
HAL Id: hal-00498418
https://hal.science/hal-00498418

Submitted on 7 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Meta-tools for software language engineering : a flexible
collaborative modeling language for efficient

telecommunications service design
Vanea Chiprianov, Yvon Kermarrec, Siegfried Rouvrais

To cite this version:
Vanea Chiprianov, Yvon Kermarrec, Siegfried Rouvrais. Meta-tools for software language engineer-
ing : a flexible collaborative modeling language for efficient telecommunications service design. Flex-
iTools’2010 : Workshop on Flexible Modeling Tools (in conjonction with the 32nd ACM/IEEE ICSE
Intl. Conf. on Software Engineering), May 2010, Cape Town, South Africa. �hal-00498418�

https://hal.science/hal-00498418
https://hal.archives-ouvertes.fr

Meta-tools for Software Language Engineering:
A Flexible Collaborative Modeling Language

for Efficient Telecommunications Service Design

Vanea Chiprianov, Yvon Kermarrec
Institut Telecom, Telecom Bretagne, UMR CNRS

3192 Lab-STICC, Technopole Brest Iroise,
CS 83818 29238, Brest Cedex 3, France

vanea.chiprianov@telecom-bretagne.eu

Siegfried Rouvrais
Institut Telecom, Telecom Bretagne, Technopole

Brest Iroise, CS 83818 29238,
Brest Cedex 3, France

siegfried.rouvrais@telecom-bretagne.eu

ABSTRACT
The increasingly competitive environment pressures telecom-
munications service providers to reduce their concept-to-
market time. This time is influenced by a multitude of fac-
tors. For the benefit of telecom service designers, this paper
focuses on increasing the degree of automation, offering team
collaboration capabilities and bridging heterogeneous tech-
nologies. To address these factors, we propose a model-based
meta-tool approach, which rapidly and iteratively generates
particular tools for software languages. Each language is
specific to one of the viewpoints involved in the definition of
a service, as identified in the Intelligent Network Conceptual
Model. A flexible language prototype for service designers,
that blends a higher degree of formality with creative free-
dom, has already been implemented. The integration of first
collaboration capabilities, defined and tooled, into this lan-
guage, by including the rationale behind the designers’ de-
cisions, is currently being pursued. A second language pro-
totype, for network designers, together with syntactic and
semantic (partial) automatic interoperability between these
two viewpoints, are also proposed.

Keywords
Service design, DSML, view, meta-model, meta-tool, MDE

1. KEY ISSUES OF TELECOM SERVICES
Imagine yourself in the comfort of your hotel conference

room, in, say, Cape Town. As a service customer, your hotel
offers you, as an end-user, Internet access and other telecom
services through a solution and service provider, e.g. BT or
NeoTel. You can work securely and collaboratively, through
a Virtual Private Network (VPN) [19], at your newly funded
project with your team based at, say, Paris, and your aca-
demic or industrial partners from e.g. Romania, New York
and Tokyo. You should have access at your required docu-
ments and services even if, say, there were a storm in New

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE 2010 Workshop on Flexible Modeling Tools Cape Town, South Africa
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

York and the VPN server was temporary brought down.
This depends on the quality of service the VPN provider
offers. At the same time, you are talking, using a Voice over
IP (VoIP) phone system, e.g. Skype, with your life partner,
which is in the city center and tries to decide for which June
2010 World Cup football match he/she should buy tickets.
While doing all these seemingly simple and fairly common
activities, you are transparently using telecom services, im-
plemented on computer networks managed by, say, Cisco.

End-users or customers, however, do not need to be aware
how these services work. A telecom service becomes more
and more complex, growing until mature enough to be adopted.
To date, the majority of service designers capture its func-
tional and non-functional requirements in natural language
descriptions and free-form diagrams. Most often, network
designers have to implement its design as a distributed set
of components. Finally, network operators select, configure
and deploy the physical entities and protocols of the service.

This method, proposed by the ITU-T Intelligent Network
Conceptual Model (INCM) [21], still presents several prob-
lems, such as the long concept-to-market time of new ser-
vices. It is mainly influenced by the following factors:

1) The low reusability rate of documents and diagrams pro-
duced by service designers;

2) Numerous errors introduced by the ambiguity of natural
language in specifications;

3) The difficulty of communicating and remembering about
design decisions taken collaboratively;

4) The diversity and specificity of types of jobs, viewpoints
involved in the method.

The concept-to-market time is also affected by properties of
services themselves, like:

a) The augmenting number of services being deployed on
the same platform increases the probability of undesired
(feature) interactions and incoherence;

b) The variety of heterogeneous technologies used to imple-
ment a service introduces interoperability concerns;

c) Increasing expectations of users induce a higher degree
of service creation complexity.

The INCM is just a framework of thought. It is not an ar-
chitecture, it does not provide tools, or means to check, vali-
date, or ensure coherence. We argue that one way to reduce

the concept-to-market time is by building flexible collabora-
tive domain specific modeling languages (DSMLs) for each
viewpoint involved in the creation of a telecom service, as
identified in the INCM. Using model-based meta-tools, that
rapidly and iteratively generate DSML associated tools, will
allow more rapid and iterative prototyping and integration
of end-users’ feedback.

Using the INCM as a guide, we propose some of these
tools as part of our approach. As our work has begun in the
context of an industrial project with a major telecom service
provider, we focus on one specific view, the one for service
designers, and its interactions with adjacent views in the
INCM. In the remaining of this position paper, we present
our INCM case study in Section 2. We refine the problem
identified in this introduction section into four issues and
propose roadmaps to each of them, indicating partial results,
in Section 3. We synthesize our proposed solutions into a
larger method in Section 4 and conclude on future work in
the last section.

2. CASE STUDY: THE INTELLIGENT NET-
WORK CONCEPTUAL MODEL

To address the increasing degree of complexity of telecom
services, the ITU-T has introduced the Intelligent Network
Conceptual Model (INCM) [21], as ’a framework for the de-
sign and description of the IN architecture’. It consists of
four ’planes’, or viewpoints [16], each refining the service
definition from the previous, upper-level plane and defining
a specific and dedicated type of job:

• The Service Plane describes a service from the cus-
tomer’s high level point of view, in natural language.
It contains no information about the implementation;

• The Global Functional Plane (GFP) models a service
as a chain of Service Independent Building Blocks (SIB),
eventually using a formal method. A chain of SIBs con-
stitutes the global service logic. It is the responsibility
of the service designer;

• The Distributed Functional Plane (DFP) describes the
software implementation of the service as a distributed
set of functional entities. Each SIB is constituted from
a sequence of actions executed in functional entities. It
is the responsibility of the network designer;

• The low-level Physical Plane describes the implemen-
tation of the DFP on distributed physical machines. It
identifies the physical entities, protocols and resources.
It is the responsibility of equipment suppliers and net-
work operators.

We propose to refine the long concept-to-market time prob-
lem, identified in the previous section, into four issues, in the
case of the INCM:

I) Problems 4 and b have as central point heterogene-
ity. We regroup them into defining a service in such a
manner as to allow separation between any of the four
planes of INCM, thus ensuring separation between het-
erogeneous technologies and types of jobs.

II) Problems 1, 2 and c are caused by the lack of domain
specificity, low formality and automation. Therefore,
we regroup them into offering to each viewpoint a com-
puter tool specific to its domain.

III) Problem 3 is related to capturing and using team com-
munication and decisions about artifacts; this is a con-
cern transversal to all planes of INCM.

IV) Previous issue I introduces a complementary one. It
is not enough to provide a separation between planes,
at the same time, this separation must ensure that the
artifacts produced at adjacent planes are coherent, con-
sistent, compatible and interoperable.

3. HOW TO REDUCE THE CONCEPT-TO-
MARKET SERVICE TIME?

3.1 Separating the GFP from the DFP
To follow the INCM recommendations, we defend the sep-

aration between the artifacts defined at adjacent planes. As
we focus on the GFP, this becomes a need to model the
SIBs at the GFP separately from their implementation at
the DFP. However, means to ensure the coherence of arti-
facts from the two planes are also needed.

Our research question for issue I thus becomes: How to
define the Global Functional Plane, so as to allow
both independence and communication, between it-
self and its adjacent (Service and Distributed Func-
tional) Planes?

We contend that defining the GFP of a telecom service
using the Platform Independent Models (PIMs) from the
Model Driven Engineering (MDE) approach enables the in-
dependence of the GFP artifacts from the DFP ones. As
well, it permits a relation easier to maintain, more autom-
atized and coherent, with the artifacts at the DFP, imple-
mented as the Platform Specific Models (PSMs) from the
MDE approach.

We have already implemented the artifacts from the GFP
as PIMs, for the case of a VPN [4]. Figure 1 presents a VPN
example defined at the GFP and the DFP. We design the
artifacts at the GFP using a domain specific modeling lan-
guage (Section 3.2). As discussed in more detail in Section
3.4, we will require a second modeling language to create the
PSMs of the DFP. We haven’t yet defined this second lan-
guage and that is why the example at the DFP in Figure 1
is only illustrative, inspired by Cisco. To date, we generate
Smalltalk code instead of PSMs, using OpenArchitecture-
Ware [9] as a meta-tool.

3.2 Defining the Flexible Domain Specific Mod-
eling Language for Service Design

In the INCM, each plane has a vocabulary, a language,
partially common with that of another viewpoint, partially
specific. Consequently, our research question for issue II
becomes: How to define a modeling language from
the existing language of a particular viewpoint, such
that it facilitates its adoption by the professionals
doing that type of job?

A Domain Specific Modeling Language (DSML) [6] is de-
fined in such a way that integrates the vocabulary specific
to a viewpoint, to a domain. We argue that defining a
DSML, using model-based meta-tools, facilitates its adop-
tion. Meta-tools enable rapid and interactive prototyping
and thus rapid integration of feedback from designers.

We have implemented a DSML prototype for designing
VPNs at the GFP [3]. We chose to implement it as a visual
modeling language to lower the difficulty of service designers

GFP

r

DFP

Figure 1: The GFP implemented with PIMs and the
DFP implemented with PSMs.

to create domain specific entities [15], i.e. services. We use
a model-based approach, in which the abstract syntax is de-
fined by means of a meta-model (MM), presented in Figure
2. Starting from this MM, we generated a visual editor, that
also provides the possibility of specifying OCL constraint
rules, using TOPCASED [8] as a meta-tool. Using this edi-
tor, service designers can select the entities specific to a VPN
and connect them by predefined relationships. Although the
designers have a high degree of liberty, they must pay at-
tention to the semantics of each entity and relationship, as
this will be used to generate PSMs at the DFP.

We expect our DSML to offer, ”through appropriate no-
tations and abstractions, expressive power focused on [...] a
particular problem domain” [6]. Due to its ease of use by ser-
vice designers, its increase in reusability (i.e. the modeled
entities conserve domain knowledge), its power of artifact
generation and of checking, the DSML will determine a pro-
ductivity increase. A DSML also introduces more formality
than natural language descriptions and free-form diagrams.
This formality enables domain-specific verifications and as-
sistance, thus reducing the number of errors. However, in
the exploratory phases of service design, it is important that
techniques and associated tools allow designers (collabora-
tive) creative freedom. Therefore, a compromise between
the creative freedom and the degree of formality is needed.
Consequently, the DSML for service designers is a flexible
modeling tool, a blend between the creative liberty offered to
designers and the formal semantics of the modeled entities.

However, the design, implementation and maintenance of
a DSML and its associated tools is costly. To reduce this

Figure 2: Abstract syntax of the DSML prototype
for VPN design.

cost, we use model-based meta-tools, that enable iterative
definition of the DSML and rapid generation of associated
and specific tools. Nevertheless, the complexity of the lan-
guage tools we can generate using this approach is limited
by the meta-tools, which are not yet in their maturity (cf.
the TOPCASED limitation in [3]).

3.3 Enhancing a DSML with Collaborative Ca-
pabilities

As part of their collaborative activities, professionals need
to communicate and especially provide justifications about
the decisions they have made. For example, a study [13]
on the information needs of software developers finds that
the most absent information is about design and program
behavior. Dutoit et al. [7] define Design Rationale (DR)
as ’the justification behind decisions’, as ’the reasoning that
goes into determining the design of the artifact’.

To facilitate the interactions between designers and supply
the information they need, we propose to offer them the
possibility of specifying the rationale behind their decisions
and adding annotations with social tagging [20]. This is a
concern that appears at each plane of the INCM, transversal
to all planes. As previously, we restrict here to the GFP.

Therefore, the research question associated with the issue
III becomes: How to include annotations and rationale
about designed artifacts in the service designer’s
DSML? How are designers influenced by rationale
in their reuse of designed artifacts?

We propose to integrate a MM for annotations and ratio-
nale in the MM defining the abstract syntax of the DSML
for service designers, in order to increase the reusability of
designed artifacts.

Dutoit et al. [7] argue DR supports collaboration, by:
promoting coordination in design teams, exposing differing
points of view, facilitating participation and collaboration
and building consensus. They also indicate other uses of
DR, related to supporting knowledge transfer, among which
reuse [17]. Consequently, we expect that integrating DR into
our approach will increase the reusability of SIBs, designers

will capitalize on past experience, thus reducing the design
time and the concept-to-market time of new services.

Moreover, integrating the DR MM into the abstract syn-
tax MM means that the DR tools, that will be generated
from the integrated MM, will be thus integrated with the
language tools. We hope this will stimulate designers to
capture DR [2]. For example, Figure 1 presents collabora-
tion indicators, inspired from [23], annotating the entities.
We use a red ball for open and a green ball for closed issues,
and yellow notes for comments. However, adapting exist-
ing DR representation schema into MMs involves making
choices: some concepts from the schema will not appear in
the MM, some relations from the schema cannot be mod-
eled in the MM because of the limitations of the meta-MM
to which the MM conforms.

3.4 Providing Syntactic and Semantic Inter-
operability between Two DSMLs

The approach proposed by INCM implies a refinement
process in four viewpoints and three refinements. Because
it is a refinement process, one may think that the language
for a viewpoint that is farther in the refinement process in-
cludes the entire language of a viewpoint that is closer in the
process. This is not the case: while there is a common set
of entities between, for example, the language of the service
designer and that of the network designer, each of them has
its own, specific vocabulary.

Thus, the research question related to issue IV becomes:
How can one ensure syntactic and semantic inter-
operability between the artifacts defined with the
DSMLs for the GFP and the DFP respectively?

We investigate capturing the common vocabulary between
the DSMLs for the GFP and DFP, using model transfor-
mations enhanced with ontologies. This ensures syntactic
and respectively semantic interoperability between artifacts
conceived with the two DSMLs and between their associ-
ated tools, in a manner that is flexible to change and allows
coherency analysis between views.

4. META-TOOLS FOR LANGUAGE ENGI-
NEERING

We have generated a visual editor for the service designers’
DSML. Using the same approach, we will generate a second
editor for the network designers’ DSL. Between these two
DSLs, we will define a model transformation enriched with
ontologies. We argue that, if software compilers, that trans-
late from a high level of abstraction language into machine
language, are considered tools, any other means of imple-
menting language translations be considered tools as well.
Consequently, model transformations may be seen as tools
(in [5], Section 6.3, transformation systems are said to be
often referred to as open compilers). It follows also that
language translation implemented as template-based code
generation may be seen as a tool. In the real-world refine-
ment process of the INCM, there is also a need to generate
code from certain entities defined using a DSL, into general
purpose programming languages. That is why we include in
our approach code generation as a tool as well.

The general accepted meaning of a meta-tool is a tool that
allows specification and generation of another tool. For ex-
ample, in [18] is proposed a semantically configurable code-
generator generator (CGG) that creates Java code genera-

tors, or in [11] is presented Marama, a suite of meta-tools
that permits rapid specification of notational elements, meta-
models, view editors and view-model mappings, and that
provides model transformation and code generation support.

The main advantages of using meta-tools are:

• The rapid building and low cost of tools;

• The simple changing process, that consists in updat-
ing only the specification, i.e. either MM, or model
transformation, or template.

So a meta-tool based approach is well suited for an iterative
approach of telecom service creation. However, meta-tools
also have disadvantages:

• When using several meta-tools as a chain, inputing
the output of one into another, we felt the need for a
framework;

• We would like to define multiple views on a MM, for
example, work only with the DR part of the MM, and
then integrate it into the main MM;

• We would also find useful the possibility to integrate a
part of the MM (e.g. the DR MM) into MMs of several
DSLs, in a cross-cutting (AOP-like) manner [22];

• As meta-tools are generic, they sometimes have poor
configuration power, and the generated tools are not
as specific as we would like them to be.

As meta-tools to specify, generate and execute the tools
necessary to our approach, we are investigating: TOPCASED
to generate visual editors for the DSLs, ATL [12] to specify
and execute model transformations, OpenArchitectureWare
to specify and execute template-based code generation.

5. FUTURE WORK
In this position paper, we focused on the Telecommunica-

tions service domain, via the INCM, to defend tool interop-
erability and meta-modeling and to instantiate them more
rapidly and efficiently for designers. We identified several
factors that induce the long concept-to-market time of new
telecommunications services. We refined and grouped them
into four issues. To tackle them in an integrative manner,
we defended using model-based meta-tools to specify and
generate tools for DSLs. As our case study is the viewpoint
of service designers in the INCM, we implemented a flexible
prototype for their domain specific modeling language.

Our plan for the future consists in addressing:

• The interaction between the Global Functional Plane
and the Service Plane. Because the customer is present
at the Service Plane, an even higher flexibility and
liberty of language and tools are needed [1].

• The ease of adoption of our flexible DSML by service
designers, e.g. by applying cognitive dimensions [10].

• The integration of collaborative capabilities into our
DSML. We plan to define a Design Rationale meta-
model after one of the main rationale argumentative
representation schemas. This MM will be integrated,
together with the MM for annotations, in the abstract
syntax MM of the DSML for service designers. Start-
ing from this MM, we will be able to systematically
generate the language environment. We may consider
reusing or implementing a rationale inference engine.

• The interoperability between two DSMLs. Either a
tool or a method for managing ontologies together with
model transformations will be selected.

Our proposal could be investigated in other domains as
well. For example, interoperability and flexibility are also
major concerns in modern Information Systems (IS). Evolu-
tion of an IS should be a continuous process, and thus tools
need to be iteratively adapted as well. Enterprise architects
are pressured hardly to react to changing requirements, but
fully integrated tools are not still mature. Several views
are also considered in IS, e.g. ArchiMate(R) [14] offers a
language standard, supported by different tool vendors, for
describing respectively business processes, applications, and
technological infrastructure.

6. ACKNOWLEDGMENTS
The authors wish to thank Patrick Alff, from BT-North

America, and Martin Woods, from BT, for their early guide-
lines.

7. REFERENCES
[1] E. Bertin and N. Crespi. Service business processes for

the next generation of services: a required step to
achieve service convergence. Annals of
Telecommunications, 64(3-4):187–196, 2009.

[2] J. E. Burge and D. C. Brown. Software engineering
using rationale. J. Syst. Softw., 81(3):395–413, 2008.

[3] V. Chiprianov and Y. Kermarrec. Model-based DSL
Frameworks: A Simple Graphical Telecommunications
Specific Modeling Language. In IDM2009 French
Colloquium on Model Driven Engineering, pages
179–186, 2009.

[4] V. Chiprianov, Y. Kermarrec, and P. Alff. A
Model-Driven Approach for Telecommunications
Network Services Definition. In Proceedings of the 15th
Open European Summer School and IFIP TC6. 6
Workshop on The Internet of the Future, pages
199–207. Springer, 2009.

[5] K. Czarnecki. Generative Programming: Principles
and Techniques of Software Engineering Based on
Automated Configuration and Fragment-Based
Component Models. PhD thesis, Technical University
of Ilmenau, Germany, October 1998.

[6] A. V. Deursen, P. Klint, and J. Visser.
Domain-specific languages: an annotated bibliography.
SIGPLAN Not., 35(6):26–36, 2000.

[7] A. Dutoit, R. McCall, I. Mistŕık, and B. Paech.
Rationale management in software engineering:
Concepts and techniques. Rationale Management in
Software Engineering, pages 1–48, 2006.

[8] P. Farail, P. Gaufillet, A. Canals, C. Le Camus,
D. Sciamma, P. Michel, X. Cregut, and M. Pantel.
The TOPCASED project: a Toolkit in Open source
for Critical Aeronautic Systems Design. In European
Congress on Embedded Real Time Software (ERTS),
number 781, pages 54–59, 2006. Tool available at
http://www.topcased.org/, accessed 24th February
2010.

[9] C. Features. openarchitectureware 4.2. Technical
report, Eclipse, 2007. Tool available at
http://www.openarchitectureware.org/, accessed 24th
February 2010.

[10] T. Green and M. Petre. Usability Analysis of Visual
Programming Environments: A ’Cognitive
Dimensions’ Framework. Journal of Visual Languages
and Computing, 7(2):131–174, 1996.

[11] J. Grundy, J. Hosking, J. Huh, and K. N.-L. Li.
Marama: an eclipse meta-toolset for generating
multi-view environments. In ICSE ’08: Proceedings of
the 30th international conference on Software
engineering, pages 819–822, New York, NY, USA,
2008. ACM.

[12] F. Jouault and I. Kurtev. Transforming models with
ATL. Satellite Events at the MoDELS 2005
Conference, W5 - MTiP, LNCS 3844:128–138, 2006.
Tool available at http://www.eclipse.org/m2m/atl/,
accessed 24th February 2010.

[13] A. Ko, R. DeLine, and G. Venolia. Information needs
in collocated software development teams. In
Proceedings of the 29th international conference on
Software Engineering, pages 344–353. IEEE Computer
Society, 2007.

[14] M. Lankhorst and H. van Drunen. Enterprise
Architecture Development and Modelling–Combining
TOGAF and ArchiMate. Via Nova Architectura, 21,
2007. Available at http://tinyurl.com/yaxfh73,
accessed 24th February 2010.

[15] C. Neumann, R. Metoyer, and M. Burnett. End-user
strategy programming. Journal of Visual Languages
and Computing, 20(1):16–29, 2009.

[16] B. Nuseibeh, J. Kramer, and A. Finkelstein. A
framework for expressing the relationships between
multiple views in requirements specification. IEEE
Transactions on Software Engineering, 20:760–773,
1994.

[17] F. Penamora and S. Vadhavkar. Design rationale and
design patterns in reusable software design. Artificial
Intelligence, pages 251–268, 1996.

[18] A. Prout, J. Atlee, N. Day, and P. Shaker.
Semantically Configurable Code Generation. In
Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems,
pages 705–720. Springer, 2008.

[19] C. Scott, P. Wolfe, and M. Erwin. Virtual private
networks. O’Reilly Media, Inc., 1999.

[20] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T.
Cheng, and M. Muller. How software developers use
tagging to support reminding and refinding. IEEE
Transactions on Software Engineering, 35:470–483,
2009.

[21] Study Group XVIII. Principles of Intelligent Network
Architecture. ITU-T Recommendation Q.1201,
October 1992. Available at
http://electronics.ihs.com/, accessed 24th February
2010.

[22] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.
N degrees of separation: multi-dimensional separation
of concerns. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering,
pages 107–119, New York, NY, USA, 1999. ACM.

[23] T. Wolf. Rationale-based unified software engineering
model. PhD thesis, TU Munchen, Germany, 2007.

	Key issues of telecom services
	Case study: the Intelligent Network Conceptual Model
	How to reduce the concept-to-market service time?
	Separating the GFP from the DFP
	Defining the Flexible Domain Specific Modeling Language for Service Design
	Enhancing a DSML with Collaborative Capabilities
	Providing Syntactic and Semantic Interoperability between Two DSMLs

	Meta-tools for Language Engineering
	Future Work
	Acknowledgments
	References

