχλ and the most atypical block
of gχ. Denote by λ̄ the highest weight of T (Lλ). If Bχ = B ∩Gχ, then

Kλ,µ
G,B(z) = K λ̄,µ̄

Gχ,Bχ
(z)

Proof. - Due to Lemma 14 it is sufficient to prove the statement for stable λ (see Lemma 8).
Let p = gχ + b. Consider the natural projection π : G/B −→ G/P , the fibres of π are iso-
morphic to P/B = Gχ/Bχ. We note that all the simple subquotients in Rqπ∗(Lλ(b)∗|fibre)

are stable, hence H i(G/P,Rqπ∗(Lλ(b)∗|fibre)) = 0 for i > 0. The statement follows from

the Leray spectral sequence. �

If g = gl(m,n), the above corollary reduces the calculation of the cohomology groups of
an invertible sheaf Oλ on the flag variety G/B (with dominant λ) to the situation where
G = Gχ and λ has the same central character as the trivial module. If g = gl(m,n) it is
known that Γi(G/B,Lλ(b)) = 0 for all i > 0, and Γ0(G/B,Lλ(b)) is the Kac module Kλ.

Hence, calculating Kλ,µ
G,B(z) = 0Kλ,µ

G,B provides an algorithm for finding the characters of

simple modules. That was done in [24] and we do not repeat these calculations here.

Instead we concentrate on the case of the orthosymplectic group.
To do so, we have to use Theorem 1, and unfortunately we are only able to calculate

the Euler characteristic Kλ,µ
G,B(−1). That would be sufficient to find the characters if we

had an assertion like ”Kλ,λ
G,B(−1) = 1 and Kλ,µ

G,B(−1) 6= 0 implies µ ≤ λ”.

However, in general this is not true, moreover, in some cases Kλ,µ
G,B(−1) = 0. So we

should substitute B by some larger parabolic subgroup Qλ which depends on λ.
Let λ be a dominant weight. Denote by gλ the subalgebra of g defined by the Dynkin

subdiagram corresponding to the simple roots of g such that all the coordinates of λ
restricted to gλ are zero and gλ is isomorphic to osp(2s, 2s), osp(2s+2, 2s) or osp(2s+1, 2s).

Terminology - We call this subalgebra gλ the tail subalgebra of the weight λ and of the
module Lλ, and call s the length of the tail of λ.

The reader can check that s is the number of ×’s at 0 (respectively 1
2) in the weight

diagram except in the case when the indicator is +. In the latter case s is the number of
× at 1

2 minus 1. Let qλ be the parabolic subalgebra with Levi part gλ.

Lemma 15. - Let λ be a dominant weight and χ = χλ. Let V, δ and τ satisfy all the
conditions of Lemma 11. Let T (V )χ,τ (Lλ) = Lµ. Then Qλ = Qµ and

Γi(G/Qλ, Lµ(qλ)) = T (V )χ,τ (Γi(G/Qλ, Lλ(qλ))).

Proof. - The same as of Lemma 14. �

Lemma 16. - The functor T from Fχ to the most atypical block of gχ containing the
trivial module, which provides an equivalence of categories, preserves the tails of simple
modules.

Proof. - Straightforward. �

For a dominant weight λ let λ̄ be the weight of T (Lλ). Let qλ be the parabolic subalgebra
of g whose Levi part is h+gλ. The following corollary can be proved exactly as Corollary 4.
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Corollary 5. - Let λ be a dominant weight with central character χ. Then

Kλ,µ
G,Qλ

(z) = K λ̄,µ̄
Gχ,Qλ̄

(z).

The above corollary reduces the calculation of Kλ,µ
G,Qλ

(−1) to the case where g is one of

osp(2k, 2k), osp(2k+2, 2k), osp(2k+1, 2k), and λ and µ have the trivial central character.

8. Recursion

In this section we assume that g is either osp(2k, 2k), osp(2k + 2, 2k) or osp(2k + 1, 2k).
Then all the simple roots are odd and the Dynkin diagram of g is either

⊗− ...−⊗⊗
⊗|,

(with 2k vertices if g = osp(2k, 2k) and 2k + 1 vertices if g = osp(2k + 2, 2k)) or

⊗− ...−⊗ → •

(with 2k vertices for g = osp(2k + 1, 2k)). The corresponding Borel subalgebra is called
mixed ([14]).

Let s1 be the subalgebra of g generated by all the simple roots of g except the first
two, s2 be the subalgebra of s1 generated by all the simple roots of s1 except the first two
etc... Each time si has the same type as g. Let pi be the parabolic subalgebra with Levi
subalgebra li = h+si for i ≤ k−1, and let pk = b. We have a flag of parabolic subalgebras

(7) g ⊃ p1 ⊃ · · · ⊃ pk = b.

In this section, we assume that the simple finite-dimensional module Lλ has the same
central character as the trivial module, and we denote this central character by χ. In the
case of osp(2k, 2k), we also assume that λ is positive. That implies

λ+ ρ = a1ε1 + ...+ akεk + b1δ1 + ...+ bkδk,

Moreover, |ai| = |bi| for all i ≤ k. The weight diagram of λ does not have symbols >,<
except > at 0 for g = osp(2k + 2, 2k).

Remark - Let g = osp(2k, 2k) and

λ = a1(ε1 + δ1) + ...+ ak(εk + δk),

define
λ′ = a1(ε1 + δ1) + ...+ ak(−εk + δk).

If σ is the automorphism of g induced by the symmetry of the Dynkin diagram, and Mσ

is the module obtained from M by twisting by σ, then Lσ
λ = Lλ′ . Since σ acts on G/P 1,

one has
Kλ,µ

G,P 1(z) = Kλ′,µ′

G,P 1(z).

Thus, if we know Kλ,µ
G,P 1(z) for all positive λ, we can easily obtain them for all λ.

In this section, we give a recursion procedure to compute the polynomials Kλ,µ
G,P 1(z).

This recursion is double: if λ is ”far from tail and far from the even walls” (Proposition
2), we get it ”closer to the tail and the walls”. If λ is close to the wall and far from the tail
(Proposition 3) we decrease the rank of the Lie superalgebra. Finally, when λ is very close
to the tail, we compute the cohomology directly (Propositions 4, 5 in the next section).

For a Laurent polynomial F (z) ∈ C[z, z−1], we denote by F (z)+ the polynomial obtained
from F (z) by removing the monomials with negative powers of z.
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Notation - Let α = ε1 + δ1.

Before we start, we prove several technical statements that will be needed later.
Recall that E denotes the standard g-module.

Lemma 17. - Let τ be a dominant central character with degree of atypicality k−1. Then
(Lλ ⊗ E)τ is either simple or zero.

Let β = εi + δi, λ − β is dominant and ai >
3
2 . Let τ = χλ−δi

or χλ−εi
. Then

(Lλ ⊗ E)τ = 0.

Proof. - There exists at most one weight γ of E such that λ+γ is dominant and χλ+γ = τ .
The best way to see it is via weight diagrams. Indeed, the weight diagram of λ + γ is
obtained from that of λ by “separating” one × in two halves >,< and moving one half
one position to the left or to the right. It is clear that in this way one can get at most one
dominant weight diagram with given core. Hence the first statement.

To prove the second statement, assume the opposite, say, (Lλ ⊗ E)χ = Lλ−δi
. Let Mπ

denote the Verma module with highest weight π. Then (Mλ ⊗ E)τ has a filtration by
Verma modules with highest weights λ− γ for all weights γ of E such that χλ−γ = τ . By
direct inspection, λ− δi is the only such weight. Therefore (Mλ ⊗E)τ = Mλ−δi

. Similarly,
(Mλ−β⊗E)τ has a filtration by Verma modules, one of the terms of this filtration is Mλ−δi

.
Thus, Lλ−δi

occurs in (Mλ−β ⊗ E)τ .
It is known (one can find a proof in [11]) that

Homg(Mλ−β,Mλ) 6= 0.

Consider the exact sequence

0 → S →Mλ−β →Mλ → F → 0.

Apply the translation functor T (E)χ,τ to it

0 → (S ⊗ E)τ → (Mλ−β ⊗ E)τ →Mλ−δi
→ (F ⊗ E)τ → 0.

Since all weights of S are strictly less than λ−β, λ− δi is not a weight of (S⊗E)χ, hence
the latter does not have a simple component Lλ−δi

. Therefore, by above, the multiplicity
of Lλ−δi

in (F ⊗E)τ is zero. But (F ⊗E)τ is a highest weight module with highest weight
λ− δi. Therefore (F ⊗ E)τ = 0. Since Lλ is a quotient of F , we get (Lλ ⊗ E)τ = 0.

Lemma is proven. �

The following lemma is very important in our calculations. We will use it in the induc-
tion step to reduce the rank of g.

Lemma 18. - Let τ 6= χ be a dominant central character with atypicality degree k or k−1,
κ be a dominant weight with central character τ (see section 5 for definition). Assume
that (κ + ρ, α) = 0. Let T be the functor establishing an equivalence between Fτ and the
maximal atypical block of gτ . Let T (Lµ) = Lµ̄(gτ ). Then

Kκ,µ
G,P 1(z) = K κ̄,µ̄

Gτ ,P 1
τ
(z),

where P 1
τ ⊂ Gτ is the analogue of P 1 for Gτ .

Proof. - The weight diagram fκ has × at the rightmost non-empty position, and symbols
< and > somewhere to the left of this ×. Using translation functors one can move those
symbols next to the rightmost ×. (If one of those <,> is at position 0 we don’t move it,
just move the second symbol.) Those translation functors commute with Γi(G/P

1, •) as
their action on simple p1-modules is the same as on the corresponding g-modules. Hence
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we can assume without loss of generality that < and > stand next to the rightmost ×
of κ. Let q = p1

τ + b. We claim that, in this case, Γi(G/P
1, Lκ(p1)) = Γi(G/Q,Lκ(q)).

Indeed, this follows from the fact that the restriction of κ on gτ is typical with respect
to p1

τ = q ∩ gτ , and by the typical lemma, the Leray spectral sequence for the canonical
projection π : G/Q −→ G/P 1 degenerates, (Rqπ∗L∗

κ = 0 for all q > 0). Now consider the
translation functor which moves < and > to the right of the rightmost ×. This functor
commutes with Γi(G/Q, •), since it moves a simple q-module to the one whose simple
subquotients are all acyclic except one (as in the proof of Lemma 14). To finish the proof
use the stability of the weight obtained from κ by translations and proceed as in the proof
of Corollary 4. �

Let g = osp(2k + 1, 2k). Let λ′ = λ if the diagram of λ does not have a sign. If the
weight diagram of λ has a sign let λ′ denote the weight whose diagram is obtained from
that of λ by switching the sign. For example, if λ = 0, then λ′ = ε1.

Recall that Φ is defined just before Lemma 4.

Lemma 19. - Let g = osp(2k+ 1, 2k). Then T (E)χ,χ is an equivalence of categories, and
T (E)χ,χ(Lλ) = Lλ′.

Proof. - The only dominant weights with central character χ of the form λ+ γ, γ being a
weight of E, are λ and λ′. It suffices to show then that T (E)χ,χ(Lλ) = Lλ′ for λ′ 6= λ.

A direct calculation proves the statement for E (λ = ε1) and for the trivial module
(λ = 0). Choose a maximal parabolic subalgebra p with semi-simple part s such that
Lλ(s) is either standard or trivial. Then

(Lλ(p) ⊗ E)Φ
−1(χ) = Lλ′(p),

and

(8) (Γ0(G/P,Lλ(p)) ⊗ E)χ = Γ0(G/P,Lλ′(p)).

Note that Γ0(G/P,Lλ′(p)) does not contain any subquotient isomorphic to Lλ, because the
corresponding parabolically induced module does not have Lλ as a subquotient. Therefore
the exact sequence Γ0(G/P,Lλ(p)) → Lλ → 0, after application of T (E)χ,χ, becomes
Γ0(G/P,Lλ′(p)) → Lλ′ → 0. That implies the statement. �

We call T (E)χ,χ the switch functor. Lemma 1 and Lemma 19 imply that for any
λ 6= 0, ε1

(9) Kλ,µ
G,P 1(z) = Kλ′,µ′

G,P 1(z).

Proposition 2. - Let a1 >
3
2 and a1 > |a2| + 1 if k > 1. Then

i) Kλ,µ
G,P 1(z) = (z−1Kλ−α,µ

G,P 1 (z))+ for µ /∈ {λ, λ− α},

ii) Kλ,λ
G,P 1(z) = 1,

iii) Kλ,λ−α
G,P 1 (z) = 1.

To prove the proposition we start with the following

Lemma 20. - Let λ be as in the proposition, ν = λ − ε1. One has the following short
exact sequence of p1-modules:

0 → Lλ(p1) → (Lν(p
1) ⊗ E)Φ

−1(χ) → Lλ−α(p1) → 0.
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Proof. - Consider the case g = osp(2k+ 2, 2k) or osp(2k+ 1, 2k). Note that p1-irreducible
subquotients of E are L±ε1(p

1), Lε2(p
1) and L±δ1(p

1). All of them except Lε2(p
1) are

one-dimensional. It is easy to check that the only p1-dominant weights of the form ν + γ
(γ being a weight of E) with central character χ are λ and λ− α. Hence we have

(Lν(p
1) ⊗ L−ε1(p

1))Φ
−1(χ) = (Lν(p

1) ⊗ Lε2(p
1))Φ

−1(χ) =

= (Lν(p
1) ⊗ Lδ1(p

1))Φ
−1(χ) = 0.

On the other hand,
Lν(p

1) ⊗ L−δ1(p
1) = Lλ−α(p1),

Lν(p
1) ⊗ Lε1(p

1) = Lλ(p1).

The exact sequence follows immediately.
The case g = osp(2k, 2k) can be done in the same way with the substitution of δ2 in

place of ε2. �

The short exact sequence of Lemma 20 leads to the following long exact sequence:

· · · → Γ1(G/P
1, Lλ−α(p1)) → Γ0(G/P

1, Lλ(p1)) → Γ0(G/P
1, (Lν(p

1) ⊗ E)Φ
−1(χ)) →

→ Γ0(G/P
1, Lλ−α(p1)) → 0.

By Corollary 1 we have

Γi(G/P
1, (Lν(p

1) ⊗ E)Φ
−1(χ)) = (Γi(G/P

1, Lν(p
1)) ⊗ E)χ.

Now note that ν is p1-typical. Therefore Γi(G/P
1, (Lν(p

1)) = 0 for all i > 0, and
Γ0(G/P

1, (Lν(p
1)) = Lν . Thus, the exact sequence degenerates into the following

(10) Γi(G/P
1, Lλ−α(p1)) ≃ Γi−1(G/P

1, Lλ(p1)) for i ≥ 2,

and
(11)
0 → Γ1(G/P

1, Lλ−α(p1)) → Γ0(G/P
1, Lλ(p1)) → (Lν ⊗ E)χ → Γ0(G/P

1, Lλ−α(p1)) → 0.

Now we concentrate on the last exact sequence.
Denote by Vλ the image of Γ0(G/P

1, Lλ(p1)) in (Lν ⊗E)χ. Since Vλ is isomorphic to a
quotient of Γ0(G/P

1, Lλ(p1)), Lemma 2 implies that Vλ is generated by a highest vector
of weight λ. Lemma 23 below explains the structure of Vλ.

Lemma 21. - The module (Lν⊗E)χ is a contragredient g-module with a unique irreducible
submodule and a unique irreducible quotient isomorphic to Lλ−α.

Proof. - The module (Lν ⊗E)χ is contragredient because the tensor product of contragre-
dient modules is contragredient and all the simple modules are contragredient. The only
dominant weights of the form ν + γ (γ being a weight of E) with central character χ are
λ and λ− α. Hence they are the only possible weights of b-singular vectors in (Lν ⊗E)χ.
The exact sequence 11 implies that (Lν ⊗ E)χ has simple subquotients isomorphic to Lλ

and Lλ−α.
Assume that the socle of (Lν ⊗E)χ contains a b-singular vector of weight λ. This gives

an inclusion Lλ ⊂ (Lν ⊗ E)χ and, by duality, a surjection (Lν ⊗ E)χ → Lλ. Since there
is only one vector of weight λ, the composition of those two maps must be the identity,
thus the exact sequence 11 splits. Hence Γ0(G/P

1, Lλ(p1)) is contragredient too, and since
it’s generated by a b-singular vector of weight λ − α, it must be equal to Lλ−α. Thus, if
(Lν ⊗ E)χ contains Lλ, it is equal to Lλ ⊕ Lλ−α.
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Let us show that this is impossible. Assume the opposite. Then

C = Homg(Lλ, Lν ⊗ E) = Homg(Lλ ⊗ E,Lν),

hence (Lλ ⊗ E)χν = Lν . But Lemma 17 (with τ = χν) implies (Lλ ⊗ E)χν = 0. Contra-
diction.

So now, we are sure that the socle of (Lν ⊗ E)χ is isomorphic to Lλ−α; by duality, the
same holds for the head, which is a quotient of Γ0(G/P

1, Lλ−α(p1)). �

Lemma 22. - The only weight µ such that Lµ may occur as a simple subquotient in both
Γ0(G/P

1, Lλ(p1)) and Γ0(G/P
1, Lλ−α(p1)) is λ− α.

Proof. - We prove the lemma by induction on the rank of g. Let g be the smallest for which
the statement is not true. Let Lµ occur in both Γ0(G/P

1, Lλ(p1)) and Γ0(G/P
1, Lλ−α(p1)).

Assume first that µ 6= 0 if g = osp(2k + 1, 2k) or osp(2k + 2, 2k). Let ω be the highest
weight of E, (ω = ε1 if g = osp(2k + 1, 2k) or osp(2k + 2, 2k) and δ1 if g = osp(2k, 2k)),
and let τ = χµ+ω. Clearly τ satisfies the conditions of Lemma 18, and (Lµ ⊗ E)τ =

Lµ+ω. Therefore, by Corollary 1, Lµ+ω occurs in both Γ0(G/P
1, (Lλ(p1) ⊗E)Φ

−1(τ)) and

Γ0(G/P
1, (Lλ−α(p) ⊗ E)Φ

−1(τ)).
Note that the first mark of µ is strictly less than that of λ− α by Lemma 2, hence one

can apply Lemma 17 to s1 and get some dominant weights λ1 and λ2 such that

(Lλ(p1) ⊗ E)Φ
−1(τ) = Lλ1(p

1),

(Lλ−α(p1) ⊗ E)Φ
−1(τ) = Lλ2(p

1).

Moreover, it is easy to check that λ2 = λ1 − α. Therefore Kλi,µ+ω
G,P 1 (0) 6= 0 for i = 1, 2.

By Lemma 18, Lµ+ω occurs in both Γ0(Gτ/P
1
τ , Lλ̄1

(p1
τ )) and Γ0(Gτ/P

1
τ , (Lλ̄2

(p1
τ )). Note

that λ̄2 = λ̄1 − α′, where α′ is the analogue of α for gτ . Thus, since the statement of the
lemma is not true for gτ , that contradicts the minimality of g.

If µ = 0 and g = osp(2k + 1, 2k) or osp(2k + 2, 2k), we can not apply Lemma 17. In
the case g = osp(2k + 1, 2k) one should use µ′ = ε1 and (9). If g = osp(2k + 2, 2k), we
use the automorphism σ induced by the symmetry of the Dynkin diagram. Note that σ
acts trivially on the modules with central character χ but switches some simple modules
in the block with central character τ . One gets

(Lλ(p1) ⊗ E)Φ
−1(τ) = Lλ1(p

1) ⊕ Lσ
λ1

(p1),

(Lλ−α(p1) ⊗ E)Φ
−1(τ) = Lλ2(p

1) ⊕ Lσ
λ2

(p1)

for some dominant weights λ1 and λ2 such that λ2 = λ1 − α. Since Lω is σ-invariant, it
occurs in the image of the functor Γ0 of all four summands, and one can finish the proof
as in general case. �

Lemma 23. - One has the exact sequence:

0 → Lλ−α → Vλ → Lλ → 0.

Proof. - Recall that we have the exact sequence

0 → Vλ → (Lν ⊗ E)χ → Γ0(G/P
1, Lλ−α(p1)) → 0.

From Lemma 20 we know that Lλ−α is a submodule of Vλ and Lλ is the quotient of
Vλ by the unique maximal submodule N . Suppose that N has another subquotient Lµ

with µ 6= λ − α. Denote by N ′ the orthogonal complement to N with respect to the
contravariant form on (Lν ⊗E)χ. Since N ′ has a simple subquotient Lλ, we have Vλ ⊂ N ′.
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But (Lµ ⊗E)χ/N ′ is isomorphic to the module contragredient to N , hence it must have a
subquotient Lµ. Thus, we obtain that Lµ is a subquotient in both Γ0(G/P

1, Lλ(p1)) and
Γ0(G/P

1, Lλ−α(p1)). That contradicts Lemma 22. �

The identity (10) , the exact sequence (11) and Lemma 23 imply Proposition 2.

Terminology - A pair of weights (λ, µ) is called exceptional, if Kλ,µ
G,P 1(z) 6= 0 and the first

coordinate of µ is less than the second coordinate of λ.

Proposition 3. - Assume k ≥ 2, λ is such that a1 = a2 + 1, and a2 6= 1
2 ,−

1
2 , 0. Assume

that (λ, µ) is not an exceptional pair. One has:

i) Kλ,µ
G,P 1(z) = zKλ−α,µ

P 1,P 2 (z) if µ 6= λ, λ− α;

ii) Kλ,λ
G,P 1(z) = 1;

iii) Kλ,λ−α
G,P 1 (z) = 0.

Let
ν = λ− δ1 for g = osp(2k + 1, 2k) or osp(2k + 2, 2k);

ν = λ− ε1 for g = osp(2k, 2k).

Note that ν is not dominant but is p1-dominant. Observe also that ν satisfies the conditions
of Lemma 13 for q = p2. Therefore

(12) Γi(G/P
2,Lν(p

2)) = 0 for all i ≥ 0.

Lemma 24. - One has Kν,µ
G,P 1(z) = zKν,µ

P 1,P 2(z) for any µ 6= ν, and Kν,ν
G,P 1(z) = 0.

Proof. - The notations are adapted from those of the proof of Theorem 1. Let π de-
note the canonical projection π : G/P 2 → G/P 1. The derived functors (Rqπ∗Lν(p

2)∗)
have the following properties which can be easily obtained from Lemma 3 applied to
Γi(P

1/P 2, Lν(p
2)):

- the second coordinate of µ+ ρ for any µ 6= ν such that Lµ occurs in (Rqπ∗Lν(p
2)∗) is

strictly less than a1 − 1, hence any such µ is p1-typical;
- Lν only occurs in (R0π∗Lν(p

2)∗).

Hence the second terms of the Leray spectral sequence are all zero except Ep,0
2 and E0,q

2
(for any p, q): it is just the typical Lemma 5.

Now the identity (12) asserts that this spectral sequence converges to zero. So the

conclusion is that there is an isomorphism between Ep,0
2 and E0,p−1

2 and E0,0
2 = 0 (it can’t

come from anybody and in the end it should be zero). So

Hp(G/P 1,Lν(p
1)∗) ≃ H0(G/P 1, Rp−1π∗Lν(p

2)∗)

and
Rp−1π∗Lν(p

2)∗ = Hp−1(P 1/P 2,Lν(p
2)∗|fibre).

We write the decomposition in the Grothendieck group of p1-modules:

[Hp−1(P 1/P 2,Lν(p
2)∗|fibre)] =

∑

µ

p−1Kν,µ
P 1,P 2 [Lµ(p1)∗]

and all the µ-s are p1-typical except µ = ν. Using the typical lemma 5, we instantly get
that

[Hp(G/P 1,Lν(p
1)∗)] =

∑

µ 6=ν

p−1Kν,µ
P 1,P 2 [Lµ(p1)∗]

the equality holding in the Grothendieck group of g-modules. This finishes the proof. �
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Now we are ready to prove Proposition 3. Since (λ, µ) is not an exceptional pair, the
first coordinate of µ equals either the first coordinate of λ or the second coordinate of λ.
In the former case λ = µ (see Corollary 2). So we consider the latter case. Let ω stand
for the highest weight of the standard g-module. By straightforward check of weights we
get

(Lλ(p1) ⊗ E)Φ
−1(χν) = Lν(p

1),

(Lµ ⊗ E)χν = Lµ+ω.

On the other hand, if ζ is another weight such that Kλ,ζ
G,P 1(z) 6= 0, we have (Lζ ⊗ E)χν =

Lζ+ω if the first coordinate of ζ equals the second coordinate of λ, and (Lζ ⊗ E)χν = 0
otherwise. Hence if ζ 6= µ, (Lζ ⊗ E)χν 6= Lµ+ω. Therefore, using Corollary 1 we obtain

Kλ,µ
G,P 1(z) = Kν,µ+ω

G,P 1 (z).

By Lemma 24

Kν,µ+ω
G,P 1 (z) = zKν,µ+ω

P 1,P 2 (z).

Since Kν,µ+ω
P 1,P 2 (z) does not depend on the first coordinates of the weights, we have

Kν,µ+ω
P 1,P 2 (z) = Kν−ω,µ

P 1,P 2 (z).

Note that ν−ω = λ−α, therefore (i) of Proposition 3 is proven. To show (ii) observe that
Lλ occurs with multiplicity 1 in Γ0(G/P,Lλ) by Lemma 2 and does not occur in higher
cohomology groups by Lemma 3. Finally, λ− α is not dominant, hence (iii) is trivial.

9. Pretails

We keep the assumptions of the previous section. Below we list all weights which do
not satisfy the conditions of Proposition 2 or Proposition 3:

(1) trivial weight λ = 0;
(2) the highest weight λ = ε1 of the standard representation in the case g = osp(2k +

1, 2k);
(3) λ = ε1 + δ1 for g = osp(2k, 2k) or osp(2k + 2, 2k);
(4) λ = 2ε1 + δ1 for g = osp(2k + 1, 2k) or osp(2k + 1, 2k + 2);
(5) λ = 2ε1 + ε2 + δ1 for g = osp(2k + 1, 2k) (k > 2).
In the first case the tail of λ has length k, hence qλ = g. In the other four cases the

tail has length k − 1, we call such weights pretail weights. The goal of this section is to

calculate Kλ,µ
G,P 1(z) for every pretail weight λ.

Let q be the maximal parabolic subalgebra corresponding to the first simple root, l be
its Levi part. Clearly, q ⊃ p1.

Lemma 25. - For any pretail weight λ we have

Kλ,µ
G,P 1(z) = Kλ,µ

G,Q(z)

for all µ.

Proof. - Consider the canonical projection π : G/P 1 −→ G/Q. Note that a pretail weight
λ is p1 ∩ l-typical. Hence Rqπ∗Lλ(p1)∗ = 0 for q > 0 and R0π∗Lλ(p1)∗ = Lλ(q)∗. Now the
statement follows immediately from Leray spectral sequence. �
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Lemma 26. - Let g = osp(2k, 2k) or osp(2k + 2, 2k). Then K0,µ
G,Q(z) = 0 if µ 6= 0,

K0,0
G,Q(z) = 1 + z2k−1 if g = osp(2k, 2k);

K0,0
G,Q(z) = 1 + z2k if g = osp(2k + 2, 2k).

Proof. - By Definition 1 and Penkov’s remark

Ch(Γi(G/Q,C)) ≤ Ch(Γi(G0/Q0, S
•(g/(g0 ⊕ q1)))).

We are going to describe the simple components of the q0-module S•(g/(g0 ⊕ q1)).
If g = osp(2k, 2k), let E′ denote the standard o(2k)-module and q′′ = q ∩ sp(2k), then

q0 = o(2k) ⊕ q′′ and one has the following isomorphism of q0-modules

Sp(g/(g0 ⊕ q1)) ≃ Λp(E′) ⊠ L−pδ1(q
′′),

where ⊠ means the tensor product as C-vector spaces. If ρ′′ is the half-sum of positive
roots of sp(2k), then −pδ1 + ρ′′ is not regular for all p except p = 0 or 2k. The classical
Borel-Weil-Bott theorem shows that there are two non-zero cohomology groups in degree
0 and 2k−1. Since Lemma 2 implies that Γ0(G/Q,C) 6= 0, these two components can not
cancel in the filtered module.

If g = osp(2k+2, 2k), let E′′ denote the standard sp(2k)-module and q′ = q∩0(2k+2),
then q0 = q′ ⊕ sp(2k) and one has the following isomorphism of q0-modules

Sp(g/(g0 ⊕ q1)) ≃ L−pε1(q
′) ⊠ Λp(E′′).

Further arguments are exactly the same as in the previous case. �

Lemma 27. - Let g = osp(2k + 1, 2k). Then

Kε1,µ
G,Q(z) =







0 if µ 6= ε1, 0
1 if µ = ε1
z2k−1 if µ = 0

.

Proof. - We do calculations as in the previous lemma. Let E′′ denote the standard sp(2k)-
module and q′ = q∩0(2k+1), then q0 = q′⊕sp(2k) and we have the following isomorphisms
of q0-modules

Lε1(q) ≃ Lε1(q
′),

Lε1(q) ⊗ Sp(g/g0 ⊕ q1) ≃ L(1−p)ε1
(q′) ⊠ Λp(E′′).

There are exactly three non-acyclic components

Lε1(q
′), E′′, L(1−2k)ε1

(q′) ⊠ Λ2k(E′′).

These components give rise to the standard g-module in degree 0 and the trivial module
in degree 2k − 1. �

Proposition 4. - Let g = osp(2k, 2k) or osp(2k + 2, 2k) and λ = ε1 + δ1 be the pretail
weight.

i) If g = osp(2k, 2k) and k > 1, then

Kλ,µ
G,P 1(z) =







1 if µ = λ
1 + z2k−2 if µ = 0
0 else

.
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ii) If g = osp(2, 2), then

Kλ,µ
G,P 1(z) =

{

1 if µ = λ, 0
0 else

.

iii) If g = osp(2k + 2, 2k) then

Kλ,µ
G,P 1(z) =







1 if µ = λ
z2k−1 if µ = 0
0 else

.

Proof. - We will calculate Kλ,µ
G,Q(z) instead of Kλ,µ

G,P 1(z) (see Lemma 25.) Let ω be the

highest weight of the standard module E. It is not difficult to see that ω is q-typical. In
all cases except osp(2, 2) 3 there is the short exact sequence of q-modules:

0 → Lλ(q) → (Lω(q) ⊗ E)Φ
−1(χ) → L0(q) = C → 0,

where χ = χλ. As in the proof of Proposition 2, the corresponding long exact sequence
degenerates in (10) and (11). It remains to study the structure of (Lω ⊗E)χ = (E ⊗E)χ.
It is different in the two cases.

If g = osp(2k + 2, 2k), k > 1, then

(E ⊗ E)χ = Lε1+δ1 ⊕ L0,

and Lemma 26 implies (iii).
If g = osp(2k, 2k), then E ⊗ E has two trivial subquotients. (One can see that, for

instance, looking at E⊗E∗ for gl(2k, 2k)). Therefore, for a suitable Vλ, one has the exact
sequences

0 → Vλ → (E ⊗ E)χ → L0 → 0

and

0 → L0 → Vλ → Lλ → 0.

Now (i) follows from Lemma 26.
The case osp(2, 2) can be easily done by a straightforward calculation similar to those

in the two previous lemmas, and we leave it to the reader. �

Proposition 5. - Let g = osp(2k + 1, 2k).
i) Let λ1 = 2ε1 + δ1 then

Kλ1,µ
G,P 1(z) =







1 if µ = λ1 or ε1
z2k−2 if µ = 0
0 else

.

ii) If λ2 = 2ε1 + ε2 + δ1 then

Kλ2,µ
G,P 1(z) =







1 if µ = λ2 or 0
z2k−2 if µ = ε1
0 else

.

Proof. - Let us prove (i). As in the previous proof, using Lemma 25, we may calculate

Kλ,µ
G,Q(z) instead of Kλ,µ

G,P 1(z). Consider the exact sequence of q-modules

0 → Lλ1(q) → (Lλ1−δ1(q) ⊗ E)Φ
−1(χ) → Lλ1−α(q) = Lε1(q) → 0.

3for osp(2, 2) this does not work since the standard o(2)-module is reducible and (Lλ(q)⊗E)Φ
−1(χ) has

one more subquotient L−ε1+δ1(q).
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We leave to the reader to check that all arguments in the proof of Proposition 2 go through
and it holds for λ = λ1. Thus, (i) follows from Lemma 27.

To show (ii) just use the switch functor. �

10. Exceptional pairs

The goal of this section is to describe exceptional pairs. It is convenient to do it in terms
of weight diagrams. First, we fix some terminology. We call < and > core symbols. In
what follows we refer to 0 (resp. 1

2) as the tail position and denote it by s0. For any s < t
in T we denote by lf (s, t) the number of ×-s minus the number of 0-s strictly between s
and t. By |f | we denote the double number of ×-s plus the number of core symbols at the
tail position.

First, by the results of the previous section, if (λ, µ) is exceptional and λ is a pretail,
then g = osp(2k + 1, 2k), λ = 2ε1 + ε2 + δ1 and µ = 0.

Proposition 6. - Assume that λ is not a pretail weight and let t+1 be the position of the
rightmost × in fλ. The pair (λ, µ) is exceptional if and only if the following conditions
are true

(a) fλ is obtained from fµ by moving two × from the tail position to the adjacent non-tail
positions t and t+ 1 (if fλ and fµ have signs, they remain the same);

(b) lfλ
(s0, t) is odd for g = osp(2k+1, 2k) or osp(2k, 2k) and even for g = osp(2k+2, 2k);

(c) lfλ
(s, t) ≤ 0 for any s < t;

(d) lfλ
(s0, t) + |fλ| > 0.

If (λ, µ) is exceptional, then Kλ,µ
G,P 1(z) = 1.

The proof of Proposition 6 takes the rest of the section.

Lemma 28. -
i) Let g = osp(2k, 2k), τ = χδ1. If ai = 1 for some i, then (Lλ ⊗ E)τ = 0.
ii) Let g = osp(2k + 2, 2k), τ = χε1, κ be a dominant weight with central character τ .

Then (Lκ ⊗ E)χ = Lκ−εi
⊕ Lκ+δi

, where i is such that ai = 1.
iii) Let g = osp(2k + 1, 2k), τ = χ2ε1. If ai = 3

2 for some i, then (Lλ ⊗ E)τ = 0.

Proof. - (i) Assume first that λ = ε1 + δ1. If (Lλ ⊗ E)τ 6= 0, then (Lλ ⊗ E)τ = E (by
looking at the weights). But as follows from the calculations in the proof of Proposition 4

Homg(Lλ, E ⊗ E) = Homg(Lλ ⊗ E,E) = 0.

Hence (Lλ ⊗ E)τ = 0.

In the general case, by above, we have (Lλ(pi−1) ⊗ E)Φ
−1(τ) = 0. Hence

(Γ0(G/P
i−1, Lλ(pi−1)) ⊗ E)τ = 0.

Since Lλ is a quotient of Γ0(G/P
i−1, Lλ(pi−1)) we obtain (Lλ ⊗ E)τ = 0.

(ii) We use (E ⊗ E)χ = Lε1+δ1 ⊕ L0. That implies

(Lκ(pi−1) ⊗ E)Φ
−1(χ) = Lκ−εi

(pi−1) ⊕ Lκ+δi
(pi−1).

(Keep in mind that the standard module for the Levi part of pi−1 has highest weight εi).
Therefore

(Γ0(G/P
i−1, Lκ(pi−1)) ⊗ E)χ = Γ0(G/P

i−1, Lκ−εi
(pi−1)) ⊕ Γ0(G/P

i−1, Lκ+δi
(pi−1)).

Clearly, (Lκ ⊗ E)χ is a quotient of the right hand side. Let S denote the submodule of
Γ0(G/P

i−1, Lκ(pi−1)) such that Lκ = Γ0(G/P
i−1, Lκ(pi−1))/S. All the weights of S are
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less than κ. Therefore (S ⊗ E)χ can not have simple components isomorphic to Lκ−εi
or

Lκ+δi
, hence (Lκ ⊗ E)χ must have these components. Since (Lκ ⊗ E)χ is contragredient

and its b-singular vectors may have only weights κ− εi and κ+ δi, we have (Lκ ⊗ E)χ =
Lκ−εi

⊕ Lκ+δi
(see the proof of Lemma 21 for details).

(iii) First, observe that if ai+1 = 1
2 then there are no dominant weights of the form λ+γ

with γ being a weight of E such that χλ+γ = τ . Hence we may assume that ai+1 = −1
2

or i = k. By comparison of weights either (Lλ ⊗E)τ = 0 or (Lλ ⊗E)τ = Lλ−δi
. Consider

the exact sequence as in the proof of Lemma 17

0 → S →Mλ−β →Mλ → F → 0,

where β = εi + δi. Check that (Mλ ⊗ E)χ has a filtration by Verma modules such that
their highest weights are not greater than λ− δi. Hence Lλ−δi

occurs in (Mλ ⊗ E)χ with
multiplicity 1. Now one can finish the proof by the same arguments as in the proof of
Lemma 17. �

Till the end of this section β = ε2 + δ2, ω, as usual, denotes the highest weight of E.

Lemma 29. - Let µ and ν be dominant weights with trivial central character, τ = χµ+ω.
Assume also that µ 6= 0 in the case g = osp(2k+ 1, 2k) or osp(2k+ 2, 2k). If (Lν ⊗E)τ =
Lµ+ω, then ν = µ.

Proof. - For µ 6= ε1, 0 the lemma easily follows from Lemma 17. The condition µ 6= 0, ε1
ensures that µ + ω = ν + εi or µ + ω = ν + δi for some i. Since χµ = χν = χ0, we have
µ = ν.

If µ = ε1, then g = osp(2k + 1, 2k) and by Lemma 28(iii) we again have µ+ ω = ν + εi
for some i and the statement follows by the same reason.

Similarly, if g = osp(2k, 2k) and µ = 0, one can prove the statement using Lemma 28(i).
�

Lemma 30. - Let (λ, µ) be an exceptional pair, µ1 = µ+ω and τ = χµ+ω. Assume again
that µ 6= 0 in the case g = osp(2k + 1, 2k) or osp(2k + 2, 2k). There exists a dominant
weight λ1 such that

(Lλ(p1) ⊗ E)Φ
−1(τ) = Lλ1(p

1)

and

Kλ,µ
G,P 1(z) = Kλ1,µ1

G,P 1 (z) = K λ̄1,µ̄1

Gτ ,P 1
τ
(z).

Proof. - Since (Lµ ⊗ E)τ = Lµ1 , we know that Lµ1 occurs in some

Γi(G/P
1, (Lλ(p1) ⊗ E)Φ

−1(τ)).

Hence (Lλ(p1)⊗E)Φ
−1(τ) 6= 0. If E′ denotes the standard p1-module we have the following

identity in the Grothendieck group:

[(Lλ(p1) ⊗ E)Φ
−1(τ)] = [Lλ+ε1(p

1)] + [Lλ−ε1(p
1)]+

+[Lλ+δ1(p
1)] + [Lλ−δ1(p

1)] + [(Lλ(p1) ⊗ E′)Φ
−1(τ)].

Since the first coordinate of µ is less than the second coordinate of λ,

(Lλ±ε1(p
1))Φ

−1(τ) = (Lλ±δ1(p
1))Φ

−1(τ) = 0,

and

(Lλ(p1) ⊗ E)Φ
−1(τ) = (Lλ(p1) ⊗ E′)Φ

−1(τ).
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Lemma 17 applied to p1-modules implies that (Lλ(p1) ⊗ E′)Φ
−1(τ) is simple, hence it is

isomorphic to Lλ1(p
1) for some p1-dominant λ1. By the condition on the first coordinate

of µ, λ1 is dominant.
Finally, since (Lµ ⊗E)τ = Lµ1 , the multiplicity of Lµ1 in Γi(G/P

1, (Lλ1(p
1)) is at least

the same as the multiplicity of Lµ in Γi(G/P
1, (Lλ(p1)). Hence iKλ,µ

G,P 1 ≤ iKλ1,µ1

G,P 1 . But by

Lemma 29 (Lν ⊗E)τ 6= Lµ1 for any ν 6= µ and we must have iKλ,µ
G,P 1 = iKλ1,µ1

G,P 1 . Lemma 18

implies Kλ1,µ1

G,P 1 (z) = K λ̄1,µ̄1

Gτ ,P 1
τ
(z).

�

Corollary 6. - Use the notations of the previous lemma. Let r be the position of the
rightmost × in fµ, and assume that r 6= s0. Then (λ, µ) is an exceptional pair if and only if

fλ(r) = ×, fλ(r+1) = 0, (λ̄1, µ̄1) is an exceptional pair for gτ and Kλ,µ
G,P 1(z) = K λ̄1,µ̄1

Gτ ,P 1
τ
(z).

Furthermore, fµ̄1 is obtained form fµ by removing the × from the r-th position and

fλ̄1
(t) =

{

fλ(t) if t < r
fλ(t+ 2) if t ≥ r

.

Now we are ready to prove Proposition 6 for g = osp(2k + 1, 2k). First, we prove it
in the case when µ = ε1. Then by Lemma 30 and Lemma 28(iii) fλ(3

2) = 0, fλ has a
non-empty tail and the sign of fλ is positive.

If fλ(5
2) = ×, then fλ̄1

(constructed in Lemma 30) is obtained from fλ by removing one

× from the position 5
2 and moving all non-tail ×-s two positions to the left. The sign of

fλ̄1
remains positive. Then (λ̄1, 0) is an exceptional pair for osp(2k− 1, 2k− 2). We claim

that λ̄1 is a pretail weight. Indeed, assume the opposite, then after applying the switch
functor (λ̄′1, ε1) is an exceptional pair, but the sign of fλ̄′

1
is negative which is impossible.

That proves that if the leftmost non-tail × in fλ is at 5
2 , the proposition holds.

Denote by q the position of the leftmost non-tail × in fλ and proceed by induction in
q with base q = 5

2 proven above.

If fλ(5
2) = 0, then fλ̄1

is obtained from fλ by removing × from the tail, switching the

sign to negative and moving all non-tail ×-s two positions to the left. Then (λ̄′1, ε1) is an
exceptional pair for osp(2k−1, 2k−2). By induction assumption it only happens if (λ̄′1, ε1)
satisfy the conditions of Proposition 6. But these conditions for (λ̄′1, ε1) are equivalent to
the similar conditions for (λ, ε1) since |fλ̄′

1
| = |fλ| − 2 and lfλ

(s0, t) = lfλ̄′
1
(s0, t− 2) − 2.

By use of the switch functor the case µ = 0 can be easily reduced to the case proven
above.

Finally assume that µ 6= ε1, 0. Let x(µ) denote the number of ×-s in fµ outside the
tail position. We will prove the proposition by induction on x(µ). The case x(µ) = 0
is done above. By Corollary 6 (λ, µ) is exceptional if and only if (λ̄1, µ̄1) is exceptional.
Since x(µ̄1) = x(µ) − 2, we can use the induction assumption. By direct inspection the
conditions of Proposition 6 for (λ̄1, µ̄1) and for (λ, µ) are equivalent. Proposition 6 is
proven for osp(2k + 1, 2k).

Now we deal with the case g = osp(2k + 2, 2k), osp(2k, 2k). We start with determining
when (λ, 0) is exceptional.

Lemma 31. - Let g = osp(2k+ 2, 2k), and λ = (2, 1, 0, ...|2, 1, 0, ...). Then Kλ,0
G,P 1(z) = 1.
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Proof. - Let κ = λ− δ2 and τ = χκ. By Lemma 18, Kκ,µ
G,P 1(z) = K κ̄,µ̄

Gτ ,P 1
τ
(z). Therefore, by

Proposition 4,

Kκ,µ
G,P 1(z) =







1 if µ = κ
1 + z2k−2 if µ = ε1
0 else

.

By Lemma 28 (ii)

(Lκ(p1) ⊗ E)Φ
−1(χ) = Lλ(p1) ⊕ Lλ−β(p1).

By Propositon 2 and Proposition 4, we obtain

Kλ−β,µ
G,P 1 (z) =







1 if µ = λ− β
z2k−2 if µ = 0
0 else

.

By Corollary 1

(Γi(G/P
1, Lκ(p1)) ⊗ E)χ = Γi(G/P

1, Lλ(p1)) ⊕ Γi(G/P
1, Lλ−β(p1)),

and by Lemma 28 (ii)

(E ⊗ E)χ = L0 ⊕ Lε1+δ1 , (Lκ ⊗ E)χ = Lλ ⊕ Lλ−β.

Therefore
Kκ,ε1

G,P 1(z) = Kλ−β,0
G,P 1 (z) +Kλ,0

G,P 1(z),

and we have Kλ,0
G,P 1(z) = 1. �

Lemma 32. - Let g = osp(2k+2, 2k), τ = χω, µ be a dominant weight with trivial central
character. One has(Lµ ⊗ E)τ = E if and only if µ = 0 or ε1 + δ1.

Proof. - Since ω = µ ± εi or µ ± δi, the only possible values for µ are 0 and ε1 + δ1.
Obviously (L0 ⊗ E)τ = E. To check that (Lε1+δ1 ⊗ E)τ = E, use

Homg(Lε1+δ1 ⊗ E,E) = Homg(Lε1+δ1 , E ⊗ E) = C.

�

Lemma 33. - Let g = osp(2k + 2, 2k) (resp. osp(2k, 2k)). Then (λ, 0) is an exceptional
pair if and only if

λ = (a, a− 1, 0, ...|a, a− 1, 0, ...),

a ≤ 2k − 2 is even (resp. a ≤ 2k − 3 is odd). If λ satisfies the above conditions, then

Kλ,0
G,P 1(z) = 1.

Proof. - We will prove first that if λ satisfies the conditions of Lemma, then Kλ,0
G,P 1(z) = 1.

The proof will be done by induction on a and k, the base case a = 2 is done in Lemma 31.
In this proof τ = χω.

First, let g = osp(2k+2, 2k). Set λ1 = λ+ε3. By Lemma 18 and induction assumption,
we have

Kλ1,ε1

G,P 1 (z) = K λ̄1,0
Gτ ,P 1

τ
(z) = 1.

By Lemma 28(ii) we have

(Lλ1(p
1) ⊗ E)Φ

−1(χ) = Lλ(p1) ⊕ Lλ+ε3+δ3(p
1),

and we have

Homp1(Lλ1(p
1) ⊗ E,Lλ(p1)) = Homp1(Lλ1(p

1), Lλ(p1) ⊗ E) = C.
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That implies

(Lλ(p1) ⊗ E)Φ
−1(τ) = Lλ1(p

1).

Thus, by Corollary 1 and Lemma 32 we have either Kλ,ε1+δ1
G,P 1 (z) = 1 or Kλ,0

G,P 1(z) = 1.

However, the case Kλ,ε1+δ1
G,P 1 (z) = 1 is impossible by Corollary 6 and we have Kλ,0

G,P 1(z) = 1.

Now let g = osp(2k, 2k). Set λ1 = λ+ δ3. Using the argument similar to the one above
we have

Kλ1,δ1
G,P 1 (z) = 1.

By Lemma 28(i), one has

(Lλ(p1) ⊗ E)Φ
−1(τ) = Lλ1(p

1).

and by Lemma 29 Kλ,0
G,P 1(z) = 1.

Now we will show that if (λ, 0) is an exceptional pair, then λ must satisfy the conditions
of the lemma. The proof again is by induction on k. Consider two cases fλ(1) = × and
fλ(1) = 0.

In the first case Lemma 30 implies that g = osp(2k + 2, 2k). Let i be such that ai = 1

and λ1 = λ− δi. K
λ,0
G,P 1(z) 6= 0 implies

(Lλ(p1) ⊗ E)Φ
−1(τ) = Lλ1(p

1)

and

Kλ1,ε1

G,P 1 (z) = K λ̄1,0
Gτ ,P 1

τ
(z) 6= 0.

By induction assumption

λ̄1 = (a, a− 1, 0, ...|a, a− 1, 0, ...), λ1 = (a+ 1, a, 1, ...|a+ 1, a, 0, ...),

and Kλ1,ε1

G,P 1 (z) = 1. But

(Lλ1(p
1) ⊗ E)Φ

−1(τ) = Lλ1−ε3(p
1) ⊕ Lλ1+δ3(p

1).

Since L0 occurs with multiplicity 1 in Γ0(G/P
1, Lλ1−ε3(p

1) ⊕ Lλ1+δ3(p
1)), and since we

have proved already that (λ1 − ε3, 0) is exceptional, we obtain that (λ1 + δ3, 0) is not
exceptional.

Finally, if fλ(1) = 0, take λ1 = λ+ εi (resp. λ1 = λ+ δi). Repeat the above arguments
to show that (λ̄1, 0) is again an exceptional pair. By induction assumption

λ̄1 = (a, a− 1, 0, ...|a, a− 1, 0, ...),

hence

λ = (a+ 1, a, 0, ...|a+ 1, a, 0, ...).

�

Now we can finish the proof of Proposition 6 for g = osp(2k + 2, 2k), osp(2k, 2k) in the
same way as for osp(2k + 1, 2k).
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11. Combinatorial algorithm for calculation of Kλ,µ
G,P 1(z) and Kλ,µ

G,Qλ
(−1)

The recursion formulae obtained in two previous sections determine uniquely the Poincaré

polynomials Kλ,µ
G,P 1(z) in the most atypical block. In this section we obtain a closed for-

mula for them and use it to compute Kλ,µ
G,Qλ

(−1). The results will be formulated in terms
of weight diagrams. The recursion uses double induction on the position of the rightmost
× (Proposition 2) and on the total number of ×.

We still assume that we are in the most atypical block containing the trivial module.
However, keeping track of the signs of weight diagrams in the case g = osp(2k + 1, 2k) is
annoying. To get rid off those signs, we use the equivalent block of osp(2k+1, 2k+2) with
trivial central character. Weight diagrams lying in this block have < at the tail position.
(To obtain a signed diagram from the most atypical block of osp(2k + 1, 2k) from such a
diagram f , one has to remove <, to shift all entries of f except one at the tail position
one position left and assign − if f(3

2) = 0 and + if f(3
2) = ×.)

By our assumption the core symbols can only be at the tail position.
If f(t) has ×, then let ft denote the diagram g obtained from f by removing × from

position t, (naturally g(t) = 0 if t becomes empty). Similarly, we denote by f t the diagram
obtained from f by adding × to position t. Thus, f t

s denote the diagram obtained from f
by moving × from s to t.

Definition 5. - We say that g is obtained from f by a legal move if s < t, f(s) contains
×, f(t) = 0, g = f t

s and one of the following conditions holds
(1) f(s) does not have a core symbol, lf (s, r) ≥ 0 for any s < r ≤ t;
(2) s is the tail position, |g| + lf (s, r) ≥ 0 for any s < r ≤ t.
The positions s and t are called the start and the end of a legal move M . The degree

l(M) of a legal move is defined to be lf (s, t) in the first case and |g|+ lf (s, t) in the second
case. A legal move is called ordinary if its start is not a tail. Otherwise we call a legal
move a tail legal move.

Warning. A legal move is actually the following data: two diagrams f and g and the
degree of the corresponding move. Sometimes there are two legal tail moves of different
degrees which transform f to the same diagram g. They should be considered as different
moves. For example, the diagram ×

×, 0, ... can be transformed to ×,×, ... by two different
legal moves, one of degree 0 and one of degree 2.

Definition 6. - Let s0 denote the tail position. We say that g is obtained from f by an
exceptional move if
g = (fs

s0
)t
s0

for some s < t, f(s) = f(t) = 0;
lf (a, s) ≤ 0 for all a < s and |g| + lf (s0, s) is a positive odd number;
lf (s, b) ≥ 0 for all s < b ≤ t.
Define the end position of an exceptional move to be t and the degree to be lf (s, t).

Proposition 7. - Let λ and µ be two dominant weights with trivial central character and

λ 6= 0. Then iKλ,µ
G,P 1 = 1 if µ = λ and i = 0 or fλ is obtained from fµ by a legal move

(or by an exceptional move) of degree i, with end at the position of the rightmost × of fλ.

Otherwise, iKλ,µ
G,P 1 = 0.

Proof. - If λ = µ the statement is obvious, if (λ, µ) is an exceptional pair, the statement
is proven in Proposition 6. For other cases the statement follows from Propositions 2, 3
by induction on the position of the rightmost × and the number of ×-s in fλ, the base of
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induction being done in Propositions 4, 5 and Lemma 27. One has to translate Proposi-
tion 5 and Lemma 27 from signed diagrams to diagrams with < in the tail position, which
can be done by direct comparison. �

Example. Here we give an example how to pass from osp(2k + 1, 2k) to osp(2k +
1, 2k + 2). The diagram (+)×,×, . . . corresponding to the pretail weight 2ε1 + ε2 + δ1 is
obtained from (+)××, . . . by a move of degree 2 and from (−)××, . . . by a move of degree 0.
For osp(2k + 1, 2k + 2) we have the tail move

<
×,×, · · · →<,×,×, . . .

of degree 2 and the exceptional move

×
<
×, · · · →<,×,×, . . .

of degree 0.
The diagram (−)×,×, . . . corresponding to the pretail weight 2ε1 + δ1 is obtained from

(−)××, . . . by a move of degree 2 and from (+)××, . . . by a move of degree 0. For osp(2k +
1, 2k + 2) we have the tail move

×
<
×, · · · →

<
×, 0,×, . . .

of degree 2 and the ordinary move

<
×,×, · · · →

<
×, 0,×, . . .

of degree 0.

Corollary 7. - The multiplicity of any simple module in Γi(G/P
1, Lλ(p1)) is at most one.

Corollary 8. - Let λ and µ be two dominant weights with trivial central character and

λ 6= 0. Let t be the position of j-th × in fλ counting from the right. Then iKλ,µ
P j−1,P j = 1 if

µ = λ and i = 0, or if fλ is obtained from fµ by a legal move (or by an exceptional move)

of degree i with end t. Otherwise, iKλ,µ
P j−1,P j = 0.

Let Dg denote the oriented graph whose vertices are dominant weights of g, and edges
are defined as follows:

if fλ is obtained from fµ by a legal move or exceptional move, we join λ and µ by an
edge µ −→ λ.

We put a label (s, t;w) on an edge, where s and t are the start and the end of the
corresponding legal move and w is its degree. If the move is exceptional we put the label
(s0 : s, t;w).

A path consisting of edges corresponding to legal moves with ends t1, ..., tq is called
decreasing resp. increasing if t1 > ... > tq (resp. t1 < ... < tq). (It follows immediately
from the definition that, in any path, ti 6= ti+1.) The degree l(R) of a path R is the
sum of the degrees of all legal moves corresponding to the edges included in R. It is
straightforward that Dg does not have oriented cycles.

Theorem 3. - Let P>(µ, λ) denote the set of all decreasing paths from µ to λ. Then

(13) Kλ,µ
G,Qλ

(−1) =
∑

R∈P>(µ,λ)

(−1)l(R).
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Proof. - Let r be the number of × outside the tail position in fλ. Then Theorem 1 and
Corollary 8 imply
(14)

Kλ,µ
G,Qλ

(−1) =
∑

µ≤µ1≤...≤µr≤λ

Kλ,µr

P r−1,P r(−1)K
µr,µr−1

P r−1,P r−2(−1)...Kµ1,µ
G,P 1(−1) =

∑

R∈P>(µ,λ)

(−1)l(R).

�

Remark - One can easily generalize Theorem 3 to an arbitrary block due to Corollary 5.
Legal and exceptional moves are described in the same way. We completely ignore core
symbols outside the tail position.

12. Characters

In this section we give a combinatorial algorithm for computing characters of simple
modules.

Let Eλ denote the right hand side of formula (2) in Proposition 1 with p = qλ. Note
that since Lλ(qλ) is one-dimensional, Ch(Lλ(qλ)) = eλ.

The identity (2) provides a linear system of equations, which can be solved for Ch(Lλ).

Let K denote the infinite matrix with coefficients Kλ,µ
G,Qλ

(−1). Then K is lower triangular

with 1 on diagonal. Let D = K
−1, and Dλ,µ denote the matrix coefficients of D. Then (2)

implies

(15) Ch(Lλ) =
∑

Dλ,µEµ.

Remark - One can see that the graphsDg and the matrices K and D for g = osp(2k+2, 2k)
and g = osp(2k+1, 2k) are the same if one identifies weight diagrams by switching > to <
at the tail position. It is natural to conjecture that the maximal atypical blocks in these
two cases are equivalent.

Theorem 4. - Let P<(µ, λ) denote the set of increasing paths from µ to λ in Dg, and |R|
denote the number of edges in a path R. Then

(16) Dλ,µ =
∑

R∈P<(µ,λ)

(−1)l(R)+|R|.

Proof. - Write K = 1 + U, where U is strictly low triangular. Then

D = 1 − U + U
2 − ...

Let R1 ◦R2 denote the concatenation of paths R1 and R2. Then (13) implies

(17) Dλ,µ =
∑

R∈P(µ,λ)

∑

{R=R1◦R2...◦Ri|Rj∈P>}

(−1)i+l(R),

where P(µ, λ) denotes the set of all paths from µ to λ and P> is the set of all decreasing
paths.

Any path R /∈ P<(µ, λ) has more than one term in the second sum, since there are
several ways to write it as a concatenation of decreasing paths. It is a simple exercise to
check that in this case the second sum is zero. Hence the only paths contributing to the
formula are increasing. Hence (16) holds. �
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Remark - In case g = osp(2k, 2k) Theorem 4 provides the formula for Ch(Lλ) only for
positive λ. For negative λ, we apply the automorphism σ defined in Section 7, and we use

Dλ,µ = Dλ′,µ′

.

Example. Let g = osp(6, 6) and λ = (2, 1, 0|2, 1, 0). To find Ch(Lλ), we just have
to describe the subgraph Dg containing the vertices µ ≤ λ. There are four such vertices
corresponding to the weights λ, µ = (2, 0, 0|2, 0, 0), ν = (1, 0, 0|1, 0, 0), κ = 0. They are
connected by the edges:

κ
(0,1;0)
−−−−→ ν

κ
(0,1;4)
−−−−→ ν,

κ
(0,2;3)
−−−−→ µ,

ν
(1,2;0)
−−−−→ µ,

ν
(0,2;1)
−−−−→ λ,

ν
(0,2;3)
−−−−→ λ,

µ
(0,1;0)
−−−−→ λ,

µ
(0,1;2)
−−−−→ λ.

Then the corresponding matrices are

K =









1 0 0 0
2 1 0 0
0 1 1 0
−2 −1 2 1









D =









1 0 0 0
−2 1 0 0
2 −1 1 0
−4 3 −2 1









and

Ch(Lλ) = Eλ − 2Eµ + 2Eν − 4Eκ.

The case k = 1. (See [10], [13]) If g = osp(2, 2), positive weights in the most atypical
block are of the form aε1 + aδ1. To simplify notations we put La = Laε1+aδ1 . The graph
Dg is the infinite string

0
(0,1;0)
−−−−→ 1

(1,2;0)
−−−−→ 2

(2,3;0)
−−−−→ ...,

and the characters can be calculated by

Ch(La) =

a
∑

j=0

(−1)a+jEj .

The matrix D is the same for osp(4, 2) and osp(3, 2). Let us consider the latter case.

Set λ0 = 0, λ1 = ε1, λi = iε1 + (i− 1)δ1. The graph Dg has the edges λi
(i,i+1;0)
−−−−−→ λi+1 for
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all i ≥ 1 and the edges λ0
(0,2;0)
−−−−→ λ2, λ0

(0,1;1)
−−−−→ λ1. One can easily obtain the character

formulae

Ch(Lλp) =

p
∑

i=1

(−1)p+iEλi
− 2(−1)pEλ0 =

p
∑

i=1

(−1)p+iEλi
− 2(−1)p,

for p ≥ 2, and

Ch(Lλ1) = Eλ1 + Eλ0 = Eλ1 + 1.

13. Caps and cancellations

Let f be a weight diagram. For every × at a non-tail position s, there exists exactly
one legal move f → f ′ of degree zero with start at s. If t is the end of that move, then
we join s and t by a cap. Proceeding in this way we equip f with caps for each non-tail s
such that f(s) = ×. A non-tail position s is called free if f(s) = 0 and s is not an end of
a cap. One can easily check the following properties:

- there are no free positions under a cap;
- two caps do not overlap;
- if s 6= s0, f(s) = ×, then the end of a legal move with start at s is not larger than the

end of the cap starting at s.
We call a decreasing path R ∈ P>(µ, λ) regular if
- any edge of R corresponding to a non-tail legal move corresponds to a move along a

cap on the diagram fµ;
- any edge of R corresponding to a tail legal move or an exceptional move corresponds

to a move with end at a free position.
Note that all non-tail ordinary and exceptional moves which appear in a regular path

must have degree 0. In addition, it follows directly from Definition 6 that the position s
in any exceptional legal move (s0 : s, t;w) which appears in a decreasing path from µ to λ
is a free position of fµ.

Proposition 8. - Let RP>(µ, λ) denote the set of all regular decreasing paths from µ to
λ. Then

∑

R∈P>(µ,λ)

(−1)l(R) =
∑

R∈RP>(µ,λ)

(−1)l(R).

Proof. - Define an involution ∗ on the set of all non-regular paths in P>(µ, λ) as follows.
If R is a non-regular path, one can find at least one cap whose left or right end is the end
of some “wrong” legal move included in R which is not a move along this cap. Among
such caps, pick up a cap with maximal left end. There are two possibilities:

1. The left end t of this cap is the end of some “wrong” legal move (s, t;w) (resp.
“wrong” exceptional move (s0 : s, t;w)). Then, before the edge (s, t;w) (resp. (s0 : s, t;w))
in the path R, there is an edge (t, u; 0) which, by our conditions, corresponds to a legal
move along a cap. Exchange two edges (s, t;w) (resp. (s0 : s, t;w)) and (t, u; 0) by one
which corresponds to a legal move (s, u;w + 1) (resp. exceptional move (s0 : s, u;w + 1))
and get a new irregular path R∗. One can easily check that l(R∗) = l(R) + 1.

2. The right end t of the cap is the end of some “wrong” legal move (s, t;w) (resp.
“wrong” exceptional move (s0 : s, t;w)). Note that in this case w must be positive. Let u
be the left end of the cap. Remove the edge (s, t;w) (resp. (s0 : s, t;w)) and insert (u, t; 0)
and (s, u;w− 1) (resp. (s0 : s, u;w− 1)) and get a new irregular path R∗. One can easily
check that l(R∗) = l(R) − 1.
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Obviously, ∗ is an involution. The statement follows from the condition (−1)l(R∗) =

−(−1)l(R). �

Proposition 9. - If g = osp(2n+1, 2n) or osp(2n+2, 2n) and λ, µ have the trivial central

character, then Kλ,µ
G,Qλ

(−1) is either zero or ±1. In other words, the entries of K are 0 or
±1.

If g = osp(2n, 2n) and λ, µ have trivial central character, then |Kλ,µ
G,Qλ

(−1)| ≤ 2

Proof. - By Proposition 8 and Theorem 3 we have

(18) Kλ,µ
G,Qλ

(−1) =
∑

R∈RP>(µ,λ)

(−1)l(R).

Let t1, t2, ... be all free positions written in increasing order. Let R be some decreasing
regular path. We call two tail moves appearing in R adjacent if they have ends ti and
ti−1. A pair of adjacent tail moves is vanishing if there exists an exceptional move with
label (s0 : ti−1, ti; 0). (In particular, i is odd in case g = osp(2n+ 1, 2n) or osp(2n+ 2, 2n)
and even in case g = osp(2n, 2n).) We call a path strongly regular is it does not contain
exceptional moves or a pair of vanishing tail moves.

If R is a regular but not strongly regular decreasing path, we pick up the first exceptional
move or the first vanishing adjacent pair which appears in it, depending on what occurs
earlier. Denote by R′ the path obtained from R by substituting the vanishing pair instead
of the first exceptional move (or respectively the exceptional move instead of the first
vanishing pair). Then clearly R′′ = R and R and R′ cancell in the summation of (18).
Hence the sum can be taken only over strongly regular paths.

In case g = osp(2n+ 1, 2n) or osp(2n+ 2, 2n) one can see immediately that there is at
most one strongly regular path between any two weight diagrams.

If g = osp(2n, 2n) there are two tail moves with the end t1, one of degree 0 and one of
degree equal to the double size of the tail. Hence there are at most two strongly regular
paths between two weight diagrams. Hence the statement. �

14. Appendix: index of definitions and notations

General setting

- Integral dominant weight: Section 2.

- Φ: just before Lemma 4.

- A(λ): Definition 2.

- Degree of atypicality of a dominant weight (resp. central character): Definition 2 (resp.
just after this definition).

- Admissible parabolic subalgebra for a central character: Definition 3.

- Poincaré polynomial Kλ,µ
A,B(z): Definition 4.

- List of simple roots for the chosen Borel subalgebras: Section 5.

- Dominance contitions for weights: Section 5.

- Core of a central character: just before Lemma 7.

- gχ (for a central character χ): before Lemma 8.
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- Stable weights: before Lemma 8.

- Fχ
≤λ: before Lemma 8.

- Translation functors T (V )χ,τ : after the proof of Lemma 8.

- E: Standard g-module.

- Case osp(2m, 2n), positive (resp. negative) weights: Section 6.

- Tail subalgebra of a dominant weight λ, gλ; tail of λ; algebra qλ: just before Lemma 15.

- Switch functor T (E)χ,χ: after the proof of Lemma 19.

- Exceptional pair of weights: before Proposition 3.

- Pretail weights: Section 9.

Weight diagrams and algorithm

- Diagram fλ associated to a weight λ: defined in the beginning of Section 6. We will use
the notations introduced there for this part of the appendix.

- Diagram of the core: the diagram one obtains from fλ when removing all the symbols
×.

- Is it possible to recover the weight from the diagram? Yes if g = gl(m,n), no if g =
osp(m, 2n) (see Section 6).

- Number of ×-s in the diagram: atypicality degree of the corresponding weight.

- Indicator ± and sign: see osp(2n+ 1, 2n) in Section 6 (depends on the tail’s shape).

- Action of translation functor: see section 6.

- Relationship between the number of ×-s at 0 and the length of the tail of λ: just before
Lemma 15.

- Core symbols: beginning of Section 10.

- Notation s0: tail position.

- Notation lf (s, t): number of ×-s − number of 0-s strictly between the positions s and t.

- Notation |f |: 2× number of ×-s at the tail position + number of core symbols at the
tail position.

- Notation ft: If f has a × at position t , the ft is the diagram obtained when removing
it.

- Notation f t: Diagram obtained adding to f a × at position t.

- Notation f t
s: diagram obtained from f moving a × from s to t.

- Legal moves, start and end of a legal move, degree of a legal move: Definition 5, Section
11.

- Tail legal move, ordinary legal move: Definition 5, Section 11.

- Exceptional move: Definition 6, Section 11.
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- Decreasing, increasing paths in the oriented graph Dg: just after Corollary 8.

- Length of a path in a Dg: just before Theorem 3.

- Cap: Section 13.

- Free position: Section 13.

- Strongly regular: Section 13.

- Regular path: Section 13.
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