
HAL Id: hal-00498383
https://hal.science/hal-00498383v1

Submitted on 7 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Language-specific vs. language-independent approaches:
embedding semantics on a metamodel for testing and

verifying access control policies
Yves Le Traon, Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry

To cite this version:
Yves Le Traon, Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry. Language-specific vs. language-
independent approaches: embedding semantics on a metamodel for testing and verifying access control
policies. Workshop on Quality of Model-Based Testing (QuoMBaT), Apr 2010, Paris, France. �hal-
00498383�

https://hal.science/hal-00498383v1
https://hal.archives-ouvertes.fr

Language-specific vs. language-independent
approaches: embedding semantics on a metamodel for

testing and verifying access control policies

Yves Le Traon
University of Luxembourg

Luxembourg

Franck Fleurey
SINTEF,

Oslo, Norway

Tejeddine Mouelhi
Institut TELECOM ; TELECOM Bretagne ; RSM,

Université européenne de Bretagne, France

Benoit Baudry
IRISA.INRIA

Rennes, France

Abstract— in this paper, we study an issue related to the
abstraction level of a meta-model through the example of a
model-driven approach for specifying, deploying and testing
security policies in Java applications. The issue we focus on is the
balance between a ‘generic’ meta-model and the semantics we
want to attach to it, which has to be precise enough. The goal of
the original work was to present a full MDE process to check the
consistency of a security policy and generate qualification criteria
for the test cases testing the security mechanisms in the final
code. The most original idea is that security policy is specified
independently of the underlying access control language
(OrBAC, RBAC, DAC or MAC). It is based on a generic security
meta-model which can be used for early consistency checks in the
security policy. We qualify the test cases that validate the security
policy in the application with a fault injection technique,
mutation applied to access control policies. In the empirical
results on 3 case studies, we explore the advantages and
limitations of the mutation operators and verification checks
whose semantics is defined on the meta-model. The overall
question we address is not the feasibility of the approach as
shown in our previous work but the quality of a metamodel for
test and verification purpose.

Keywords-Metamodeling, Security, MDE methodology

I. INTRODUCTION

An important issue in model-driven engineering has been
recently tackled in [1], which concerns the intent of modeling.
It focuses on the very heart of modeling, on the nature of
relations, or on the patterns of relations that are discovered
between these modeled ‘things’. The authors define a canonical
set of relations that can be used to ease and structure reasoning
about modeling.

This workshop paper is related to this analysis, on the
specific case of security test case generation and security
verifications for access control policies. The intent of all
model-based testing technique is to offer both:

• Models of high level of abstraction in order to simplify test
reuse with the idea that models are easier to reuse, because
they are platform independent,

• Test concretization mechanisms since, at the very end, the
“abstract” test objectives have to be executed on a real
specific platform and implementation.

In other words, the model-based testing domain must keep
in mind the need for abstraction as well as the detail of
implementation-specific features. This becomes even more
difficult when we want to define a model-driven approach,
where we have one more level of abstraction (instance of
models, models instance of a metamodel, metamodel).

This paper aims at opening the discussion through the
example we met in a previous research work [2]. More
specifically, we would like to illustrate the difficulty of
building a metamodel of the right level of abstraction for
making several access control policy languages interoperable,
and for applying them the same testing criteria and verification
checks. We question the quality of the metamodel we propose
for security test qualification and verification. If it is too
abstract, the metamodel allows describing more models but
will be able to carry less semantics. If it is too low-level, it will
be close to a specific language and will be able to carry more of
the semantics of this language but will not be applicable for
other purposes. This problem is not new but we believe that
this example highlights some interesting points that arise in the
case of testing and verifying access control policies. We show
that, for a meta-model which allows describing any of the
possible rule-based access control languages, there are
advantages and drawbacks which depend on its level of
abstraction. The idea here is that we want to produce a
metamodel which embeds the semantics of the test
qualification criteria and the verification checks for the access
control policies, whatever the specific access control formalism
is.

Parts of the papers are a summary of the overall approach
presented in [2], but the contribution of this paper is to
highlight the advantages and drawbacks of using qualification
criteria independent from the specific access control languages.

Section 2 recalls the approach and the metamodel for
security validation and verification. Section 3 explains how we
exploit this metamodel for language independent verification
checks and security mutants generation. Mutation operator
semantics is defined on the metamodel: the fault model is thus
shared by any access control language, instance of the core
metamodel. By construction, the validation is based on a
common certification basis. Finally, Section 4 presents the
empirical results on three Java case studies and pinpoints some
advantages and limits of such a semantic enriched metamodel,
compared to language specific techniques.

II. METAMODELLING FOR SECURITY VALIDATION AND
VERIFICATION

We recall the generic verification and validation techniques
we propose in [2] that are independent of any particular
security formalism.

A. Principles of the MDE for security approach
To “embed” semantics elements in the metamodel, we use

the Kermeta language which has been designed for that
purpose [3]. Since several access-control formalisms/languages
have been developed over the past decades, including RBAC
[4], OrBAC [5], DAC [6] or MAC [7, 8]), we reuse the
metamodel presented in [2], which allows expressing all of
these rule-based access control languages. In essence, these
languages provide means to describe under the form of access
control rules, the subjects’ permissions and prohibitions to
access a resource (for instance, the right to configure a firewall
or to access a specific service or record in a database).

The proposed MDE process is based on a domain-specific
language (DSL) to model security formalisms/languages as
well as security policies defined according to these formalisms.
This DSL is based on a generic metamodel that captures all the
necessary concepts for representing rule-based access control
policies. The MDE process relies on several automatic steps in
order to avoid errors that can occur with repeated manual tasks.
We do not detail this process in this paper since it has been
published in detail in [2]. This includes the automatic
generation of a specific security framework, the automatic
generation of an executable PDP (Policy Decision Point) from
a security policy and the injection of PEPs (Policy
Enforcement Point) into the business logic through aspect-
oriented programming. The Policy Enforcement Point is the
point in the business logic where the policy decisions are
enforced. It is a security mechanism, which has been
intentionally inserted in the business logic code. On call of a
service that is regulated by the security policy, the PEP sends a
request to the PDP to get the suitable response for the requested
service by the user and in the current context. The Policy
Decision Point encapsulates the Access Control Policy and
implements a mechanism to process requests coming from the
PEP and return a response which can be deny (discard access)
or permit (grant access).

Since this interaction of the PDP with the business logic
can be faulty (e.g. a hidden security mechanism may bypass
some PEPs [9]), a qualification environment is provided which
performs (1) a priori verifications of security models before
PDP component and PEP generation, (2) a posteriori validation
of the test cases for the implementation of the policy. This
qualification environment is independent of security policy
languages and is based on a metamodel for the definition of
access control policies. It provides model transformations that
make the qualification techniques applicable to several security
modeling languages (e.g. RBAC, OrBAC). The interest of
metamodelling V&V artifacts (structure and semantics) is that
the same certification process is applied for testing the system
even when it combines policies expressed in different
languages.

We also focus on the modeling levels involved in this full-
MDE process, and especially on the original idea to express
semantics (fault models, mutation operators and verification
functions) at meta-level independently from the chosen access
control language. We will discuss the limitations of a too
abstract metamodel, which do not allow embedding and
performing advanced security checks.

B. Overview of the modeling architecture

Security metamodel

RBAC OrBAC

RBAC policy OrBAC policy

PEP PDP PEP PDP

Metamodel

Model

Security
mechanism

DAC, MAC

Figure 1. The modeling framework

Figure 1 depicts the different levels of models we
manipulate in this paper. The security metamodel captures
common concepts that are needed to define security formalisms
(such as RBAC, OrBAC access control languages). The core
security metamodel can be instantiated to define a security
policy formalism and the expression of rules in this formalism.

The security model is a platform independent model which
captures the policies defined in the requirements of the system.
In practice, the meta-model allows the type of rules to be
modeled as well as the rules. In [2], we detail all the steps,
from access control policy definition to the generation of PDP
and PEPs. A careful validation of the resulting code with
respect to the security model is required. We define the
structure and the semantics of V&V artifacts that ensure the
consistency and the correctness of the security mechanisms.

name: String

PolicyType

name:String

RuleType

1..*ruleTypes

name: String
hierarchy: boolean

ElementType

1..*elementTypes

name: String

Policy

name: String

Parameter

parameters1..*

Name: String

Rule

1..*rules

parameters

1..*

* children
1 type

1 type

type

1

1..*

parameters

Figure 2. The meta-model for rule-based security formalisms

Figure 3. RBAC model

C. The access control metamodel
In the literature, several access control formalisms such as

RBAC, OrBAC, etc. are based on the definition of security
rules. All these formalisms allow the definition of rules that
control the access to data, resources or any type of entity that
should be protected. The formalisms differ by the type of rules
and entities they manipulate. In order to provide generic
validation mechanisms, this work is based on a generic access-
control metamodel which allow both capturing the specificities
of a particular access-control formalism and corresponding
access-control policies. This section introduces this generic
access-control metamodel and illustrates how it supports the
definition of RBAC policies.

Figure 2 recalls the meta-model we study in this paper. The
meta-model is divided into two parts, which correspond to two
levels of instantiation:

The first level of instantiation (classes POLICYTYPE,
ELEMENTTYPE and RULETYPE) allows modelling particular
access-control mechanisms such as (RBAC OrBAC, MAC or
DAC). A POLICYTYPE defines a set of element types
(ELEMENTTYPE) and a set of rule types (RULETYPE). Each rule
type has a set of parameters that are typed by element types.

The second level (classes POLICY, RULE and PARAMETER)
allows instantiating a specific security policy using a defined
formalism. A POLICY must have a type (an instance of
POLICYTYPE) and defines rules and parameters. The type of a
policy constrains the types of parameters and rules it can
contain. Each parameter has a type which must belong to the

element types of the policy type. If the hierarchy property of
the parameter type is true, then the parameter can contain
children of the same type as itself. Policy rules can be defined
by instantiating the RULE class. Each rule has a type that
belongs to the policy type and a set of parameters whose types
must match the types of the parameters of the type of the rule.

In practice, the two parts of the metamodel have to be
instantiated sequentially: first define the formalism, and then
define a policy according to that formalism.

D. Instantiating the metamodel
The fact that the proposed meta-model supports both

modelling security formalisms and security policies in these
formalisms makes it possible to represent any rule-based
security policy. Any rule-based formalism has to be modelled
using the part of the meta-model which captures policy types in
order to be supported. This has to be done once for any security
formalism in order to be able to represent corresponding
security policies with the policy part of the proposed meta-
model. This section demonstrates RBAC have been modelled
using the proposed approach.

Figure 3 presents the RBAC model as expressed using our
metamodel. In this work, we consider an RBAC model
augmented with constraints over permissions. It defines four
types of entities: users, permissions, roles and constraints. The
model associates users with roles on one hand and roles with
permissions on the other hand. Two types of rules have to be
defined:

UserRole rules which have two parameters: a user and
a role.

RolePermission rules which have three parameters: a
role, a permission and a constraint.

A simple access control policy was modeled based on
RBAC. It includes:

• Three users: alice, yves and romain.

• Three roles: Student, Director and Secretary.

• Three permissions: BorrowBook, ModifyAccnt and
CreateUserAccount.

• Two constraints: WorkingDays and Holidays.

Six rules were defined to associate users with roles on the
one hand and associate permissions with roles on the other
hand:

POLICY LibraryRBAC (RBAC)

R1 -> UserRole(romain Student)

R2 -> UserRole(yves Director)

R3 -> UserRole(alice Secretary)

R4 -> RolePermission(Student BorrowBook WorkingDays)

R5 -> RolePermission(Personnel ModifyAccnt WorkingDays)

R6 -> RolePermission(Director CreateAccount AllTime)

III. V&V DERIVATION FROM THE SECURITY METAMODEL

The verification of the consistency of a given security
policy is performed at early stage, during the specification by
security experts, who express who can access to what. The
validation process then aims at qualifying the test cases used to
ensure the correctness of the security mechanisms. The fault
model is defined at the meta-level and can be executed to inject
faults into security policies.

A. The verification checks
Verifications are performed in order to check the soundness

of the security policy and its adequacy with regards to the
requirements of the application. In particular, we detect
conflicts between rules, which is a tedious task. A simple case
of conflict occurs when a specific permission is granted by a
rule and denied by another. These verifications also include
checking that each business operation can be performed by at
least one type of user or that a specific set of operations can
only be performed by specific users (e.g. administrators). All
these verifications are carried out by the security metamodel
and are thus language independent: verifications and
transformations are generic and apply to all types of rule. The
main verification is offered by construction, when the
conformity of a security model to its metamodel is checked. In
this way, we have a minimum consistency that is obtained with
the conformance relationship of a model to its metamodel. We
also add some extensible verification functions. They constitute
preconditions which are checked before deploying the policy

and generating the mutants. Three verification functions are
implemented:

• policy_is_conform(): the policy conformance to the
underlying policy type (OrBAC or RBAC etc.). In order to
guarantee that the defined rules meet the types of
parameters of rules defined by the policy type. The
flexibility of the model can lead to having incorrect rules
which do not conform to the types of rules supported by
the policy.

• no_conflicts(): checks the absence of conflicts. It
essentially involves checking that there are no rules having
the same parameters and having different types. This is
especially useful for OrBAC where both prohibition and
permission rules can be defined.

• no_redundancies(): checks that the security policy is
minimal, which means that no rule appears more than
once. This inconsistency can happen when high level
hierarchy parameters are used to specify rules in addition
to the others descendant parameters, leading to have two
or more of the same rule for that descendant parameter.

The conformance verification function detects simple
erroneous rules such as wrong parameters or wrong numbers of
parameters.

This verification step is important in order to detect faults
in the specified policies. These faults are detected early during
the modeling and are corrected before the deployment and the
generation of the XACML policy. XACML is an OASIS
standard [10] for expressing policy using the XML language.

B. Security test qualification by mutation testing
To properly validate the security of the application, test

cases have to cover all the security features of the application.
Mutation testing is a test qualification technique introduced in
[11] which has recently been adapted for security testing [12,
13]. The intuition behind mutation testing applied to security is
that the security tests are qualified if they are able to detect any
elementary modification in the security policy (mutants). From
the initial policy a set mutant policies is generated using the
mutation operators. Then, test cases are executed against these
mutants in order to check if they are able to find the injected
faults. A mutant is said to be killed if at least one test case
detects the presence of the seeded fault.

The originality of the proposed approach is to perform
mutations on the platform independent security model using
generic mutation operators. If the tests are not able to catch a
mutant then new test cases should be added to exercise the part
of the security policy which has been modified to create this
mutant. In practice the undetected mutants provide valuable
information for creating new tests and covering all the security
policies.

To have a common certification process, we generate
mutants from mutation operators defined on the generic
metamodel. The idea is to extend the security metamodel with
the definition of mutation operator, using Kermeta [3].
Kermeta is an open source metamodelling environment
developed by the Triskell team at IRISA that is fully integrated

with Eclipse. It has been designed as an extension to the meta-
data language EMOF [14] with an action language that allows
specifying semantics and behavior of metamodels. An instance
of such a metamodel automatically embeds this semantics and
behavior: this is this facility offered by Kermeta we exploit in
this paper to define the mutation operators’ semantics at meta-
level.

The security policy languages (such as RBAC on the figure,
or any other access control language) are instances of the
metamodel and thus embed the way a specific security policy
can be mutated. Code generation from the mutants security
policies create as many faulty PDPs as there are mutant
security policies. The test qualification process can then be
applied on the set of faulty systems, embedding mutant PDPs.

We define five mutation operators for security policy
testing. These operators are defined only in terms of the
concepts present in the security metamodel, which means that
they are independent of a specific security formalism. Thus,
these operators can be applied to inject faults into any policy
expressed with any formalism defined as an instance of our
metamodel. The definition of mutation operators at this meta-
level is critical for us since it allows the qualification of test
cases with the same standard, whatever the formalism used to
define the policy. In order to generate faulty policies according
to these operators, we have added one class to the metamodel
for each operator.

• RTT: Finds a first rule type that has the same parameter as
the type of another rule type. Then it replaces the rule
parameter of one rule having the first rule type with the
other rule type.

• PPR: Chooses one rule from the set of rules, and then
replaces one parameter with a different parameter. It uses
the knowledge provided by the metamodel (by ruleType
and parameterType classes) about how rules are
constructed.

• ANR: Uses the knowledge about the defined parameters
and the way rules are built. Then it adds a new rule that is
not specified.

• RER: Chooses one rule and removes it.

• PPD: Chooses one rule that contains a parameter that has
descendant parameters (based on the parameter hierarchies
that are defined) then replaces it with one of the
descendants. The consequence here is that the derived
rules will be deleted and only the rule with the descendant
parameter remains.

The Kermeta action language is imperative and object-
oriented and is used to provide an implementation of
operations defined in metamodels. It includes both OO features
and model specific features. Convenient constructions of the
Object Constraint Language (OCL) such as closures (e.g. each,
collect, select) are also available in Kermeta. Figure 4 shows
the operator classes. The mutate() method is implemented in
[3]. Figure 5 shows the implementation for the RER operator.

name: String

Policy

mutate()

SPMutator

ANR RER PPR RTT PPD

initialPolicy

Figure 4. Extension of the security metamodel with mutation operators

The mutate() method is implemented in Kermeta. What
is important to notice in this method is that it is defined only
using concepts defined in the metamodel. Thus, this method
can generate a set of mutated policies, completely
independently of the formalism they are defined with.

Figure 5. The RER operator

It is important to notice that the impact of the mutation
operator depends on the access control formalism used to
define a policy. The faults that are simulated are very different
as shown in the examples. The same operators emulate very
different flaws in the policies. For instance, the ANR operator
applied to RBAC simulates the addition of a new permission,
while OrBAC will simulate the addition of a new prohibition or
a new permission. The impact of the operator depends on the
semantic and the logic of the access control formalism.

C. Generated mutants
In order to illustrate the mutants we get when we apply our

approach, we show examples of RBAC mutants.

1) RBAC mutants
Next, we present some examples of mutants related to an

RBAC policy. The initial RBAC policy is presented bellow:

POLICY LibraryRBAC (RBAC)

R1 -> UserRole(romain Student)

R2 -> UserRole(yves Director)

R3 -> UserRole(alice Secretary)

R4 -> RolePermission(Student BorrowBook WorkingDays)

R5 -> RolePermission(Personnel ModifyAccnt WorkingDays)

R6 -> RolePermission(Director CreateAccount AllTime)

Here are some examples of the generated mutants

RER mutant:

POLICY LibraryRBAC-RER-R5 (RBAC)

R1 -> UserRole(romain Student)

R2 -> UserRole(yves Director)

R3 -> UserRole(alice Secretary)

R4 -> RolePermission(Student BorrowBook WorkingDays)

R6 -> RolePermission(Director CreateAccount AllTime)

PPR mutant:

POLICY LibraryRBAC-RDD-R1-Student-Personnel (RBAC)

R1 -> UserRole(romain Personnel)

R2 -> UserRole(yves Director)

R3 -> UserRole(alice Secretary)

R4 -> RolePermission(Student BorrowBook WorkingDays)

R5 -> RolePermission(Personnel ModifyAccnt WorkingDays)

R6 -> RolePermission(Director CreateAccount AllTime)

IV. DISCUSSION ABOUT LANGUAGE-INDEPENDENT V&V VS.
LANGUAGE SPECIFIC ONES

In [2], we presented the applicability of our approach and
provide test results and mutation scores for three systems :

• LMS: A Library Management System.

• VMS: A Virtual Meeting System.

• ASMS: An Auction Sale Management System.

Table I shows the size of the 3 applications (the number of
classes, methods and lines of code LOC). Here we focus on the
limitations and drawbacks of the use of a generic metamodel
for expressing rule-based access control languages. The issue
we met was the following:

• Sharing V&V treatments in a language-independent model
permits common certification to be performed

• Sharing these V&V does not allow dealing with complex
and specific potential flaws.

• The result is that a trade off must be found between
genericity and specificity in case of intensive use of MDE.

TABLE I. COMPLEXITY OF THE THREE CASE STUDIES

#
classes

#
methods

LOC (executable
statements)

LMS 62 335 3204

VMS 134 581 6077

ASMS 122 797 10703

A. Limitations of the verification
The verification steps we propose allow detecting simple

inconsistencies but cannot replace language-specific
verifications, such as the ones performed for example for
access control models like Or-BAC with a tool called
MotOrBAC [15]. Access control languages do not usually
provide such specific verification environment which makes
our approach useful. Thus, the verification functions we
propose have the advantage of being embedded in the
metamodel. For instance, compared to a direct XACML code
production, generic verifications offer a systematic way of
detecting inconsistencies. In Table II, we highlight the
relevance of the proposed verification functions for each of the
targeted access control policy language. We notice that the no-
conflicts verification is only useful for OrBAC policies, even if
the semantics of this verification function is attached to the
metamodel and is thus generic. If a new access control
language including the notions of prohibition was modeled
using the security metamodel, it would embed this useful
verification function. Concerning the no-redundancies
verification, while it has a meaning for each language even if
the relevance is weak when the language includes no hierarchy
(it only detects that there is no identical rules in the security
policy). In conclusion, we have the following paradoxes:

• Some verification checks expressed on the meta-model
have no meaning for a specific language

• Most advanced checks (e.g. logic conflicts detection,
behavioral properties) cannot be expressed on our meta-
model due to the fact the specific concepts of access
control languages are not captured by the meta-model,

• The mutation operators we propose may be used to create
faults for any language which is based on rules, even if it
has no link with security and access control. In fact, if we
analyse the metamodel we propose, we notice that there is
no notion specific to security, but only concepts to capture
the notion of rule and its parameters.

The solution to that problem might be metamodels
composition/specialization. It would allow attaching partial
semantics elements to each metamodel. For example, if we
manipulate a real-time language with access control operations,
we would like to combine in the same metamodel real-time
notions and access control notions, as well as their semantics.
Each partial metamodel could focus on each aspect and the
final metamodel would be obtained by composition of these
elements.

TABLE II. RELEVANCE OF GENERIC VERIFICATION FOR SPECIFIC ACCESS
CONTROL LANGUAGES

Policy_

is_conform

No_

conflicts

No_

redundancies

RBAC y n y

OrBAC y n n

OrBAC y y y

DAC y n n

MAC y n n

1) Language-independent vs. language specific mutation-
based qualification

Table III compares the number of mutants we obtain with
OrBAC policies using a specific approach instead of the
generic approach (based on the language-independent
metamodel presented in [2]).

TABLE III. ORBAC SPECIFIC MUTANTS VS. GENERIC MUTANTS

System generic mutants specific mutants

LMS 1044 371

VMS 1572 1426

ASMS 3088 2056

Table IV is more important since it presents the mutation
scores, with functional and security test cases, obtained with
the generic and the specific approach. The specific approach
has been presented in [12, 16] and it benefits the MotOrBAC
tool used to generate mutants.

TABLE IV. ORBAC MUTATION RESULTS VS. GENERIC MUTATION RESULTS

Mutants Basic Mutants (func. Tests)

System LMS VMS ASMS

Generic
mutants 72% 61% 45%

Specific
mutants 78% 69% 55%

Delta -6% -8% -10%

Mutants ANR mutants (sec. tests)

System LMS VMS ASMS

Generic
mutants 13% 12% 28%

Specific
mutants 17% 19% 33%

Delta -4% -7% -4%

The delta reveals that, for all cases, the variation of mutation
scores is lower than 10%. This delta is due to the generation of
more mutants with the generic approach, and reflects the
proportion of equivalent mutants when using the generic
approach. We could discuss if the lack of quality of some
mutants generated using the MDE process is counter-balanced
by the interest of having a certification process that is
language-independent. Moreover, this distance that separates
generic and specific can be reduced by the addition of a
mutant filtering function at the language level that will remove
irrelevant mutants.

V. RELATED WORKS AND CONCLUSION

In this paper, we do not want to recall the related works we
did about security testing in [2]. Concerning security
modelling, several works exist (UMLsec [17], SecureUML
[18]). In [19], France et al. propose composition mechanism to
build a design embedding access control notions.

An advanced approach is proposed by UMLsec [17], which
extends UML model security requirements in UML diagrams.
More precisely the approach introduces a UML profile
allowing completing UML diagrams (such as activity
diagrams and statecharts). The main benefit of this approach
resides in providing formal methods and techniques for a
thorough analysis of security in UML diagrams. The security
requirements that are included in the models help evaluating
these models and finding possible flaws in the design, while in
our approach the model is used to build testing artefacts
(policy mutants) that then will be used to validate the
implementation.

Lodderstedt et al. proposed SecureUML [18] which is close
to our contribution, especially concerning the generation of
security components from dedicated models. The approach
proposes a security modeling language to define the access
control model. The resulting security model is combined with
the UML business model in order to automatically produce the
access control infrastructure. More precisely, they use the
Meta-Object facility to create a new modeling language to
define RBAC policies (extended to include constraints on
rules). They apply their technique in different examples of
distributed system architectures including Enterprise Java
Beans and Microsoft Enterprise Services for .net. The two
processes differ since we do not merge the security and the
business models but generate security components
independently focusing on different aspects. We consider the
functional design and the deployment of the access control
model as independent processes which are merged at the end.
In addition, we consider the validation of the implementation
and include it in our process. Moreover, our approach is
generic and independent of the underlying access control
model while SecureUML focus on RBAC model.

Our model-driven security approach has its advantages and
its drawbacks. Our approach allows the access control model to
be defined in a generic way, independently of the underlying
rule-based access control language. We define a fault model at
a generic level and use it to qualify the security tests needed to
validate the implementation of the security policy. We also
express verification checks at the meta-model level. In both

cases, we used Kermeta language to attach these elements of
semantic to the meta-model. The feasibility of the approach
and the benefits of common V&V approaches are both
illustrated by applying the approach to 3 case studies. We
presented and discussed the price to pay for genericity and
multi-formalisms.

The objective of this paper is to discuss the problem of
what is lost, in terms of specificity, when we go through a
metamodeling process. This is a classical issue that is
experienced by many people in model-driven engineering. This
problem becomes critical when the models have to become
concrete, and this is especially the case in the domain of
software testing. To our knowledge, the first paper which
opens the discussion about the intent of modeling is the paper
of Muller et al. [1]. Some other works may exist on that
fundamental subject, which is not our main research area.
However, this paper focuses more on the relations between
models than on the relationship/distance separating the
representation (model, abstraction) from reality. We believe
that this issue is a major problem in using MDE approaches,
and that there are no predictable way/estimate to decide
whether applying a model-driven approach (to manage a given
test-generation or verification in a reusable way) will be fruitful
or not. Predicting the quality of a metamodel would be highly
desirable: it means been able to estimate its distance from the
‘thing’ it represents, to measure its adequacy with the role it
has been built for.

Acknowledgments: This work is supported by “Région
Bretagne” (Britanny Council) through a contribution to a
student grant.

VI. REFERENCES

1. Pierre-Alain Muller, Frédéric Fondement, and Benoît
Baudry, Modeling Modeling, in Model Driven
Engineering Languages and Systems. 2009. p. 2-16.

2. T. Mouelhi, F. Fleurey, B. Baudry, and Y. Le Traon,
A model-based framework for security policy
specification, deployment and testing, in MODELS
2008. 2008.

3. Pierre-Alain Muller, Franck Fleurey, and Jean-Marc
Jézéquel. Weaving executability into object-oriented
meta-languages. in MoDELS'05. 2005. Montego Bay,
Jamaica: LNCS.

4. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli, Proposed NIST standard for
role-based access control. ACM Transactions on
Information and System Security, 2001. 4(3): p. 224–
274.

5. A. Abou El Kalam, R. El Baida, P. Balbiani, S.
Benferhat, F. Cuppens, Y. Deswarte, A. Miège, C.
Saurel, and G. Trouessin, Organization Based Access
Control, in IEEE 4th International Workshop on
Policies for Distributed Systems and Networks. 2003.

6. B. Lampson. Protection. in 5th Princeton Symposium
on Information Sciences and Systems,. 1971.

7. K. J. Biba, Integrity consideration for secure
computer systems, in Tech. Rep. MTR-3153, The
MITRE Corporation,. 1975.

8. D. E. Bell and L. J. LaPadula, Secure computer
systems: Unified exposition and multics
interpretation, in Tech. Rep. ESD-TR-73-306, The
MITRE Corporation. 1976.

9. Y. Le Traon, T. Mouelhi, A. Pretschner, and B.
Baudry, Test-Driven Assessment of Access Control in
Legacy Applications, in ICST 2008: First IEEE
International Conference on Software, Testing,
Verification and Validation. 2008.

10. XACML: http://www.oasis-
open.org/committees/xacml/. [cited.

11. R. DeMillo, R. Lipton, and F. Sayward, Hints on Test
Data Selection : Help For The Practicing
Programmer. IEEE Computer, 1978. 11(4): p. 34 -
41.

12. T. Mouelhi, Y. Le Traon, and B. Baudry, Mutation
analysis for security tests qualification, in
Mutation'07 : third workshop on mutation analysis in
conjuction with TAIC-Part. 2007.

13. E. Martin and T. Xie. A Fault Model and Mutation
Testing of Access Control Policies. in Proceedings of
the 16th International Conference on World Wide
Web. 2007.

14. OMG. MOF 2.0 Core Final Adopted Specification.
2004 [cited 2005; Available from:
http://www.omg.org/cgi-bin/doc?ptc/03-10-04.

15. MotOrBAC:
http://motorbac.sourceforge.net/index.php?page=hom
e&lang=en. [cited.

16. Y. Le Traon, T. Mouelhi, and B. Baudry, Testing
security policies : going beyond functional testing, in
ISSRE'07 : The 18th IEEE International Symposium
on Software Reliability Engineering. 2007.

17. J. Jürjens. UMLsec: Extending UML for Secure
Systems Development. in Proceedings of the 5th
International Conference on The Unified Modeling
Language. 2002.

18. Torsten Lodderstedt, David Basin, and Jürgen Doser.
SecureUML: A UML-Based Modeling Language for
Model-Driven Security. in Proceedings of the 5th
International Conference on The Unified Modeling
Language. 2002.

19. Indrakshi Ray, Robert France, Na Li, and Geri Georg,
An aspect-based approach to modeling access control
concerns. Information and Software Technology,
2004. 46(9): p. 575-587.

http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://motorbac.sourceforge.net/index.php?page=home&lang=en
http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/

	I. Introduction
	II. Metamodelling for security validation and verification
	A. Principles of the MDE for security approach
	B. Overview of the modeling architecture
	C. The access control metamodel
	D. Instantiating the metamodel

	III. V&V derivation from the security metamodel
	A. The verification checks
	B. Security test qualification by mutation testing
	C. Generated mutants
	1) RBAC mutants

	IV. Discussion about language-independent V&V vs. language specific ones
	A. Limitations of the verification
	1) Language-independent vs. language specific mutation-based qualification

	V. Related works and conclusion
	VI. References

