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LPMA, Université Paris 7-Diderot, email : temam@math.jussieu.fr

July 7, 2010

Abstract

We consider the problem of pricing and hedging an option written on a non-
exchangeable asset when trading in a correlated asset is possible. This is a typical
case of incomplete market where it is well known that the super-replication concept
provides generally too high prices. Here, following J.H. Cochrane and J. Saá-Requejo,
we study valuation under No Good Deal (NGD) Assumption. First, we clarify the
notion of NGD for dynamic strategies, compute a lower and an upper bound and prove
that in fact NGD price can be strictly higher that the one previously compute in the
literature. We also propose a hedging strategy by imposing criterium on the variance
of the replication’s error. Finally, we provide various numerical illustrations showing
the efficiency of NGD pricing and hedging.

1 Introduction

In this paper, we provide new elements for pricing and hedging Basis Risk. We consider
the problem of an agent receiving (or paying) a derivative written on a risky asset V on
which trading is not possible, not allowed or costly. For example, for liquidity reasons, an
investor can sell an option on a stock and prefer to hedge with the associated index, or
in the commodities market hedge with Fioul Oil 1% an option on Fioul Oil Straight Run
0,5%. In all these cases, one consider a more liquid asset S which is highly correlated to
V and then price and hedge investing in S and cash only.

This is a typical incomplete market and the natural extension of No Arbitrage pricing,
i.e. replication, is the super-replication concept. But, in the Black Scholes diffusion world,
it is well known that it leads to unreasonably too high values. For example, the super-
replication price of a call option on a non-tradable asset is equal to the initial value of this
asset if it is possible to buy it at initiation.

Another method has been introduced by J.H. Cochrane and J. Saá-Requejo [CSR01]:
the No Good Deal (NGD) pricing. The idea is to exclude from admissible strategies,
portfolios which have too high “Sharp Ratio” because similarly to arbitrage opportunities,
good deals will quickly disappears as investors would grab them up. How should we define
Sharp ratio? In the economic theory, the Sharp ratio of a claim measures the degree to
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which the expected return of the claim is in excess of the risk free rate, as a proportion of
the standard deviation of this claim. For dynamic strategy, the definition of Sharp ratio is
not so clear and there exists different versions in the literature. We refer to J.H. Cochrane
and J. Saá-Requejo [CSR01], T. Björk and I. Slinko [BS06], E. Bayraktar and V. Young
[BY08] or S. Klöppel and M. Schweizer [KS07] among others.
S. Klöppel and M. Schweizer [KS07] define Sharp Ratio globally and find that the NGD
constraint, i.e. imposing a bound on the Sharp ratio of any portfolio based on exchangeable
claims, is equivalent to a bound on the variance of the density of the pricing measures.
Note that this definition of Sharp Ratio and No Good Deal price is linked to the notion
of coherent risk measure and coherent NGD utility function [Che08].

J.H. Cochrane and J. Saá-Requejo [CSR01] and T. Björk and I. Slinko [BS06] use
an instantaneous notion of Sharp Ratio and the authors assert that the NGD constraint
lead to a bound on the market (coverable and uncoverable) risk premium. We remark
that only a bound on the coverable risk premium naturally appears and that consequently
their notion of NGD price is not directly relied to instantaneous definition of Sharp Ratio.
We also show that it is also not relied to the global Sharp Ratio.

We choose to define No Good Deal using a global Sharp Ratio similar to the one
of S. Klöppel and M. Schweizer [KS07]. Then we introduce NGD price as the minimum
initial wealth such that there exists a strategy leading to a residual wealth (after delivering
the claim) having a positive coherent NGD utility function (see (16) and (17)). As the
super-replication price, the NGD price can be dually represented by the supremum over
all pricing measure with bounded variance (by a constant linked to NGD constraint). The
pricing measure (also called equivalent martingale measure or EMM) can be represented
by their densities which depend on the coverable and uncoverable risk premium. This
last quantity is a stochastic process and it is not possible to transfer our maximization
constraint on it. In fact, if we set a bound on the market (coverable and uncoverable) risk
premium, then the global Sharp Ratio is bounded but the reverse is not true. Thus, we
were not able to solve the maximization problem induced by NGD pricing. We propose
some upper and lower bounds for it and give analytical recipe to compute them. Then we
show that our lower bound can be significatively higher than the prices computed by J.H.
Cochrane and J. Saá-Requejo [CSR01] or T. Björk and I. Slinko [BS06] (which are equal).

One aspect not developed in our knowledge until now, is the hedging strategy asso-
ciated to No Good Deal prices. We first show that in contrast to the super-replication
notion, no natural strategy appears from No Good Deal concept. To overcome this draw-
back, we propose to impose a hedging risk criterium. Since the market is incomplete, it can
not lead to pure replication strategies. Thus we propose to minimize the variance under
the historical probability of the replication error. This notion has been firstly introduced
by D. Duffie and H.R. Richardson [DR91] and M. Schweizer [Sch92] and extended by C.
Gourieroux and al. (see [GLP98]) and lead to hedging and pricing refereed as Minimum
Variance. It is a quadratic minimization type problem and the idea is thus to project our
derivative on the set of all strategies induced by the tradable asset S and the cash. Since
those assets are not martingale under the historical probability, this is not technically
possible and therefore we will use the classical tool of change of numéraire. We obtain a
closed form formula for the hedging strategies and the error associated to this strategy.
This error can be divided in two parts. The first one is an initial wealth effect linked to
the fact that we don’t start from the Minimum Variance price. The second tends to zero
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when the two assets are perfectly correlated and is the variance of the error linked to the
non coverable risk.

In the last part, we perform numerical experiments. We consider a non exchangeable
asset which is more risky but provides higher returns than the exchangeable one. We
are typically in the case of a very liquid index and a less liquid constituent of this index.
We first compute and compare NGD prices : the price of J.H. Cochrane and J. Saá-
Requejo [CSR01] (or[BS06]) and our lower and upper bounds. We also analyze the sense
of variation of NGD prices and their convergence. In a second time, we compute our
minimum variance strategy and compare it to other possible hedging strategies such that
buy and hold or Black Scholes strategies. The comparison is made thought three point of
vue : probability of super-replication, expected loss and VaR. We find that our strategy
leads to better result.

The rest of the paper is organized as follows: in section 2, we present the financial
model. We defined the set of EMM, which must be in L2 in our context. We rely the
coverable and uncoverable risk premium to the variance of densities of EMM. In section
3, we review the various notions of “Sharp Ratio” in the literature and their implication
for No Good Deal price definition. In section 4, we provide comparison between those No
Good Deal prices and especially, we show that they can be strictly different depending
on parameters of the model. Section 5 deals with computation of the minimal variance
hedging strategy. Section 6 is devoted to numerical experiments. The technical proofs of
the paper are group in Appendix.

2 The financial model

We consider the problem of pricing and hedging a derivative written on a risky asset V on
which trading is not possible or not allowed. We assume that we can observe the price of
V at each time. We will investigate the case where there exists a risky asset S, which is
similar to V and is traded in the market. This similarity will be measured thanks to the
correlation between the risk’s sources of both assets. The financial market contains also a
non risky asset called S0.
Let (Wt)0≤t≤T and (W ∗

t )0≤t≤T be two independent real-valued Brownian motion, defined
on a complete probability space (Ω,F ,P).

dS0
t = S0

t rdt (1)

dSt = St(µSdt+ σSdWt) (2)

dVt = Vt(µV dt+ σV (ρdWt +
√

1− ρ2dW ∗
t )) (3)

where

• r is the R-valued instantaneous risk free rate,

• µS and σS are R-valued drift and volatility of S,

• µV and σV are R-valued drift and volatility of V ,

• ρ is the correlation between risk sources of both assets (W and ρW +
√

1− ρ2W ∗),
with −1 < ρ < 1.
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We will use the notations hS = µS−r
σS

and hV = µV −r
σV

for Sharp ratio (in the classical
sense) of the assets S et V respectively.

We shall denote by IF = {Ft, 0 ≤ t ≤ T} the P-augmentation of the filtration FW,W ∗

t =
σ(W (s),W ∗(s) / 0 ≤ s ≤ t) generated by (W,W ∗)∗. IF represents the flow of total
information on [0, T ] where T > 0 is a finite time horizon.

We also introduce the following notation : for any probability Q on (Ω,F), L0(Q),
L∞(Q), Lp(Q) for p > 0 will denote respectively the set of measurable, measurable and
Q-almost surely bounded, and measurable and such that the p-moment exists random
variables. For any martingale M , L2

loc(M) will be the space of progressively measurable

processes λ such that
∫ t
0 λ

2
sd < M,M >s< +∞. 1

The expectation and the variance computed under P will be denote by E and Var, the
expectation and the variance computed under Q will be denote by EQ and VarQ.
Let us introduce the set of pricing measure

Me(P) =
{

Q ∼ P : S/S0 is a Q martingale
}

.

The Fundamental Theorem of Asset Pricing asserts that under some kind of no arbitrage
condition Me(P) 6= ∅, see F. Delbaen and W. Schachermayer [DS94] 2. In our simple
setup it is easy to prove directly that Me(P) is non empty (see below) and thus that no
arbitrage condition holds.
In the context of pricing with the No Good Deal principle, we need to introduce the space

M2(P) := L2(P) ∩Me(P).3

We will see in Lemma 1 that M2(P) is also non empty. To this end we have to precise the
set of pricing measure. Let λ ∈ L2

loc((W,W
∗)), we define ZλT and Y λ

T by

ZλT = exp

(

−hSWT − 1

2
h2ST +

∫ T

0
λsdW

⋆
s − 1

2

∫ T

0
λ2sds

)

(4)

= Z0
TY

λ
T (5)

hS is interpreted as the risk premium of the hedgeable riskW and −λ as the risk premium
of the non-hedgeable risk W ∗. From now, we call Qλ the probability measure such that
ZλT = dQλ/dP, for λ ∈ L2

loc((W,W
∗)). We show in Lemma 1 below that Qλ is a so called

pricing measure, i.e. Qλ ∈ Me(P). Note that in a market where only the information on
the tradeable asset S is available (i.e. IF = σ(W (s) / 0 ≤ s ≤ T )), M2(P) = {Q0}.

Lemma 1. We denote by Λ the set of λ ∈ L2
loc((W,W

∗)) such that ZλT is a square integrable
martingale. The space M2(P) is explicitly given by

M2(P) =

{

Q | ∃λ ∈ Λ s.t.
dQ

dP
= ZλT

}

(6)

and is non empty.

1< M,M > is the bracket of M , see D. Revuz and M. Yor [RY94] p 118 for a precise Definition :
< M,M > is the unique continuous process vanishing in 0 such that M2− < M,M > is a continuous local
martingale. For example, for a Brownian motion W , d < W,W >t= dt.

2In general this holds true for local martingale.
3 by Q ∈ L2(P), we mean that the density of Q w.r.t. P is in L2.
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Proof. See Appendix 7.2.1

For the sequel, we need to express Var(ZλT ) for any λ ∈ Λ.

Lemma 2. Let λ ∈ Λ then

Var(ZλT ) = eh
2
S
TEQ̃

(

e
∫ T

0
λ2sds

)

− 1, (7)

where

dQ̃/dP = exp

(

−2hSWt − 2h2St+ 2

∫ t

0
λsdW

⋆
s − 2

∫ t

0
λ2sds

)

.

If λ is a constant process we get that

Var(ZλT ) = e(h
2
S
+λ2)T − 1. (8)

Note that a bound on the process λ implies a bound on the L2 moment of the density ZλT .
This remark will be fundamental when defining the Sharp Ratio of a wealth process.

Proof. See Appendix 7.2.2

We now define the space of trading strategies in (S0, S) denoted by S. Two kinds of con-
straints need to be impose on a strategy (Φ0,Φ1) : (i) conditions such that the associated
wealth Xt := Φ0

tS
0
t + Φ1

tSt is in L
2(P) (ii) conditions in order to avoid strategies leading

to arbitrage.

Definition 1. A strategy (Φ0,Φ1) ∈ S is a R2-valued predictable process such that :
(i) the associated wealth process X defined by Xt := Φ0

tS
0
t +Φ1

tSt ∈ L2(P)
(ii) Xt

S0
t

is a Q-martingale under all Q ∈ M2(P).

The technic of numéraire change is a classical tool in Finance. The main idea is to
express the financial assets in units of another asset called numéraire. In general, this
asset is a bank account or some bonds but theoretically it could be any process U such
that Assumption 1 below is satisfied.

Assumption 1. A numéraire U is an IF -adapted, positive semi-martingale such that 1/U
is also a semi-martingale and U0 = 1.

For example S0 satisfied Assumption 1. We define the notion of self financing with respect
to some numéraire U .

Definition 2. A strategy (Φ0,Φ1) ∈ S is U -self financed in
(

S0

U ,
S
U

)

if and only if :

(Φ0,Φ1) ∈ L

(

S0

U
,
S

U

)

Φ0d

(

S0

U

)

+Φ1d

(

S

U

)

= d

(

Φ0S0 +Φ1S

U

)

(9)

The set of such strategies is called AU
2 .
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Note that if X is a semi-martingale, L(X) is the set of progressively measurable processes
integrable with respect to X ( see Protter [Pro90], p134).
Then if (Φ0,Φ1) ∈ AU

2 , then we get

Xt = Ut

(

X0 +

∫ t

0
Φ0
sd
S0
s

Us
+

∫ t

0
Φ1
sd
Ss
Us

)

. (10)

If Ut = S0
t , we obtain the classical wealth representation

Xt = S0
t

(

X0 +

∫ t

0
Φ1
sd
Ss
S0
s

)

. (11)

A 1-self financed strategy is called shortly self financed and the set of such strategy is
called A2. The following Lemma gives the equivalence between notion of self-financing:

Lemma 3. Under Assumption 1, A2 = AU
2

Proof. See Appendix 7.2.3.

Note that, under Assumption 1, if (Φ0,Φ1) ∈ A2 then equation (10) holds.

3 Good deal definition

Roughly speaking, a good deal is an asset or a strategy whose Sharp ratio is too high.
Similarly to arbitrage opportunities, good deals will quickly disappears as investors would
use them prioritically. The idea of J.H. Cochrane and J. Saá-Requejo [CSR01] is thus to
exclude good deals as well as arbitrage opportunities. How should we define the Sharp
ratio? In the economic theory, the Sharp ratio of a claim measures the degree to which
the expected return of the claim is in excess of the risk free rate, as a proportion of
the standard deviation of this claim. To formalize this in an abstract setup, there exists
several definitions in the literature. We first analyze them in our context and conclude to
the “right” definition to use.

The first definition, the so called conditional instantaneous Sharp Ratio can be found
for example in T. Björk and I. Slinko [BS06] or E. Bayraktar and V. Young [BY08]. Let
Xt be the value of a self financing strategy at time t, the Sharp ratio is defined by :

SR1(Xt) =

1
dtE

(

dXt

Xt
/Ft
)

− r

1
dt

√

Var
(

dXt

Xt
/Ft
)

(12)

Note first, that the Sharp ratio is not a number but a stochastic process.
Of course, the value of the Sharp ratio will depend upon the type of strategy which

are allowed. In T. Björk and I. Slinko [BS06] , only the trading in the non risky asset
S0 and the exchangeable asset S are allowed. Let Xt be the value at time t of a self-
financing strategy (Φ0,Φ1) ∈ A2 : Xt = Φ0

tS
0
t + Φ1

tSt. Using the self-financing condition
and Equations (1) and (2) :

dXt = Φ0
tdS

0
t +Φ1

tdSt = Φ0
t rS

0
t dt+Φ1

tdSt = r(Xt − Φ1
tSt)dt+Φ1

tSt(µSdt+ σSdWt)

=

(

Xt

(

r +Φ1
tSt

µS − r

Xt

))

dt+ StΦ
1
tσSdWt
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Thus

E

(

dXt

Xt
/Ft
)

=

(

r +Φ1
tSt

µS − r

Xt

)

dt

1

dt
Var

(

dXt

Xt
/Ft
)

=
S2
t (Φ

1
t )

2σ2S
X2
t

dt

SR1(Xt) =
µS − r

σS
= hS

This last quantity is the Sharp ratio (in the classical sense) of the risky asset S and
the stochastic process conditional instantaneous Sharp ratio reduces in fact to a number.
Note that T. Björk and I. Slinko [BS06] point out that they consider the Sharp ratio of the
entire economy (see Remark 3.4). But in fact, they only consider trading in the tradeable
underlayings (S0 and S) and in derivatives which can be attained thanks to strategy in
those tradeable underlayings.

E. Bayraktar and V. Young [BY08] also use the notion defined in (12) but they consider
the Sharp ratio of a portfolio consisting of the tradeable underlayings and the derivative
H they want to price. The difference is major since the price of H depends on the non
tradeable asset V . In a first time, they find the portfolio in the tradeable underlayings
that minimizes the local variance of the global portfolio (including the derivative). The
price of the derivative is then obtained by fixing the instantaneous Sharp ratio to some
given value.

We now turn to a second kind of definition of Sharp ratio, the so called unconditional
global Sharp Ratio which can be found in S. Klöppel and M. Schweizer [KS07]. The
unconditional global Sharp ratio of a claim measures the degree to which the expected
return of the claim is in excess of the expected return computed under a risk neutral
pricing measure, as a proportion of the standard deviation of this claim. The definition is
formally given for any claim X on (Ω,F ,P) and depends on a measure Q ∈ M2(P).

SR2(X,Q) =
E(X)− EQ(X)
√

Var(X)
(13)

If X is constant or Var(X) = ∞, SR2(X,Q) = 0. The Sharp ratio will be defined if
X ∈ L2(P) (as Q ∈ L2(P), the Cauchy Schwarz inequality implies that X ∈ L1(Q)).
For x ∈ R and Q ∈ Me(P) let

C(x,Q) = {X ∈ L0(P) : X− ∈ L∞(P) and EQ(X) ≤ x}.
This set can be interpreted as the set of claim, which are bounded from below (in order to
avoid doubling strategies) and such that there price under the pricing measure Q is less
than x and thus affordable from x if we believe that the pricing measure is Q. It is easy to
see that if X ∈ C(x,Q) ∩ {X : E(X) <∞} ⊂ L1(P) the Sharp ratio is also well-defined.

It is clear from the definition that this second notion of Sharp ratio is intimately linked
to the choice of a pricing measure : if you believe the right pricing measure is Q and if
you consider a claim which is affordable from some initial wealth, then the Sharp ratio
measures, in proportion of standard deviation, the excess between the expected value and
the price. It is also a global measure of the performance of a claim X. Moreover it has
the following remarkable property, which is report without proof in S. Klöppel and M.
Schweizer [KS07] :
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Proposition 1. Let Q ∈ M2(P) and x ∈ R then

sup
X∈C(x,Q)∩{X :E(X)<∞}

SR2(X,Q) =
√

VarZT .

Proof. First we prove that the supremum is less or equal to
√
VarZT . IfX ∈ C(x,Q)∩{X :

E(X) <∞}\L2(P) then SR2(X,Q) = 0 else as E(X)−EQ(X) = E[(X −E(X))(1−ZT )],
the required inequality follows from Cauchy-Schwarz inequality. In order to prove that
there is in fact equality, consider the sequenceXn = x−ZT1ZT≤n, thenXn ∈ C(x,Q)∩{X :
E(X) <∞}. Moreover,

SR2(Xn,Q) =
E ((ZT1ZT≤n(ZT − 1))
√

Var(ZT1ZT≤n)
,

which converges by Lebesgues Theorem to
√

Var(ZT ).

So, for a given pricing measure and an initial wealth, imposing a bound on the Sharp
ratio SR2 of all affordable claim is equivalent to impose exactly the same bound on the
variance of the density of the pricing measure. Note that the bound does not depend on
initial wealth (which could be chosen equal to 0). As already mention in the introduction,
pricing under the No Good Deal assumption requires to compute the supremum of the
discounted claim under all the pricing measure when excluding the Good Deals, i.e. when
putting a bound on the Sharp Ratio of all affordable claim. With SR2 definition, it means
to compute the supremum of the discount claim under all pricing measure with a bounded
variance. The result of Proposition 1 is thus very important for the resolution of our
problem of pricing, since with the definition of SR1, it is not possible to achieve the same
conclusion; recall that SR1(Xt) = hS . The information obtains thanks to a bound on SR2

is thus richer than the one using SR1. So, we will choose to define the Sharp Ratio by
equation (13), i.e. with SR2.
Below we precise the restriction used for pricing under No Good Deal by J.H. Cochrane
and J. Saá-Requejo ([CSR01]) and T. Björk and I. Slinko ([BS06]) and explain why in
our opinion it is not directly relied to a restriction on the Sharp Ratio neither defined
by SR1 nor by SR2. First, we recall that J.H. Cochrane and J. Saá-Requejo ([CSR01])

defined their No Good Deal pricing rule by imposing a bound on 1
dtE

[

(

dZλ
t

Zλt

)2
]

, which is

equivalent to a bound on the process risk premium on the non coverable risk (λt)t (recall
Equation (4) for definition of (λt)t). T. Björk and I. Slinko ([BS06]) also defined their No
Good Deal pricing rule by putting a bound on (λt)t.

The first question is how to rely a restriction on (λt)t and a bound on SR1 or SR2.
The argument of T. Björk and I. Slinko ([BS06]), following L. Hansen and R. Jagannathan
[HJ91], is to say that |SR1(Xt)| = |hS | ≤ |(−hS , λt)|R2 . Then instead of imposing a bound
on the Sharp Ratio SR1(Xt) they rather put a bound on |(−hS , λt)|R2 . This is of course
mathematically correct but from our opinion it is not economic meaning full because from
the first definition of Sharp ratio only a bound on hS , the risk premium on the coverable
risk W , naturally appears. So imposing a bound on (λt)t is not economically relied to the
Sharp Ratio definition SR1 4.

4The argument of J.H. Cochrane and J. Saá-Requejo ([CSR01]) in order to link hS and 1

dt
E

[

(

dZt

Zt

)2
]

is less clear, specially in continuous time, but they also refer to L. Hansen and R. Jagannathan [HJ91].
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The next question is then : is it mathematically equivalent to put a bound on SR2

or on (λt)t? The answer is no, except as if (λt)t is a constant process (see Equation (8)).
In the general case, as we only know that (λt)t is progressively measurable, the story is
completely different. From Equation (7) and Proposition 1, if you have a bound on λt
then SR2 is also bounded. But the reverse is not automatically true. In fact, we will
present in section 4 a counter example which shows that a price with constraint on SR2

can be significatively greater than a price with constraint on the risk premium on the non
hedgeable risk (λt)t. To conclude this paragraph, the No Good Deal Prices computed by
J.H. Cochrane and J. Saá-Requejo [CSR01] and T. Björk and I. Slinko [BS06] by putting
a bound on λ is smaller than the one computed by putting a bound on SR2 and, in our
opinion, not directly related to the No Good Deal principle.

We now define a good deal of level β for a pricing measure Q ∈ Me(P) named shortly
as GD(β,Q).

Definition 3. Let β > 0 and Q ∈ Me(P), X is a (β,Q)-good deal GD(β,Q) if ∃x ∈ R

such that X ∈ C(x,Q) ∩ {X : E(X) <∞} and SR2(X,Q) > β.

Following the No Good Deal literature, we will assume that

Assumption 2. There exists Q ∈ M2(P) and β > 0, such there is no (β,Q)-good deal
(NGD(β,Q)), i.e. for all x ∈ R and X ∈ C(x,Q) ∩ {X : E(X) <∞}, SR2(X,Q) ≤ β.

From Proposition 1, it follows that:

Theorem 1. Assumption 2 is equivalent to

M2,β(P) :=
{

Q ∈ M2(P) : ‖ZT ‖L2(P) ≤
√

1 + β2
}

6= ∅.

Note again that the initial wealth does not influence No Good Deal notion and don’t
appear in the characterization above.

Proof. The first implication is a direct consequence of Proposition 1. Now assume that
M2,β(P) 6= ∅ and choose Q ∈ M2,β(P) then again by Proposition 1, for all x ∈ R and
X ∈ C(x,Q) ∩ {X : E(X) <∞}

SR2(X,Q) ≤ sup
X∈C(x,Q)∩{X :E(X)<∞}

SR2(X,Q) =
√

VarZT ≤ β,

and NGD(β,Q) holds.

We end this section by remarking that there exists arbitrage opportunities which are
not good deals. In a general context, it is thus necessary to have Assumption 2 together
with a No Arbitrage Opportunity Assumption.

Consider a Cox-Ross-Rubinstein model of one period where the exchangeable asset
is equal to S0 at time 0 and S0u with probability 0 < p < 1 and S0d with probability
0 < 1− p < 1, where d < u, at time 1. We also assume the existence of a non risky asset
equal to 1 at time 0 and 1 + r at time 1. We assume that d ≥ 1 + r. We consider the
claim X1 which is obtained at time 1 from the following strategy at time 0 : buy one unit
of risky asset and finance this by getting short of S0 units of non risky asset. The value of

9



this strategy is equal to 0 at time 0 and X1 = S1 − S0(1 + r) at time 1 and is clearly an
arbitrage opportunity. Now consider a probability measure (q, 1− q), it is easy to see that

SR2(X1, q) =
p− q

√

p(1− p)
.

For example if q > p, for all β, X1 is not a (β, q)-good deal. If q < p, it is sufficient to
choose β such that β > p−q√

p(1−p)
in order to show that X1 is not a (β, q)-good deal.

4 No Good Deal Pricing

In this section, we will investigate the notion of pricing for a contingent claim H depending
on the non-traded asset V . Since the market is imperfect, this notion must be clarified. A
standard tool is the use of the super-replication price: intuitively, it is the minimal price
which ensures in any situation the hedgeability of H. Mathematically, it is define as the
minimal initial wealth such that there exists a strategy leading to a terminal value almost
surely over the claim. For example, for a call option, since H depends on the non traded
asset, one can show that the super-replication price is +∞ if the investor is not endowed
with at least one unit of V (else it is equal to V0).

5

The super-replication price has a so called dual representation ; it is equal to the
supremum over all pricing measure Q ∈ Me(P) of the expectation of the discounted
payoff, i.e. EQ( H

S0
T

).

The definition choosen by J.H. Cochrane and J. Saá-Requejo [CSR01] and T. Björk
and I. Slinko [BS06] is the following

p̃0(H) = sup
λ∈L2

loc
((W,W ∗)), s.t. λ∈[−λmax,λmax]

E

[

ZλT
H

S0
T

]

, (14)

where

λmax =

√

1

T
ln(1 + β2)− h2S . (15)

Note that from Equation (7), if λ = (λt(ω)) ∈ [−λmax, λmax] then ZλT ∈ M2,β(P) but the
reverse is not true in general as already mentioned in section 3.
No rigorous justification is given by the authors for the choice of pricing rule (14) as a
dual representation of some No Good Deal price. To do so, we need to use the notion
of coherent risk measure as already notice in S. Klöppel and M.Schweizer [KS07] or A.S.
Cherny [Che08]. We set u as the coherent utility function 6 related to the No Good Deal
valuation, i.e.

u(X) = inf
Q∈M2,β(P)

EQ

[

X

S0
T

]

. (16)

5In fact, if we start with a finite wealth X0, since H depends on W ∗ through the non traded V , we
have that for any strategy (Φ0,Φ), P[Φ0

TS
0
T + ΦTST < H] 6= 0. Now if the investor is endowed with one

unit of V : P(VT > (VT −K)+) = 1.
6Since M2,β(P) is non-empty, Theorem 2.2 of A.S. Cherny [Che08] ensures that u is a so called coherent

utility function.
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The notion of hedgeability used in the super-replication price is now replaced by the notion
of having a positive coherent utility : the No Good Deal upper-bound price is the minimal
initial wealth such that there exists a strategy leading to a residual wealth having a positive
utility. More precisely,

p0(H) = inf

{

m ∈ R | ∃Φ ∈ A2 s.t. u

(

m+

∫ T

0
Φ0
tdS

0
T +

∫ T

0
Φ1
tdSt −H

)

≥ 0

}

. (17)

Note that if u is identity we are back to the super-replication price definition.

Theorem 2. Under the Assumption 2, the dual representation of the No Good Deal price
defined in (17) is

p0(H) = sup
Q∈M2,β(P)

EQ

[

H

S0
T

]

. (18)

Proof. Let Φ ∈ A2, then from Lemma 3, Φ ∈ AS0

2 , and using self financing Equation (9)
and (11), m being the initial value of the strategy Φ, we get that

m+

∫ T

0
Φ0
tdS

0
t +

∫ T

0
Φ1
tdSt = Φ0

TS
0
T +Φ1

TST = S0
T

(

m+

∫ T

0
Φ1
td
St
S0
t

)

.

Let Q ∈ M2,β(P), as S0
T is deterministic, we get that

EQ

[

m+

∫ T

0
Φ0
tdS

0
t +

∫ T

0
Φ1
tdSt

]

= S0
Tm.

And from Definition of u, see (16),

u

(

m+

∫ T

0
Φ0
tdS

0
t +

∫ T

0
Φ1
tdSt −H

)

= m− sup
Q∈M2,β(P)

EQ

[

H

S0
T

]

.

Thus

p0(H) = inf

{

m ∈ R | ∃Φ ∈ A2 s.t. m ≥ sup
Q∈M2,β(P)

EQ

[

H

S0
T

]

}

(19)

= sup
Q∈M2,β(P)

EQ

[

H

S0
T

]

.

This concludes the proof.

Remark 1. In the super-replication theory, there exists so called super-hedging strategies
such that starting from the super-replication price and following some super-hedging strat-
egy, H is fully hedge. But in the case of No Good Deal Pricing, no particular strategy
appears : see Equation (19). For example, Buy and Hold strategy will do the job. In the
next paragraph, we will introduce some hedging criterium starting with an initial wealth
equal to the No Good Deal price.
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The computation of the supremum in (18) is not easy. From D. Revuz and M. Yor
[RY94], the probability in the space M2,β(P) can be represented by their densities, i.e. ZλT
(see Lemma 1). But since λ is a stochastic process, this optimization problem is difficult
to handle.

In Theorem 3, we propose to analyze the No Good Deal Price p0(H) (simply denote
by p0 from now). First, we provide some upper and lower bounds for the No Good Deal
Price p0. The upper bound will be obtain by removing the positivity assumption and
relaxing the martingale condition on the pricing measure density. To define our lower
bound, we assume that the risk premium λ of the non-hedgeable risk W ∗ is independent
of the hedgeable risk W . This allows us to fully compute the optimization problem (18)
when relaxing the positivity assumption on the pricing measure density. Then in order to
obtain a equivalent martingale measure we just add the solution of (14).

Then we investigate the link between No Good Deal Price p0 and the price p̃0 proposed
by J.H. Cochrane and J. Saá-Requejo [CSR01] and by Björk and I. Slinko [BS06] (see (14)).
We show that the No Good Deal Price can be strictly greater than p̃0. Note that this is
possible for the Call option but also for any claim H that has a closed form price in the
Black and Scholes model.

We also introduce a “degenerated” version of p0, called p̂0, defined as the supremum
of the discounted payoff over particular pricing measure in M2,β(P). In fact, we assume
that the risk premium process on non coverable risk W ∗, λ, is a constant number. We
introduce this price because with this restriction, it is strictly equivalent to put a bound
on λ or SR2, i.e. Var(ZT ) (see Equation (8)).

p̂0(H) = sup
Zλ
T
∈M2,β(P) s.t. λ∈R

E

[

ZλT
H

S0
T

]

Theorem 3. Assume that 1
T ln(1 + β2) ≥ h2S, H = (VT −K)+ and Assumption 2 holds.

Let

β̄ =

√

(1 + β2)e−h
2
S
T − 1. (20)

Then

pLB0 = εp̃0 + (1− ε)e−rTE(Z0
TY

downH) ≤ p0 ≤ pUB0 = e−rTE(ZUBH),

where ε ∈ (0, 1), Y down is defined in Lemma 4 and

ZUB = Z0
T + eh

2
S
T/2β̄

H − E (H | σ(Wt, t ≤ T ))
√

E

[

H2 − E (H | σ(Wt, t ≤ T ))2
]

. (21)

Moreover,

p0 ≥ p̃0 = p̂0 = e−rTBS(V0, T,K, µV − σV ρhS + σV λ
max
√

1− ρ2, σV ) (22)

where the functional BS give a kind of Black-Scholes price as a function of the initial
price of the stock, the maturity and the strike of the option, the drift and the volatility of

12



the stock : see Equation (49) in the Appendix for the precise definition and see (15) for
the definition of λmax. Finally

pUB0 ≥ p0 ≥ pLB0 ≥ p̃0, (23)

and there exists some situations where p0 ≥ pLB0 > p̃0.

Proof. Step 1: Computation of p̂0
We begin by choosing a λ ∈ R, and by computing

pλ0 = E

[

e−rTZλT (VT −K)+

]

. (24)

As λ is a constant process, we have seen (equation (8)) that ZλT ∈ M2,β(P) if and only if

‖ZT ‖L2(P) = e
1

2
(h2

S
+λ2)T ≤

√

1 + β2 ⇔ λ ∈ [−λmax, λmax],

see (15) for the definition of λmax. Thus,

p̂0 = sup
λ∈[−λmax,λmax]

pλ0 .

From Girsanov Theorem (see for example D. Revuz and M. Yor [RY94]), for any process
(λt)t,

W λ
t :=Wt + hSt and W λ,∗

t :=W ∗
t −

∫ t

0
λsds (25)

are standard brownian motion under Qλ defined by (4).
Thus, for all constant λ, the process V satisfy the stochastic differential equation:

dVt = Vt((µV − σV ρhS + σV λ
√

1− ρ2)dt+ σV (ρdW
λ
t +

√

1− ρ2dW λ,∗
t )). (26)

We denote by ηλ the drift of this process, i.e.

ηλ = µV − σV ρhS + σV λ
√

1− ρ2.

From Appendix (49), we are able now to state that the quantity pλ0 is given by a Black-
Scholes type formula:

pλ0 = e−rTBS(V0, T,K, η
λ, σV ). (27)

Note that BS is an increasing function of η (see Appendix (51)) and consequently pλ0 is
increasing in λ . Back to our optimization problem p̃0, we get that

p̂0 = sup
λ∈[−λmax,λmax]

pλ0 = pλ
max

0

= e−rTBS(V0, T,K, µV − σV ρhS + σV λ
max
√

1− ρ2, σV ).

Step 2: Computation of p̃0
The proof is based on a comparison Theorem for solution of stochastic differential

equations. In fact, for a progressively predictable process λt, following the proof of step 1,
we know that the process V λ follows the SDE (26) replacing λ by λt. As λt(ω) ≤ λmax,
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applying a comparison Theorem (see proposition 2.18 p.393 of I. Karatzas and S. Shreve
[KS91]), we get that V λ

t ≤ V̄t, P− p.s, where the process V̄t satisfies

dV̄t = V̄t

(

(µV − σV ρhS + σV
√

1− ρ2λmax)dt+ σV dU
∗
t

)

,

with V̄0 = V0 and U∗
t = ρdW λ

t +
√

1− ρ2dW ∗,λ
t a brownian motion under the probability

Qλ. Thus,

EQλ
[

e−rT (V λ
T −K)+

]

≤ EQλ [

e−rT (V̄T −K)+
]

.

If we compute the right hand side of this inequality using equation (49) (see Appendix),
we obtain that

EQλ [

e−rT (V̄T −K)+
]

= e−rTBS(V0, T,K, µV − σV ρhS + σV λ
max
√

1− ρ2, σV )

Thus as p̂0 ≤ p̃0, step 1 shows that

p̃0 = p̂0 = e−rTBS(V0, T,K, µV − σV ρhS + σV λ
max
√

1− ρ2, σV ). (28)

Step 3: Definition and computation of pUB0

Let FW
T = σ(Wt, t ≤ T ) and define

pUB0 = sup
Z, EZ2 ≤ 1 + β2

E
(

Z | FW
T

)

= Z0
T

E

[

Z
H

S0
T

]

(29)

Intuitively, this is an upper bound because we remove the positivity assumption and relax
the martingale one on the pricing density Z. Note that the assumption E

(

Z | FW
T

)

= Z0
T

is equivalent to S/S0 is martingale with respect to the hedgeable information only. We
are going to prove that

pUB0 = p00 + e−rT eh
2
S
T/2β̄

√

E

[

H2 − E
(

H | FW
T

)2
]

, (30)

see (27) with λ = 0 for a definition of p00.
pUB is an upper bound: we show that any element Qλ ∈ M2,β(P) satisfies the constraints
of Problem 29. As E(ZλT )

2 ≤ 1 + β2, using (5), we get that

E

(

ZλT | FW
T

)

= Z0
TE

(

Y λ
T | FW

T

)

= Z0
TE

(

1 +

∫ T

0
λtY

λ
t dW

∗
t | FW

T

)

= Z0
T ,

see, for the last equality, exercise 3.20 of [RY94].
ZUB is the optimal solution of problem 29: First, we show that ZUB (see (21)) satisfies
constraints of Problem 29. It is straightforward that E

(

ZUB | FW
T

)

= Z0
T . Furthermore,

since H − E
(

H | FW
T

)

is is orthogonal to FW
T and thus orthogonal to Z0

T :

E(ZUB)2 = E(Z0
T )

2 + eh
2
S
T β̄2

E
[

H − E
(

H | FW
T

)]2

E

[

H2 − E
(

H | FW
T

)2
] = E(Z0

T )
2 + eh

2
S
T β̄2

= eh
2
S
T + (1 + β2)− eh

2
S
T = 1 + β2,
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because E
[

HE(H | FW
T )
]

= E
[

E
(

H | FW
T

)]2
and using successively (8) and (20).

Now, we prove that ZUB reaches the maximal value of Problem 29.

E
(

ZUBH
)

= E
(

Z0
TH
)

+ eh
2
S
T/2β̄

E
(

H2
)

− E
[

HE(H | FW
T )
]

√

E

[

H2 − E
(

H | FW
T

)2
]

= E
(

Z0
TH
)

+ eh
2
S
T/2β̄

√

E

[

H2 − E
(

H | FW
T

)2
]

.

Let Z such that EZ2 ≤ 1 + β2 and E
(

Z | FW
T

)

= Z0
T , we get that

E (ZH) = E
[

Z
(

H − E
(

H | FW
T

))]

+ E
[

ZE
(

H | FW
T

)]

= E
[

(Z − Z0
T )
(

H − E
(

H | FW
T

))]

+ E
[

E
(

Z | FW
T

)

E
(

H | FW
T

)]

≤
√

E
[

Z − Z0
T

]2
√

E
[

H − E
(

H | FW
T

)]2
+ E

(

Z0
TH
)

≤ E
(

Z0
TH
)

+ eh
2
S
T/2β̄

√

E
[

H − E
(

H | FW
T

)]2
= E

(

ZUBH
)

,

where we have use successively that Z0
T is orthogonal toH−E

(

H | FW
T

)

, Cauchy-Schwartz
inequality and

E
[

Z − Z0
T

]2
= E (Z)2 − 2E

(

ZZ0
T

)

+ E
(

Z0
T

)2

≤ 1 + β2 − 2E
(

E
(

Z | FW
T

)

Z0
T

)

+ E
(

Z0
T

)2

≤ 1 + β2 − E
(

Z0
T

)2
= 1 + β2 − eh

2
S
T = eh

2
S
T β̄2

Step 4: Definition and computation of pLB0
The definition of the lower bound is a little more tricky. We first reformulate our prob-

lem using the probability QZ0

. QZ0

is defined by dQZ0

/dP = (Z0
T )

2/E(Z0
T )

2 = (Z0
T )

2e−h
2
S
T

(see (8)). Note that this kind of probability will be used in quadratic hedging part of the
paper. Using Bayes formula and recalling definition of Y λ

T (see (5)), we get that

E

[

ZλT
H

S0
T

]

= e−rTE

[

(Z0
T )

2Y λ
T

H

Z0
T

]

= e(h
2
S
−r)TEQZ0

[

Y λ
T

H

Z0
T

]

We now rewrite the constraints of problem (18) :

E
[

(ZT )
2
]

= E

[

(Z0
T )

2(Y λ
T )

2
]

= eh
2
S
TEQZ0 [

(Y λ
T )

2
]

Using the definition of β̄ (20), we get that

E

[

(ZλT )
2
]

≤ 1 + β2 ⇔ EQZ0 [

(Y λ
T )

2
]

≤ 1 + β̄2. (31)

We now assume that λ, the risk premium of the non-hedgeable risk W ∗, is independent of
the hedgeable risk W . Let FW ∗

t = σ (W ∗
u , u ≤ t). Then Y λ

T ∈ FW ∗

T and thus

E

[

ZλT
H

S0
T

]

= e(h
2
S
−r)TEQZ0

[

Y λ
T

H

Z0
T

]

= e(h
2
S
−r)TEQZ0

[

Y λ
T E

QZ0
[

H

Z0
T

| FW ∗

T

]]

.
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We now compute EQZ0
[

H
Z0
T

| FW ∗

T

]

using Q0 (see (4) with λ = 0). As dQZ0

/dQ0 =

Z0
T e

−h2
S
T ,

EQZ0
[

H

Z0
T

| FW ∗

T

]

=
EQ0

[

e−h
2
S
TZ0

T
H
Z0
T

| FW ∗

T

]

EQ0

[

e−h
2
S
TZ0

T | FW ∗

T

] = e−h
2
S
TEQ0

[

H | FW ∗

T

]

,

because EQ0
[

e−h
2
S
TZ0

T | FW ∗

T

]

= e−h
2
S
TEQ0 [

Z0
T

]

= e−h
2
S
TE

[

(

Z0
T

)2
]

= 1.

EQ0 [

H | FW ∗

T

]

is fully calculable. If we rewrite Vt with Q0 (see (26)):

Vt = V0e
σV

√
1−ρ2W ∗

T × e

(

µV −σV ρhS−
σ2
V
2

)

T+σV ρW
0
T
.

Then,

EQ0
[

H | FW ∗

T

]

= EQ0
[

(VT −K)+ | FW ∗

T

]

= ψ(W ∗
T ), (32)

with

ψ(x) = EQ0

[(

V0e
σV

√
1−ρ2x × e

(

µV −σV ρhS−
σ2
V
2

)

T+σV ρW
0
T −K

)

+

]

= EQ0

[(

V0e
σV

√
1−ρ2xe

(

µV −σV ρhS−(1−ρ2)σ
2
V
2

−ρ2 σ2
V
2

)

T+σV ρW
0
T −K

)

+

]

.

Therefore ψ can be expressed with a Black Scholes type formula (see (49) in Appendix):

ψ(x) = BS

(

V0e
σV

√
1−ρ2x, T,K;µV − σV ρhS − (1− ρ2)

σ2V
2
, σV ρ

)

.

Note that we get similarly, for all Y ∈ FW ∗

T

E

[

Z0
TY

H

S0
T

]

= e−rTEQZ0

[Y ψ(W ∗
T )] (33)

So going back to our optimization problem

p0 ≥ sup
Qλ ∈ M2,β(P)

λt ∈ FW∗

t

e−rTEQλ

[(VT −K)+]

= sup
λt ∈ FW∗

t

EQZ0
(

Y λ
T

)2 ≤ 1 + β̄2

e−rTEQZ0 [

Y λ
T ψ(W

∗
T )
]

(34)

= 7 sup

Y > 0, EQZ0

Y = 1

EQZ0

Y 2 ≤ 1 + β̄2

e−rTEQZ0

[Y ψ(W ∗
T )] (35)
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We now able to state our new optimization problem used for the computation of the
lower bound of Problem 18 (we relax the positivity Assumption on Y ).

pdown0 = sup

Y ≥ 0, EQZ0

Y = 1

EQZ0

Y 2 ≤ 1 + β̄2

e−rTEQZ0

[Y ψ(W ∗
T )] (36)

Let Y down be the solution of problem 36 (see Lemma 4 below) then εY λmax

T +(1−ε)Y down

satisfies conditions of problem 35 (the two first conditions are obviously satisfied and the
third one comes directly from Cauchy-Schwartz inequality). From (33),

e−rTEQZ0 [

Y downψ(W ∗
T )
]

= e−rTE
[

Z0
TY

downH
]

and recalling (33), (24), (27) and (28), we get that

e−rTEQZ0 [

Y λmax

T ψ(W ∗
T )
]

= e−rTE[Z0
TY

λmax

T H] = pλ
max

0

= e−rTBS(V0, T,K, η
λmax

, σV ) = p̃0

So we have found a lower bound for p0 :

p0 ≥ εp̃0 + (1− ε)e−rTE[Z0
TY

downH]

It remains to find a solution for problem 36 : this is done in the lemma below which proof
is postponed in Appendix 7.2.4.

Lemma 4. The solution of Problem 36 is :

if 1− β̄
EQZ0

(ψ(W ∗

T
))

√

VarQ
Z0

ψ(W ∗

T
)
≥ 0 then

Y down = 1 + β̄
ψ(W ∗

T )− EQZ0

(ψ(W ∗
T ))

√

VarQ
Z0

ψ(W ∗
T )

pdown0 = E (ψ(W ∗
T )) + β̄

√

VarQ
Z0

ψ(W ∗
T ).

if 1− β̄
EQZ0

(ψ(W ∗

T
))

√

VarQ
Z0

ψ(W ∗

T
)
< 0 then

Y down =
(ψ(W ∗

T )− α)+

EQZ0 (

ψ(W ∗
T )− α

)

+

,

pdown0 = α+ (1 + β̄)2EQZ0

(ψ(W ∗
T )− α)+ ,

7The equality between problems 34 and 35 comes from the following observations : let Y opt be the

solution of problem 35, and Y opt
t = EQZ0 (

Y opt | FW∗

t

)

. As (Y opt
t )t is a L2 (QZ0

,FW∗

)-martingale,

from Theorem of martingale representation (see for example D. Revuz and M. Yor [RY94]) there exists
kt ∈ L2

loc(W
∗) such that dY opt

t = ktdW
∗

t . Let λopt
t = kt/Y

opt
t (note that Y opt

t > 0), λopt
t ∈ FW∗

t . By Ito

formula Y opt

T = Y opt
0 +

∫ T

0
λopt
t Y opt

t dW ∗

t = 1 +
∫ T

0
λopt
t Y opt

t dW ∗

t = Y λopt

T . Thus λopt satisfies condition of

34 and problem 35 is lower than problem 34. Let λ satisfying condition of 34 then Y λ
T satisfies condition

of 35 and thus the two problems are equal.
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where there exists a positive number α such that

EQZ0

(ψ(W ∗
T )− α)2+

(

EQZ0 (

ψ(W ∗
T )− α

)

+

)2 = 1 + β̄2.

Step 4: Proof of pLB0 ≥ p̃0 First we note that Y λmax

T satisfies the constraints of Problem
36 which implies that pdown0 ≥ p̃0. Thus, using the definition of pLB0

pLB0 − p̃0 = (1− ε)(pdown0 − p̃0) ≥ 0.

There exits situations where the inequality is strict :

Example 1. Computations have been made with µV = 0.04, σV = 0.32, µS = 0.0272,
σS = 0.256, V0 = 15, S0 = 100, K = 15, r = 0.02, T = 0.25, β = 2 and ρ = 0.8. Those
parameters are the one used in our numerical section and represent a meaningful economic
situation (see details in section 6). With these parameters, p̃0 = 2.37 while pLB0 = 2.59.
The lower bound of the No Good Deal price is 8.4% higher than p̃0. In section 6, we will
provide other examples with higher gap.

Remark 2. Using the same line of arguments as in step 1 above, it is easy to see that
p̂0(H) is also equal to the supremum of the discounted payoff over pricing measure in
M2,β(P) such that λ is a deterministic process. In fact, in this case

E

[

Zλ
T

H

S0
T

]

= e−rTBS

(

V0, T,K, µV − σV ρhS + σV
1

T

∫ T

0

λtdt
√

1− ρ2, σV

)

.

As BS is increasing in his drift term, the maximum in λ of E
[

ZλT
H
S0
T

]

will be attained

for maximum value of 1
T

∫ T
0 λtdt. Using Equation (7), the constraint

‖ZT ‖L2(P) = e
1

2
(h2

S
T+

∫ T

0
λ2t dt) ≤

√

1 + β2 ⇔ 1

T

√

∫ T

0
λ2tdt ≤ λmax

As from Cauchy Schwartz inequality, 1
T

∫ T
0 λtdt ≤ 1

T

√

∫ T
0 λ2tdt, the maximum in

sup
Zλ
T
∈M2,β(P) s.t. λt∈R

E

[

ZλT
H

S0
T

]

is also attains by λmax.

5 Minimal quadratic error hedging

The preceding section allows us to propose a price compatible with the No Good Deal
criterium. But as mention in Remark 1, there is no natural hedging strategy associated to
this criterium. In this section, we will consider the criterium of minimizing the quadratic
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error. For a given initial wealth X0, we want to find the self-financed strategy in the
tradable assets that minimizes the quadratic error (under the historical probability), i.e.
the difference between the claim and the final value of the strategy. This concept has been
introduced by H. Föllmer and D. Sonderman [FS86], in the martingale case. It is also
study by D. Duffie and H. Richardson [DR91] and by M. Schweizer [Sch92]. The general
proof was given by C. Gourieroux, J.P. Laurent and H. Pham [GLP98]. In a first time, we
will consider the case of a general contingent claim H. Of course, when we study quadratic
hedging we have to assume that:

Assumption 3. The contingent claim H belongs to L2(P).

Mathematically, we want to solve the optimization problem:

v(H) := inf
(Φ0,Φ1)∈A2

E
[

H − (Φ0
TS

0
T +Φ1

TST )
]2

(37)

= inf
(Φ0,Φ1)∈A2

E

[

H −
(

X0 +

∫ T

0
(Φ0

tdS
0
t +Φ1

tdSt)

)]2

, (38)

for the second equality, we denote byX0 = Φ0
0S

0
0+Φ1

0S0 and use the self-financing equation
(9).
The first question is whether this problem admits a solution or not? The answer is
yes and we will construct it explicitly. In fact, from the definition of A2, we can see
directly that the solution exists. It is well known that L2(P) is an Hilbert space under
the inner product (.|.) defined by (X|Y ) = E(XY ) and the associated norm ‖.‖. The
set {Φ0

TS
0
T + Φ1

TST |(Φ0,Φ1) ∈ A2} is a linear closed subset of L2(P) (see F. Delbaen
and W. Schachermayer [DS96] Thm. 2.2.) Thus Problem (37) admits a solution by an
Hilbert space projection Theorem (see for example Luenberger [Lue69]). The natural ideal
followed by D. Duffie and H. Richardson [DR91] and later by M. Schweizer [Sch92] is to
use orthogonality and say that Φ0∗ and Φ1∗ are solutions of Problem 37 if and only for any
(Φ0,Φ1) ∈ A2,

(

H − (Φ0∗
TS

0
T +Φ1∗

TST )|Φ0
TS

0
T +Φ1

TST
)

= 0. This leads to a PDE (see
Equation 3.1 in [Sch92] for example) which is not straightforward to solve explicitly. The
other natural idea is to use a projection argument and to get the explicit projection of H
on S0 and S. But as S0 and S are not martingale this is not technically possible. So we
follow the idea of C. Gourieroux, J.P. Laurent and H. Pham [GLP98] and transform the
initial problem in order to get (local) martingales and achieve the projection argument.
Let U be a numéraire, such that Assumption 1 and UT ∈ L2(P), then from Self-financing
Equation (10) and Lemma 3, we can rewrite our problem as follows :

v(H) = inf
(Φ0,Φ1)∈AU

2

E

[

U2
T

(

H

UT
−
(

X0 +

∫ T

0

(

Φ0
td
S0
t

Ut
+Φ1

td
St
Ut

)))2
]

= inf
(Φ0,Φ1)∈AU

2

E(U2
T )E

QU

[

H

UT
−
(

X0 +

∫ T

0

(

Φ0
td
S0
t

Ut
+Φ1

td
St
Ut

))]2

,

where the probability QU is defined by dQU/dP = U2
T /E(U

2
T ). The idea is to find the right

U such that S0

U and S
U are QU (local) martingale and thus be able to do the projection of

H
UT

on S0

U and S
U (by Galtchouk-Kunita-Watanabe Projection Theorem, see for example
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J. Jacod [Jac79]). In contrary to C. Gourieroux, J.P. Laurent and H. Pham [GLP98],
we do not introduce the so-called variance-optimal martingale measure in order to solve
our problem but we show directly that the fact that S0

U and S
U are QU (local) martingale

imposes a particular form on U (see Lemma 5 below). We then solve the problem using
Galtchouk-Kunita-Watanabe Projection Theorem for a general H (see Theorem 4) and
Ito calculus for a call option (see Theorem 5). The proofs of both Theorems are essentially
technical and postponed to Appendix.

Lemma 5. Let U such Assumption 1 holds and UT ∈ L2(P). We further assume that ln(U)
is an Ito process, i.e. there exist progressively measurable processes a, λ in L2

loc((W,W
∗))

and c ∈ L1([0, T ]) such that

dUλt = Uλt (atdWt + λtdW
∗
t + ctdt).

Then, S0

Uλ and S
Uλ are local martingale under the measure QUλ

defined by dQUλ

/dP =
(

UλT
)2
/E
(

UλT
)2

if and only if at = −hS and ct = r − λ2t − h2S, i.e.

Uλt = e−hSWt+
∫ t

0
λsdW ∗

s −3/2(h2
S
t+

∫ t

0
λ2sds)+rt. (39)

If λ is deterministic, then S0

Uλ and S
Uλ are QUλ

-martingale.

Proof. See Appendix 7.2.5.

Remark 3. If we do not assume that U is an Ito process but only that S0

U and S
U are

QU local martingale, then one can easily shows using Bayes formula that the probability
Q0,U defined by dQ0,U/dP = UT /E(UT )

8, belongs to Me(P) 9. Thus there exists some
progressively measurable process λ such that dQ0,U/dP = ZλT (recall Equation (4) for the
Definition of ZλT ) and the final value of U comes from an Ito process.

From Lemma 5, we get an explicit form for the numéraire Uλ but there are still a lot
of possible choices. In a first time, we can restricted our attention to constant process λ :

this allows us to compute E[UλT ] and E[UλT
2
]. We choose to use the particular numéraire

U0 and thus solve

v(H) = inf
(Φ0,Φ1)∈AU0

2

E(
(

U0
T

)2
)EQU0

[

H

U0
T

−
(

X0 +

∫ T

0
(Φ0

td
S0
t

U0
t

+Φ1
td
St
U0
t

)

)]2

(40)

Two reasons motivate this choice. The first one is a financial argument : going back to
Equation (39), the only process Uλ which is replicable from the tradeable assets (i.e. which
does not depends on W ∗), and thus can be called a numéraire from a financial point of
view is U0. The second reason is the mathematical tractability, see Remark 4.
From now on, we will write U for U0, thus

Ut = e−hSWt+(r−3/2h2
S
)t, (41)

dQU/dP = e−2hSWT−2h2
S
T . (42)

8Q0,U is the variance optimal probability used by C. Gourieroux, J.P. Laurent and H. Pham [GLP98].
9This is true only if S0 is deterministic, which is not the case of Lemma 5.
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see (62) for the last equation.
We define the following two processes WU and W ∗,U which, thanks to Girsanov Theorem
will be brownian motions under the probability QU :

WU
t =Wt + 2hSt, W

∗,U
t =W ∗

t . (43)

The following Theorem gives the solution to Problem (38) for general H.

Theorem 4. Assume that Assumption 3 holds. Consider the following Galtchouk-Kunita-
Watanabe decomposition (Φ0,H ,Φ1,H , b) for 0 ≤ t ≤ T

EQU

(

H

UT
|Ft
)

= EQU

(

H

UT

)

+

∫ t

0
Φ0,H
l d

S0
l

Ul
+

∫ t

0
Φ1,H
l d

Sl
Ul

+

∫ t

0
bldW

∗,U
l . (44)

Then Problem (37) is equivalent to

inf
(Φ0,Φ1)∈AU

2

E(U2
T )

[

[

EQU

(

H

UT

)

−X0

]2

+ EQU

(
∫ T

0
b2tdt

)

+

EQU

(

∫ T

0

(

hS(Φ
0,H
t − Φ0

t )
S0
t

Ut
+ (σS + hS)(Φ

1,H
t − Φ1

t )
St
Ut

)2

dt

)]

(45)

If (Φ0,H ,Φ1,H) ∈ AU
2 , then Φ0 = Φ0,H and Φ1 = Φ1,H are solutions of Problem 37. The

minimum is equal to

v(H) = e(2r−h
2
S
)T

[

(

EQU

(

H

UT

)

−X0

)2

+ EQU

(
∫ T

0
b2tdt

)

]

.

Proof. See Appendix 7.2.6

If we want to hedge some practical examples of derivative H, we have to perform the

Galtchouk-Kunita-Watanabe of EQU
(

H
UT

|Ft
)

and find explicitly (Φ0,H ,Φ1,H , b). This will

be done by Ito Formula. We will compute explicitly the solution for a call option on the
non traded asset, i.e. H = (VT −K)+, in Theorem 5.

Remark 4. If we choose to solve Problem 40 with λ 6= 0 instead of λ = 0, we are not
able to find so easily a self-financing strategy, which achieves the minimum. In fact when
λ 6= 0, in Problem 45 the strategy (Φ0,Φ1) also appears in the second term. So if for
minimizing we put to zero both integrals, we get two equations and thus a unique strategy
as a solution. Unfortunately, this strategy is not self-financed. Thus we have to introduce
the self-financing constraints and then minimize the sum of the integrals (and not put each
of them to zero). This problem is not mathematically tractable.

Theorem 5. If H = (VT −K)+, the solution of Problem 37 is given by

Φ0,H
t =

Ut
S0
t

[

σS + hS
σS

(

X0 +

∫ t

0

(

hSKl + ρ
Ll
Ul

)

dWU
l

)

− 1

σS

(

hSKt + ρ
Lt
Ut

)]

, (46)

and

Φ1,H
t =

Ut
σSSt

[(

hSKt + ρ
Lt
Ut

)

−hS
(

X0 +

∫ t

0

(

hSKl + ρ
Ll
Ul

)

dWU
l

)]

. (47)
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The minimum is equal to

v(H) = e(2r−h
2
S
)T

[

(

e−rTBS(V0, T,K, µV − σV hSρ, σV )−X0

)2

+ (1− ρ2)EQU

(

∫ T

0

(

Lt
Ut

)2

dt

)]

, (48)

where

Kt =
e−r(T−t)

Ut
BS(Vt, T − t,K, µV − σV hSρ, σV )

Lt = σV e
−r(T−t)+(µV −σV hSρ)(T−t)VtN (d1(Vt, T − t,K, µV − σV hSρ, σV )),

and BS and d1 are defined in Equation (49).

Proof. See Appendix 7.2.7

Remark 5. Note that KtUt = e−r(T−t)BS(Vt, T − t,K, µV − σV hSρ, σV ) is the Black-
Scholes price of a call on V with strike K and maturity T , if the pricing measure is
Q0. This can happen in two contexts : the first one is the minimal variance martingale
criterium. This is also the case, if V is tradable (i.e. the market is complete) and if e−rtVt
is a Q0 martingale (which is implied by µV − σV hSρ = r). In this case, the process Lt
represents the “Delta” of this option.

If we want to find the minimal initial wealth popt needed to perform the quadratic
hedging, it is clear from Equation (48) that popt = e−rTBS(V0, T,K, µV −σV hSρ, σV ). It
is the so called Minimum Variance price : p00 in our notation (see (27). But as our initial
capital is the No Good Deal Price p0, the optimal quadratic error is greater than the one
starting with capital popt : we have an extra term equal to e(2r−h

2
S
)T (popt − p0)

2.

6 Numerical Results

This section will be divided into two parts. We first investigate the pricing issue applying
the results of the section 4. We will compute and compare NGD prices (the price define
by J.H. Cochrane and J. Saá-Requejo ([CSR01]) and our bounds : see Theorem 3) and
also other notions of price as mean variance price and price derived from Black Scholes
methodology (see below). Furthermore we will show numerically and theoretically conver-
gence of NGD prices with respect to the correlation ρ between the risk sources and also
the limit Good deal level β.

In a second time, we compute the strategy found in section 5 and compare it to
other possible strategies as Buy and Hold or Black-Scholes (recall that no natural hedging
strategy is linked to No Good Deal price). This comparison is made through three kind
of risk measure : probability of super-replication, expected loss and Value at Risk.
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6.1 Pricing

6.1.1 Framework

We will consider different prices in our numerical experiments. Section 4 tell us that we
are not able, so far, to find a “tractable” closed formula for the No Good Deal price. Thus,
we will compute the bounds pUB0 and pLB0 as defined in Theorem 3. We intend to exhibit
various situations where pLB0 (and thus the NGD price) is above the NGD price defined
by J.H. Cochrane and J. Saá-Requejo ([CSR01]), see equation (14). In all graphics, the
first one will be denoted by “NGD-UB” (resp. “NGD-LB”) for the upper (resp. lower)
bound, and the second by “NGD-CSR”.
We will also be interested by the value of p00 defined by equation (24) whose explicit
expression is given in equation (27) (for λ = 0). This price is known as the minimal
variance price and is defined as the derivative’s price compute with the minimal variance
measure Q0 (see [GLP98]). It will be denoted in the graphics by “MV-Price”.
We also consider a price which is used some times in practice when dealing with Basis
Risk. As we consider that the processes V and S are highly correlated, one can use the
evolution property of S (i.e. the drift µS and the volatility σS) starting from V0 to induce

the evolution of V . Thus, we consider a new option, whose payoff is
(

V0
S0
ST −K

)

+
and

whose underlying is the tradable asset S. Therefore, we can compute the Black-Scholes
price of this claim, denoted S-BSt:

S-BSt = e−r(T−t)
V0
S0
BS

(

St, T − t,K
S0
V0
, r, σS

)

.

In the sequel, it will be designed by the “S-BS Price”.
Finally, we look at the “real” Black-Scholes price of the contingent claim, denoted by
V -BSt. This is the price of an option on V in a market constituted by S0 and V , when
V is tradable. Of course, this price has no economic sense in case of Basis Risk. More
precisely, it is defined by

V -BSt = e−r(T−t)EQV

[(VT −K)+ | Ft] = e−r(T−t)BS(Vt, T − t,K, r, σV ),

where the probability QV is the martingale probability for V , i.e.

dQV

dP
= exp

(

−hV (ρWT +
√

1− ρ2W ∗
T )−

1

2
h2V T

)

.

As the preceeding, we will note it “V-BS Price”.
We will perform our computation for the set of parameters described in table 1. The idea

µV σV V0 µS σS S0 r T

0.04 0.32 15 0.0272 0.256 100 2% 0.25

Table 1: Set of parameters

is that V is more risky than S (i.e. the volatility is higher) but provides with a higher
return (the drift is also higher). We choose to start from a different initial stock value
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as this for example the case for an action and an index. But experiments perform with
similar initial stock value leads to the same kind of conclusion.

The two main parameters are β and the correlation ρ. The first one measures if a
strategy is a good deal and thus has to be excluded from the market and the second one
measures the similarity of the two assets V and S. Economic literature asserts that a rea-
sonable value for β is 2 (see for example J.H. Cochrane and J. Saá-Requejo ([CSR01])) and
as we are interested in hedging basis risk, we will choose assets which are well correlated,
ρ = 0.8 at least.

In figure 1, we plot the different prices w.r.t ρ for three different values of β : 0.6,
2 and 3.4, and different value of K (at, in and out the money, i.e. K = 15, 10 or 20).
The correlation ρ belongs to [0.1, 0.95] with a step equal to 0.05. Figure 2 is the same,
swapping the role of β and ρ. We choose β in [0.6; 3.4] with a step equal to 0.2 and ρ
equals successively to 0.2, 0.5 and 0.8.

6.1.2 Value of prices

We observe first that the NGD prices are considerably smaller that the initial value of
stock, which is equal to 15 in our example. Note that, this bound is not always the
super-replication price because the underlying is not tradable. But in the case where the
investor is endowed with a unit of V , it is clearly the super-replication cost. The higher
is the correlation between both assets, the smaller are the NGD prices. For example, if
β = 2, K = 15, ρ = 0.8 then pUB0 = 3.1 and pLB0 = 2.59 while p̃0 = 2.37

One of the main result of section 4 is that “NGD-CSR” is strictly below “NGD-LB”
in some situations, which appears clearly in figure 1 and 2. For the economic meaningful
following situation : highly correlated assets (ρ = 0.8) and β = 2 and an at the money
option, the lower bound is 8.4% over “NGD-CSR”. Beside this economic classical case, we
note that “NGD-CSR” is mostly strictly under “NGD-LB” especially when the option is
at and out the money. The gap between both prices is 21% for β = 3.4, K = 17.5 and
ρ = 0.4 (p̃0 = 2.136 while pLB0 = 2.597) and can even reach a value of 25%.

With our set of parameters, the “V-BS Price” is closed to the “MV-Price” but this is
not true in general (for example if we put σS = 0.02 and ρ = 0.8, “MV-Price”= 0.08 while
“V-BS Price”= 0.48). Similarly, “S-BS Price” is very low in our example. This comes
from the choice of the volatility of V which is much higher than those of S (recall that
BS function is increasing with volatility). Thus, in our example, “S-BS Price” clearly
underestimated the price of the option.

6.1.3 Variation of prices with ρ and β

Note from figures 1 and 2 that NGD prices decrease with ρ and increase with β. This
is an expected results for “NGD-CSR”: see formula (22) and observe that “BS” is an
increasing function of the drift (see appendix (51)). As this drift is equal to µV −σV ρhS+
σV λ

max
√

1− ρ2, which is an increasing function of β and a decreasing function of ρ, the
result is straightforward. It is also clear that pUB0 increase with β : see equation (30). The
growth of pUB0 in ρ or the variation of pLB0 are theoretically less clear.
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Figure 1: Evolution of prices w.r.t. ρ for different values of β and K.

25



Figure 2: Evolution of prices w.r.t. β for different values of ρ and K.
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Now we investigate the limit cases in β. Note that p0 is clearly increasing in β as
M2,β(P) (see Theorem 1 and see (18)) : when β goes to infinity, M2,β(P) tends to M2(P)
and thus p0 converges to the super-replication price. At the opposite in Theorem 3, we

assume that β ≥
√

eh
2
S
T − 1 = 0.014 with our parameters. In this limit case, β̄ = 0 (see

(20)) and λmax = 0 (see (15)) thus pλ
max

0 = p00 = pUB0 (see (30)). It follows that all NGD
prices : “NGD-UB”, “NGD-LB” and “NGD-CSR” but also p0 converges to “MV Price”
as observed in figure 2.

We observe that all No Good Deal prices (including p0) converge to “MV Price” when
ρ→ 1. We show below that this is theoretically correct. It is clear from (22) that “NGD-
CSR” converges to p00, i.e. “MV-Price”. But without refering to our Theorem, when ρ = 1,
the non exchangeable asset V depends only depends on W , which is now the single source
of risk : the market is complete and the set M2(P) is reduced to Q0. Thus, the contingent
claim (VT −K)+ is perfectly replicable and it price under the unique equivalent measure
Q0 is “MV-Price”. For the upper bound, since H depends only on W , E[H|FW

T ] = H and
thus pUB0 = p00 (30). From (23), we deduce the convergence result for the lower bound
“NGD-LB” and also for p0.

6.2 Hedging

It is essential when pricing to give an hedging strategy. As previously mention, with the
notion of No Good Deal, no natural strategy is pointed out. Thus, this part presents
three simple meaningful strategies to be implemented and compare to our strategy found
in section 5. This will allow us to evaluate it quality. We denote by XStrat

T the final value
achieves using the strategy “Strat” and starting with an initial wealth X0. X0 will be
successively equal to “MV Price”, “NGD-CSR” and “(NGD-UB+NGD-LB)/2” (denoted
by “NGD” in the following). We choose this value for NGD price because it can be
interpreted as a mid price. The strategy “Strat” is one of the followings :

• Buy and Hold in cash (“BaHCash”): we put all the initial wealth X0 in cash, thus
XBaHCash
T = X0e

rT .

• Buy and Hold in S (“BaHS”): we put all the initial wealth X0 in the risky tradable
asset S, thus XBaHS

T = X0ST /S0.

• Black Scholes (“BS”): starting from “S-BS” price at time 0 and following a Black-
Scholes strategy we replicate at time T the payoff

(

V0
S0
ST −K

)

+

.

The difference between the initial wealth X0 and the price “S-BS” is put in cash.

Thus XBS
T =

(

V0
S0
ST −K

)

+
+ (X0 − S-BS0)e

rT .

• No-Good-Deal (“NGD”): starting fromX0, we follow the strategy obtained in section
5 (see Theorem 5).

To measure the hedging error we adopt three points of view : probability of super-
replication, expected loss and Value at Risk. For the probability of super-replication,
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we evaluate P[XStrat
T ≥ (VT − K)+]. It is economically meaningful but has two draw-

backs. The first one is theoretical : even if the probability is closed to one, the loss
might be huge. Moreover, from a numerical point of view, the usual estimator of prob-
ability is very unstable because as it integrates a “one or nothing” function : two close
trajectories could lead to significantly different results. For the expected loss, we com-
pute E[

(

(VT −K)+ −XStrat
T

)

+
]. This is the classical expected shortfall risk measure. It

allows to evaluate the size of the loss, but does not tell how often this loss occurs. From
a numerical view point its estimation is more stable. Both preceding notions are deeply
dependent on the level chosen for the initial wealth (“price effect”). If you start with a sig-
nificatively higher initial wealth, you will do much better in terms of super-replication and
expected losses. As the “NGD” might be five times higher than “MV-Price”, we expected
that probability of super-replication and expected losses will perform better starting from
“NGD” prices. To overcome this drawback, we introduce the Value At Risk risk indicator
and compute the VaR of the loss at 99%, i.e. the value v such that

P[XStrat
T − (VT −K)+ ≥ −v] = 99%.

Formally, it is the value we have to add to our strategy to replicate the derivative with a
probability equal to 99%. It is also the maximal loss, with probability 99% arising from
following the strategy XStrat and delivering the option (VT −K)+. VaR is a widely used
measure of risk.

We plot the results of the simulation in figures 3 and 4 with β = 2 and K = 15. We
choose these values because it is reasonable from an economical point of view for β and
because the results of simulations does not change a lot for in or out the money derivatives.
We only study the variation in ρ since β, in contrary to ρ, influences our strategy “NGD”
only through the initial wealth X0 (see (46) and (47)).

In order to interpret our numerical results note that better situations are characterized
by probability of super-replication closed to 1, small expected loss and low VaR.

We first remark that our strategy has slightly better results, especially when the cor-
relation is high, which is satisfying : starting from “NGD-CSR” or from “NGD” the
probability of super-replication are closed from one, the expected loss and the VaR are
small.

We can classify our strategies in two categories : the first one contains the “naive”
Buy and Hold strategies (“BaHCash” and “BaHS”) and the second the more elaborated
one : the mean variance strategy “NGD” and the Black Scholes strategy “BS”. We see in
figures 3 and 4 that each category have a similar behavior.

Next, as expected, the results obtained starting from initial prices “NGD-CSR” and
“NGD” are very similar : only the level varies. For a correlation of 0.8, the ratio between
“NGD” divided by “NGD-CSR” is equal to 1.2 and in average (on the strategy) the
probability of super-replication increases of 4%, the expected loss decreases of 35% and
the VaR decreases of 19% when starting from “NGD” instead of “NGD-CSR”.

We now observe the dependence in ρ. First when ρ is small all strategies seem to
perform similarly : note that this is not true in general choosing another set of parameters.
When ρ increases, the prices “NGD-CSR”, “NGD” and “MV” should decrease (see section
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Figure 3: Comparison of the probability of super-replication and expected loss for the different strategies starting
from “MV-Price”, “NGD-CSR” and the middle of “NGD-LB” and “NGD-UB”.
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Figure 4: Comparison of the value at risk for the different strategies starting from “MV-Price”, “NGD-CSR” and
the middle of “NGD-LB” and “NGD-UB”.

6.1.3). We see that for our set of parameters, “MV” remains almost constant. Now, in
the strategies “BaHCash” and “BaHS”, the correlation appears only in the initial wealth.
Thus starting from X0 equal to “NGD-CSR” and “NGD” and recalling the definition of
our risk measures, it is clear that the probability of super-replication should decrease, the
expected loss and the VaR should increase with the ρ. Starting from ‘MV” price, the three
risk measures should not varies a lot. This is what we observe in figures 3 and 4.

In contrary to buy and hold strategies, “NGD” and “BS” intend to approach (p.s. for
“BS” and L2 for “NGD”) the optional call payoff. When ρ increases, both risky assets S
and V become similar in term of risk, thus it seems natural that the risk of loss arising
from hedging a call written on V with a strategy in S should decrease. Thus we should
observe an increase of the probability of super-replication and a decrease of the expected
loss and the VaR. Looking to figures 3 and 4, we see that this is true for expected loss
and VaR. For the probability of super-replication, this is definitively not true for “NGD”
strategy starting from “MV” price. Recall that the minimum variance principle implies to
minimize the variance of loss, thus we expect to get a loss which is similar to a Dirac mass
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Figure 5: Histogram of the loss for the three different prices and K = 15, β = 2 and
ρ = 0.8

in zero : this is confirm by numerical experiment (see left of figure 5). When evaluating
numerically a loss which is similar to a Dirac mass, it is intuitive that the associated
probability should be around 1/2 (and the expected loss around 0). Note that starting
from an other price than “MV” the distribution of loss is not centered around 0 anymore
(see 5) and we don’t have the same numerical problem.
For the probability of super-replication starting from NGD prices, the results are less
clear. Following the “NGD” strategy, the probability seems to be more or less constant
and following “BS”, it seems to be decreasing. Note that they are still numerical issues
associated to the evaluation of a probability which are combined with the “price effect”.
Finally, we remark that our two sophisticated approaches “NGD” and “BS” allow to
overcome the fact when ρ increases the prices decreases : even if we start with less cash,
we perform a better hedging.

7 Appendices

7.1 On Black-Scholes formula

We recall the following formula which is analogous to the Black Scholes formula. All proofs
are omitted since they are completely similar to the one of Black Scholes model which can
be found for example in M. Musiela and M. Rutkowski [MR07] (p.94 and followings).
Let Y be a geometric brownian motion, with drift η and volatility ϕ, i.e.

Yt = Y0 exp

((

η − ϕ2

2

)

t+ ϕWt

)

.
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Then, the function BS(Yt, T − t,K, η, ϕ) defined by

BS(Yt, T − t,K, η, ϕ) = E[(YT −K)+ | Ft],

can be explicitly expressed as

BS(Yt, T − t,K, η, ϕ) = Yte
η(T−t)N (d1)−KN (d0) (49)

where

d1 = d1(Yt, T − t,K, η, ϕ) =
ln
(

Yt
K

)

+
(

η + ϕ2

2

)

(T − t)

ϕ
√
T − t

d0 = d0(Yt, T − t,K, η, ϕ) = d1 − ϕ
√
T − t

N (d) =

∫ d

−∞

e−x
2/2

√
2π

dx

By Ito Formula one can show that

dBS(Yt, T − t,K, η, ϕ) = ϕeη(T−t)N (d1)YtdWt. (50)

Moreover, we get that

∂BS

∂η
(Yt, T − t,K, η, ϕ) = (T − t)KN (d0) > 0, (51)

which implies that the Black-Scholes formula is an increasing function of η.

7.2 Proofs

7.2.1 Proof of Lemma 1

Proof. We begin with the inclusion ⊂ in (6).
Let Q ∈ M2(P), as Q is equivalent to P, there exists two processes λ and γ in L2

loc((W,W
∗))

such that (see M. Musiela and M. Rutkowski [MR07] p577 Prop B.2.1) :

dQ

dP
|Ft = exp

(
∫ t

0
γsdWs −

1

2

∫ t

0
γ2sds+

∫ t

0
λsdW

⋆
s − 1

2

∫ t

0
λ2sds

)

.

Under the probability Q, we can defined the brownian motionW γ
t (see Girsanov Theorem)

by

W γ
t :=Wt −

∫ t

0
γsds

From Equation (2), we get that

dSt
St

= (µS + σSγt)dt+ σSdW
γ
t .

Using Ito formula it is easy to see that

d
St
S0
t

=
St
S0
t

((µS + σSγt − r)dt+ σSdW
γ
t ) .
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As S/S0 is a Q-martingale, we get that the drift term is equal to zero and thus γt = −hS .
So we have proved that dQ

dP = ZλT . To achieve the proof of the first inclusion, remark that

as dQ
dP ∈ L2(P), we get that λ ∈ Λ by definition of Λ . For the reverse inequality, let λ ∈ Λ

and Qλ such that dQλ

dP = ZλT . Following the same line of arguments as above, we get that

d
St
S0
t

= σS
St
S0
t

dW λ
t ,

where W λ is a brownian motion defined in (25).
Using Ito formula again and Fubini-Tonelli Theorem, one get that

EQλ

(

∫ T

0

(

St
S0
t

)2

dt

)

= S2
0E

Qλ

(
∫ T

0
e2σSW

λ
t −σ2

S
tdt

)

= S2
0

∫ T

0
EQλ

(

e2σSW
λ
t −σ2

S
t
)

dt

= S2
0

∫ T

0
eσ

2
S
tdt = S2

0

eσ
2
S
T − 1

σ2S
<∞,

recall that E(elWt) = e
l2

2
t. Thus St

S0
t

∈ L2(Qλ) and S/S0 is not only a local martingale but

a real Qλ-martingale (see M. Musiela and M. Rutkowski [MR07] p571).

To finish the proof of the reverse inequality, we note that from the Definition of Λ, dQ
λ

dP ∈
L2(P). It remains to prove that Λ, and thus M2(P), is non-empty. Consider some constant
process λ, using (8), we get that E((ZλT )

2) <∞ and thus any constant λ belongs to Λ.

7.2.2 Proof of Lemma 2

Proof. Let λ ∈ Λ, since ZλT is a martingale, EZλT = Zλ0 = 1. We define the following
process

Z̄λt = exp

(

−2hSWt − 2h2St+ 2

∫ t

0
λsdW

⋆
s − 2

∫ t

0
λ2sds

)

.

Z̄λ is a Doléans-Dade process and thus a continuous local martingale (see [KS91], p.191).
We are going to show that Z̄λ is a martingale.

We clearly have that Z̄λt ≤
(

Zλt
)2
, ∀t ∈ [0, T ]. Since Zλ is a square integrable martingale,

the Doob maximal inequality (see [KS91], Theorem 1.3.8 p.14) implies that

E

(

sup
t∈[0,T ]

Zλt

)2

≤ 4E[
(

ZλT

)2
] < +∞.

Let τ be a stopping time such that P(0 ≤ τ ≤ T ) = 1, then Z̄λτ ≤ supt∈[0,T ] Z̄
λ
t . So we

deduce that

E

[

sup
τ∈[0,T ]

Z̄λτ

]

≤ E

[

sup
t∈[0,T ]

Z̄λt

]

≤ E

[

sup
t∈[0,T ]

(

Zλt

)2
]

= E





(

sup
t∈[0,T ]

Zλt

)2


 < +∞.

Thus Z̄λ is a continuous local martingale of class (DL) (see [KS91], definition 1.4.8 p.24).
This shows that Z̄λ is a martingale (see [KS91], problem 1.5.19 (i) p.36) and thus E

(

Z̄λT
)

=
1. Then, we can define the following probability measure

dQ̃/dP = Z̄λT .
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Using Bayes Formula

E((ZλT )
2) = EQ̃

(

eh
2
S
T+

∫ T

0
λ2sds

)

Thus

Var(ZλT ) = eh
2
S
TEQ̃

(

e
∫ T

0
λ2sds

)

− 1.

7.2.3 Proof of Lemma 3

The proof is inspired from C. Gourieroux, J.P. Laurent and H. Pham [GLP98] Proposition
3.2.

Proof. We first prove that A2 ⊂ AU
2 . Let (Φ0,Φ1) ∈ A2, we set Φi,nt = Φit1|Φ0

t |+|Φ1
t |≤n for

i = 0, 1 and Xn
t = Φ0,n

t S0
t + Φ1,n

t St. Then dXn
t = Φ0,n

t dS0
t + Φ1,n

t dSt and from definition
of integrability with respect to (S0, S) (see Protter [Pro90], p.134), we get that

∫ t

0

(

Φ0,n
l dS0

l +Φ1,n
l dSl

)

semi. mart.−→
n→+∞

∫ t

0

(

Φ0
l dS

0
l +Φ1

l dSl
)

.

Noting that Xn
0 = X0 for n big enough, we deduce that

Xn
t = Xn

0 +

∫ t

0

(

Φ0,n
l dS0

l +Φ1,n
l dSl

)

semi. mart.−→
n→+∞

X0 +

∫ t

0

(

Φ0
l dS

0
l +Φ1

l dSl
)

(52)

Using the integration by part formula

d

(

Xn
t

Ut

)

=
1

Ut
dXn

t +Xn
t d

(

1

Ut

)

+ d <
1

Ut
, Xn

t > .

As dXn
t = Φ0,n

t dS0
t + Φ1,n

t dSt, we get that d < 1
Ut
, Xn

t >= Φ0,n
t d < 1

Ut
, S0

t > +Φ1,n
t d <

1
Ut
, St >. Using again the integration by part formula, we get that : d < 1

Ut
, S0

t >=

d
(

S0
t

Ut

)

−
(

1
Ut
dS0

t + S0
t d
(

1
Ut

))

and a similar expression for d < 1
Ut
, St >. Thus, we deduce

that : d
(

Xn
t

Ut

)

= Φ0,n
t d

(

S0
t

Ut

)

+Φ1,n
t d

(

St

Ut

)

. Thus, recalling (52),

Xn
t = Ut

(

Xn
0 +

∫ t

0

(

Φ0,n
l d

(

S0
l

Ul

)

+Φ1,n
l d

(

Sl
Ul

)))

semi. mart.−→
n→+∞

X0 +

∫ t

0

(

Φ0
l dS

0
l +Φ1

l dSl
)

and

∫ t

0

(

Φ0,n
l d

(

S0
l

Ul

)

+Φ1,n
l d

(

Sl
Ul

))

semi. mart.−→
n→+∞

1

Ut

(

X0 +

∫ t

0

(

Φ0
l dS

0
l +Φ1

l dSl
)

)

−X0.
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Thus, as the right hand side of the last equation is a semi-martingale, (Φ0,Φ1) ∈ L
((

S0

U ,
S
U

))

and

∫ t

0

(

Φ0
l d

(

S0
l

Ul

)

+Φ1
l d

(

Sl
Ul

))

=
1

Ut

(

X0 +

∫ t

0

(

Φ0
l dS

0
l +Φ1

l dSl
)

)

−X0

=
1

Ut

(

Φ0
tS

0
t +Φ1

tSt
)

−X0,

using that (Φ0,Φ1) ∈ A2. Thus we get that (Φ
0,Φ1) ∈ AU

2 . For the reverse inequality, the
proof is similar using the following integration by part formula :

d

(

Ut
Xn
t

Ut

)

=
Xn
t

Ut
dUt + Utd

(

Xn
t

Ut

)

+ d <
Xn
t

Ut
, Ut > .

7.2.4 Proof of Lemma 4

We will prove the following lemma for ease of exposure. Let X ∈ L2, X ≥ 0 such that
X1X>0 has a density with respect to Lebesgue measure and γ a positive number.

popt0 = sup
Y ≥ 0, EY = 1
EY 2 ≤ 1 + γ2

E [Y X] (53)

Lemma 6. The solution of Problem 53 is :
if 1− γ E(X)√

VarX
≥ 0 then

Y opt = 1 + γ
X − E (X)√

VarX

popt0 = E (X) + γ
√
VarX.

if 1− γ E(X)√
VarX

< 0 then

Y opt =
(X − α)+
E (X − α)+

,

popt0 = α+ (1 + γ)2E (X − α)+ ,

where there exists α, a positive number, such that10

E (X − α)2+
E2 (X − α)+

= 1 + γ2. (54)

Proof. If 1−γ E(X)√
VarX

≥ 0, then it is straightforward that EY optX = E (X)+γ
√
VarX. Let

Y such that Y ≥ 0, EY = 1 and EY 2 ≤ 1 + γ2 then VarY ≤ γ2 and by Cauchy-Schwartz
inequality

E(Y X) = E ((Y − EY )(X − EX)) + EX ≤
√
VarX

√
VarY + EX

≤ γ
√
VarX + EX = E[Y optX].

10The term E2[A] denotes (E[A])2
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To prove that Y opt is the optimal solution of (53), it remains to check that it satisfies the
constraints. Y opt = 1 − γ EX√

VarX
+ γ X√

VarX
≥ 0 by assumption (recall that X ≥ 0). The

two others constraints are straightforward.
If 1− γ E(X)√

VarX
< 0, assume that there exists α such that condition (54) is satisfied. Then

it is straightforward that

E
[

Y optX
]

=
E[(X − α)+ (X − α+ α)]

E (X − α)+
= α+

E (X − α)2+
E (X − α)+

= α+ (1 + γ2)E (X − α)+

using condition 54. Let Y such that Y ≥ 0, EY = 1 and EY 2 ≤ 1 + γ2 then by Cauchy-
Schwartz inequality and condition (54)

E[Y X] = E
(

Y (X − α)+
)

+ α+ E (Y (X − α)1X<α)

≤ E
(

Y (X − α)+
)

+ α ≤
√

E(X − α)2+
√
EY 2 + α

≤
√

1 + γ2
√

1 + γ2E(X − α)+ + α = E[Y optX].

Y opt is thus optimal solution for 53 because that it satisfies the constraints (see condition
54).
It remains to prove that there exists some α such that condition 54 is satisfied. Let

f(x) =
E(X−x)2

+

E2(X−x)
+

then f(0) = VarX
E2X

+1 < 1+γ2 by assumption. Below we show that there

exists α0 > 0 such that f(α0) ≥ 1+γ2, thus by continuity of f there will exist some α > 0
such that f(α) = 1 + γ2. We prove first that there exist α0 such that P (X > α0) =

1
1+γ2

.
Such an α0 exists because

1− γ
E (X)√
VarX

< 0 ⇔ Var[X1X>0] < γ2E2[X1X>0]

⇔ E[X21X>0] < (γ2 + 1)E

[

X
(

√

1X>0

)2
]

⇒ E[X21X>0] < (γ2 + 1)E
[

X21X>0

]

P(X > 0),

by Cauchy Schwartz inequality. Thus P(X = 0) ≤ γ2

1+γ2
and by continuity of x → P(X ≤

x), for x > 0 there exists α0 such that P(X ≤ α0) = γ2

1+γ2
. Then by Cauchy Schwartz

inequality,

E2 (X − α0)+ = E2(X1X>α0
)− 2α0P(X > α0)E(X1X>α0

) + α2
0P

2(X > α0)

≤ P(X > α0)E(X
21X>α0

)− 2α0P(X > α0)E(X1X>α0
) + α2

0P
2(X > α0)

≤ 1

1 + γ2
(

EX21X>α0
− 2α0EX1X>α0

+ α2
0P(X > α0)

)

≤ 1

1 + γ2
E (X − α0)

2
+ .

Thus f(α0) ≥ 1 + γ2 which concludes the proof.

36



7.2.5 Proof of Lemma 5

Proof. To show that S0

Uλ and S
Uλ are local martingales under the measure QUλ

, we are
going to compute the stochastic differential equation satisfied by these processes and see
under which conditions they have no drift term. We set two processes WUλ

and W ∗,Uλ

which, thanks to Girsanov Theorem will be brownian motions under the probability QUλ

:

WUλ

t =Wt − 2att, W
Uλ,∗
t =W ∗

t − 2λtt. (55)

Then, the processes Uλ, S, and S0 satisfies:

dUλt = Uλt

(

atdW
Uλ

t + λtdW
Uλ,∗
t + (ct + 2a2t + 2λ2t )dt

)

dSt = St

(

(r + σShS + 2atσS)dt+ σSdW
Uλ

t

)

dS0
t = rS0

t dt

Thus, by Ito formula applied to f(x, y) = x
y , we have

d
S0
t

Uλt
= r

S0
t

Uλt
dt− S0

t

Uλt
2dU

λ
t +

S0
t

Uλt
3d < Uλ >t

=
S0
t

Uλt

[

(r − ct − a2t − λ2t )dt− atdW
Uλ

t − λtdW
Uλ,∗
t

]

,

and

d
St

Uλt
=

dSt

Uλt
− St

Uλt
2dU

λ
t +

St

Uλt
3d < Uλ >t −

1

Uλt
2d < S,Uλ >t

=
St
Ut

[

(r + σShS + atσS − ct − a2t − λ2t )dt+ (σS − at)dW
U
t − λtdW

U,∗
t

]

,

Thus, these processes are local martingale if and only if

r + σShS + atσS − ct − a2t − λ2t = 0 and r − ct − a2t − λ2t = 0 (56)
∫ T

0

(

S0
t

Uλt

)2

dt <∞ and

∫ T

0

(

St

Uλt

)2

dt <∞. (57)

The inequalities in (57) hold true because S0

Uλ and S
Uλ are continuous. The unique solution

of this system (56) is ct = r− λ2t − h2S and at = −hS . With these parameters, the process
Uλt is the same as those described by (39). We also get that

d

(

S0
t

Uλt

)

=
S0
t

Uλt

[

hSdW
Uλ

t − λtdW
Uλ,∗
t

]

, (58)

d

(

St

Uλt

)

=
St
Ut

[

(σS + hS)dW
Uλ

t − λtdW
Uλ,∗
t

]

. (59)

Note that if λ is such that

EQUλ
∫ T

0

(

S0
t

Uλt

)2

dt <∞ and EQUλ
∫ T

0

(

St

Uλt

)2

dt <∞,

S0

Uλ and S
Uλ are QUλ

martingale (see M. Musiela and M. Rutkowski [MR07] p571). This is
for example the case with deterministic λ.
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7.2.6 Proof of Theorem 4

Proof. The result of section 5 shows that we have to solve (see (40))

v(H) = inf
(Φ0,Φ1)∈AU

2

E(U2
T )E

QU

[

H

UT
−
(

X0 +

∫ T

0
Φ0
td
S0
t

Ut
+

∫ T

0
Φ1
td
St
Ut

)]2

(60)

Let Kt = EQU
(

H
UT

|Ft
)

, using Galtchouk-Kunita-Watanabe decomposition on the QU

martingale K under Assumption 3, we get that

Kt = EQU

(

H

UT

)

+

∫ t

0
Φ0,H
l d

S0
l

Ul
+

∫ t

0
Φ1,H
l d

Sl
Ul

+RHt , 0 ≤ t ≤ T,

where RH is a L2-martingale orthogonal to S0

U and S
U , i.e. < RHt ,

S0
t

Ut
>= 0 and <

RHt ,
St

Ut
>= 0. Thus as KT = H

UT
problem (60) can be rewrite as

v(H) = inf
(Φ0,Φ)∈AU

2

E(U2
T )E

QU

[

EQU

(

H

UT

)

−X0 +

∫ T

0
(Φ0,H

t − Φ0
t )d

S0
t

Ut

+

∫ T

0
(Φ1,H

t − Φ1
t )d

St
Ut

+RHT

]2

= inf
(Φ0,Φ)∈AU

2

E(U2
T )

[

(

EQU

(

H

UT

)

−X0

)2

+
(

RHT
)2

(61)

+ EQU

[
∫ T

0
(Φ0,H

t − Φ0
t )d

S0
t

Ut
+

∫ T

0
(Φ1,H

t − Φ1
t )d

St
Ut

]2
]

.

As S0

U and S
U are not orthogonal, we can not continue directly the computation. We have

to decompose this two processes on WU and W ∗,U which are orthogonal (see equation
(55) for definition of those processes). Since RH is a square integrable martingale, the
Theorem of Martingale representation (see for example D. Revuz and M. Yor) asserts that

there exists some progressively measurable processes a and b such that E
∫ T
0 a2tdt < +∞

and
∫ T
0 |bt|dt < +∞ :

RHt =

∫ t

0
aldW

U
l +

∫ t

0
bldW

∗,U
l

Recalling equation (58) and (59) with λ = 0, the orthogonality conditions lead to

at
S0
t

Ut
hS = 0 and at

St
Ut

(hS + σS) = 0.
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Thus at = 0 and RHt =
∫ t
0 bldW

∗,U
l . Replacing RH in equation (61) and using again (58)

and (59) with λ = 0

v(H) = inf
(Φ0,Φ1)∈AU

2

E(U2
T )





[

EQU

(

H

UT

)

−X0

]2

+ EQU

(

∫ T

0

btdW
∗,U
t

)2

+

EQU

(

∫ T

0

(

hS(Φ
0,H
t − Φ0

t )
S0
t

Ut

+ (σS + hS)(Φ
1,H
t − Φ1

t )
St

Ut

)

dWU
t

)2




= inf
(Φ0,Φ1)∈AU

2

E(U2
T )

[

[

EQU

(

H

UT

)

−X0

]2

+ EQU

(

∫ T

0

b2tdt

)

+

EQU

(

∫ T

0

(

hS(Φ
0,H
t − Φ0

t )
S0
t

Ut

+ (σS + hS)(Φ
1,H
t − Φ1

t )
St

Ut

)2

dt

)]

The minimum is clearly obtain for (Φ0,Φ1) ∈ AU
2 such that hS(Φ

0,H
t − Φ0

t )
S0
t

Ut
+ (σS +

hS)(Φ
1,H
t −Φ1

t )
St

Ut
= 0 QU − p.s. If (Φ0,H ,Φ1,H) ∈ AU

2 , then Φ0 = Φ0,H and Φ1 = Φ1,H are
solutions of Problem 37.

7.2.7 Proof of Theorem 5

Proof. Using the results of Theorem 4, it is sufficient to compute the Galtchouk- Kunita-
Watanabe decomposition of the process Kt. We first remark that K can be rewritten
using Bayes Formula as

Kt = EQU

(

(VT −K)+
UT

|Ft
)

=
E (UT (VT −K)+|Ft)

E
(

UT
2|Ft

)

As from (41), Ut = e−hSWt+(r− 3

2
h2
S)t = Z0

t e
(r−h2

S
)t and Q0 is defined in (4) by dQ0/dP =

Z0
T . We obtain using Bayes Formula again that

E (UT (VT −K)+|Ft) = e(r−h
2
S
)(T−t)UtE

Q0

((VT −K)+|Ft) .

As

E
(

UT
2|Ft

)

= e−2hSWt+(2r−3h2
S
)T+2h2

S
(T−t) = U2

t e
(2r−h2

S
)(T−t), (62)

we get that

Kt = e−r(T−t)
EQ0

((VT −K)+|Ft)
Ut

.

But, the process V under the probability Q0, is a geometric Brownian motion, and we can
achieve these decomposition using the Black-Scholes formula. In fact

dVt
Vt

= µV Vtdt+ σV Vt(ρdWt +
√

1− ρ2dW ∗
t )

= (µV − σV hSρ)Vtdt+ σV Vt(ρdW
0
t +

√

1− ρ2dW ∗,0
t ).
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The processes W 0 and W 0,∗ are Brownian motion under Q0 (see Equation (25) for defini-
tion). It follows from Black Scholes formula (49) that

Kt =
e−r(T−t)

Ut
BS(Vt, T − t,K, µV − σV hSρ, σV )

and by formula (50)

dBS(Vt, T − t,K, µV − σV hSρ, σV )

= σV e
(µV −σV hSρ)(T−t)VtN (d1)(ρdW

0
t +

√

1− ρ2dW ∗,0
t ),

where we used the short notation d1 for d1(Vt, T−t,K, µV −σV hSρ, σV ). Using Integration
by part formula,

dKt =
e−r(T−t)

Ut
d(BS(Vt, T − t,K, µV − σV hSρ, σV )) +

BS(Vt, T − t,K, µV − σV hSρ, σV )d
e−r(T−t)

Ut
+

d <
e−r(T−t)

Ut
, BS(Vt, T − t,K, µV − σV hSρ, σV ) > .

Using Ito formula,

d
e−r(T−t)

Ut
=
e−r(T−t)

Ut

(

h2Sdt+ hSdW
0
t

)

Thus

d <
e−r(T−t)

Ut
, BS > = e(µV −σV hSρ)(T−t)σV ρhS

e−r(T−t)

Ut
VtN (d1)dt

And

dKt =

[

h2SKt + e(µV −σV hSρ)(T−t)σV ρhS
e−r(T−t)

Ut
VtN (d1)

]

dt+ hSKtdW
0
t +

σV e
(µV −σV hSρ)(T−t) e

−r(T−t)

Ut
VtN (d1)(ρdW

0
t +

√

1− ρ2dW ∗,0
t )

=

(

hSKt + ρσV e
(µV −σV hSρ)(T−t) e

−r(T−t)

Ut
VtN (d1)

)

dWU
t +

√

1− ρ2σV e
(µV −σV hSρ)(T−t) e

−r(T−t)

Ut
VtN (d1)dW

∗,U
t

See Equation (43) for definition of WU and W ∗,U : WU
t =W 0

t + hSt and W
∗,U
t =W 0

t . So
we get that

dKt =

(

hSKt + ρ
Lt
Ut

)

dWU
t +

√

1− ρ2
Lt
Ut
dW ∗,U

t (63)
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with

Lt = σV e
−r(T−t)+(µV −σV hSρ)(T−t)VtN (d1). (64)

Going back to the Galtchouk-Kunita-Watanabe (44) of Kt, we are looking for Φ0,H , Φ1,H

and b such that

dKt = Φ0,H
t d

S0
t

Ut
+Φ1,H

t d
St
Ut

+ btdW
∗,U
t

=

(

hS
S0
t

Ut
Φ0,H
t + (hS + σS)

St
Ut

Φ1,H
t

)

dWU
t + btdW

∗,U
t ,

recall Equations (58) and (59) with λ = 0. Comparing with equation (63), we obtain that

hS
S0
t

Ut
Φ0,H
t + (hS + σS)

St
Ut

Φ1,H
t = hSKt + ρ

Lt
Ut

(65)

bt =
√

1− ρ2
Lt
Ut

Recall from Theorem 4 that we are looking for (Φ0,H ,Φ1,H) ∈ AU
2 . So we impose the self

financing condition

Φ0,H
t

S0
t

Ut
+Φ1,H

t

St
Ut

= X0 +

∫ t

0
Φ0,H
l d

S0
l

Ul
+

∫ t

0
Φ1,H
l d

Sl
Ul

= X0 +

∫ t

0

(

hS
S0
l

Ul
Φ0,H
l + (hS + σS)

Sl
Ul

Φ1,H
l

)

dWU
l

= X0 +

∫ t

0

(

hSKl + ρ
Ll
Ul

)

dWU
l ,

where we have use Equation (65) to get the last equality. Using equation (65) again, we
get that

Φ0,H
t =

Ut
S0
t

[

σS + hS
σS

(

X0 +

∫ t

0

(

hSKl + ρ
Ll
Ul

)

dWU
l

)

− 1

σS

(

hSKt + ρ
Lt
Ut

)]

Φ1,H
t =

Ut
σSSt

[(

hSKt + ρ
Lt
Ut

)

−hS
(

X0 +

∫ t

0

(

hSKl + ρ
Ll
Ul

)

dWU
l

)]

In order to prove that (Φ0,H ,Φ1,H) ∈ AU
2 , it remains to prove that (Φ0,H ,Φ1,H) ∈ L

((

S0

U ,
S
U

))

, i.e.

∫ T

0

(

Φ0,H
t

)2
d <

S0

U
>t =

∫ T

0

(

Φ0,H
t

)2
h2S

(

S0
t

Ut

)2

dt <∞
∫ T

0

(

Φ1,H
t

)2
d <

S

U
>t =

∫ T

0

(

Φ1,H
t

)2
(hS + σS)

2

(

St
Ut

)2

dt <∞

This holds true because Φ0,H
t , Φ1,H

t , S0
t , St and Ut are continuous on [0, T ].
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