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Abstract: Recent technological developments have made available efficient bender transducers based on the
piezoelectric effect. In this paper an electrical circuit analog to the Timoshenko beam is synthesized using
a Lagrangian method and by paralleling capacitive flux linkages to rotation and transverse displacement. A
Piezo-ElectroMechanical (PEM) beam is conceived by uniformly distributing piezoelectric transducers on
a beam and interconnecting their electric terminals via the found analog circuit, completed with suitable
resistors. The high performance features of the synthesized novel circuit include the following. (i) The circuit
topology is extremely reduced, the used components are all but one two —terminal elements, and the only two —
port network needed is an ideal transformer. (ii) One and the same dissipative circuit ensures a multiresonance
coupling with the vibrating beam and the optimal electrical dissipation of mechanical vibrations energy. (iii)
For a prototype of a PEM beam, the design of the analog circuit is possible and the obtained nominal values
of the circuital elements ensure that can be technically realized without any external feeding. The insertion of
resistors in the analog circuit is determined according to two optimality criteria (namely minimization of strain
energy time envelope and maximization of vibration time rate decay), based on specific engineering needs.
The former seems to be suitable for applications in fatigue phenomena and the latter when the amplitude of
vibrations must be rapidly decreased, independently of the initial conditions.

Key Words: Smart structures, vibration control, piezoelectric transducers, analog circuits, distributed passive control

1. INTRODUCTION

1.1. State of the Art

The direct piezoelectric effect (electric charges produced on the surface of certain crystals
by applied mechanical load) was experimentally discovered by the Curie brothers, Pierre
and Jacques Curie, in 1880. One year later, in 1881, the converse piezoelectric effect
(deformation of the crystals induced by an applied electric field) was deduced by Lippmann
via thermodynamical considerations. The existence of the converse effect was immediately
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confirmed experimentally by the Curie brothers. Afterwards, the piezoelectric phenomenon
was investigated by numerous scientists, among whom were Langevin, Wigt, and Mason
(1950). Its technological applications were limited for a long period by the physical properties
of piezoelectric ceramics. Indeed, these ceramics could not be produced in homogeneous
sufficiently large specimens and were very brittle. Therefore, piezoelectric transducers could
be used only in specific technological applications, e.g. to change mirror orientations in laser
apparatuses, in vinyl disk recording devices, in radio-frequency electronic oscillators, etc.
However, in the last two decades more performing transducers based on the piezoelectric
effect have been designed and made available for technical and industrial applications, such
as active and passive control of vibrations of flexible structures. (For more details on the novel
concepts and architectures used in the design of piezoelectric transducers, see Niezreski et
al., 2001.)

Among the first applications conceived for the developed family of transducers in the
field of active vibration control there was the so-called “electronic damping” (see Forward,
1981; Forward and Swigert, 1981; Hanagud et al., 1985; Hanagud et al., 1992): a set
of piezoceramic devices is placed on a host structure to sense and control the mechanical
vibrations. The deformation of the sensing transducers results in electrical signals, which
are conditioned by suitably designed feedback electronics and then applied to actuating
transducers; the actuators convert the applied electrical energy into mechanical energy,
transmitting mechanical control actions to the host structure.

Such a concept proved to be effective as the available actuators can exert forces of several
hundreds of Newtons as a response of voltage signals of several hundreds of volts, without
losing their dielectric properties or undergoing destructive strain deformations. Indeed,
the most remarkable feature of the modern piezoelectric transducers is their capability of
remaining in the linear range in the presence of strains of the order of 0.1% (see again
Niezreski et al. (2001) or Crawley (1994)).

When active control systems are used, the piezoelectric transducers driving requires
complex power amplifiers and associated precise sensing electronics, resulting in the
consumption of a significant amount of electrical power.

Hagood and von Flotow (1991) investigate the possibility of damping mechanical
vibrations by means of a piezoelectric transducer positioned on a structural element and
shunted with completely passive electrical circuits. In particular, two different shunting
circuits are considered: resistive (R) and resonant (LR). The method proposed in Hagood
and von Flotow (1991) allows for an efficient single-mode control of structural vibrations,
whenever the resonant circuit is tuned to the mechanical mode to be suppressed; nevertheless,
the efficiency of the electromechanical coupling strongly depends on the position of the
transducer over the host structure. Moreover, the technical feasibility of the passive
piezoelectric controller proposed in Hagood and von Flotow (1991) is limited, since too large
inductors are required to produce low-frequency electrical resonance with the small inherent
capacitance of the piezoelectric transducer.

An extension of the shunting technique proposed in Hagood and von Flotow (1991) to
multiple modes suppression has been made in Hollkamp (1994), where a single localized
piezoelectric element is connected to a multifrequency electric resonator. The multimode
damper considered by Hollkamp (1994) is not equally effective for the set of modes to be
suppressed; furthermore, the used inductors are still characterized by huge inductances.
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The first attempts to exploit arrays of piezoelectric elements as transducers of an electrical
distributed controller have been made by Kader et al. (2001) and dell’Isola and Vidoli (1998).
Kader et al. (2001) propose an active controller exploiting piezoelectric elements either as
sensors or as actuators, and design an optimal distributed electronic circuit interconnecting
the sensors/actuators. The synthesized electronic circuit is active, hence an external power
supply is needed to feed the interconnecting electronics. Dell’Isola and Vidoli (1998) propose
to interconnect the piezoelectric transducers as the capacitors of a classical second-order
transmission line constituted only by inductors and resistors. This passive electrical controller
is effective only for the suppression of a single mechanical mode; hence the vibration
suppression is not ensured outside a fixed narrow frequency range.

In Vidoli and dell’Isola (2000) it is shown that, in order to achieve an effective multimode
control of mechanical vibrations, exploiting passive distributed interconnecting circuits, the
spectrum of the differential operator governing the free vibrations of the electric controller
should be as close as possible to the spectrum of the operator governing the mechanical
vibrations.

Thus, Alessandroni et al. (2002) address the problem of finding an electrical intercon-
necting circuit governed by the Elastica equation (electric analog of the Euler beam). Two
different networks are found: the first constituted by negative inductors, positive inductors
and capacitors; the second by multiport transformers terminated by inductors and capacitors.
The technical feasibility of the proposed networks is limited by the need to use electronic
active circuits to simulate negative inductors, and the complexity of multiport transformers.

1.2. Objectives

In order to cure the drawbacks of the distributed controllers proposed in Alessandroni et
al. (2002), we synthesize a lumped electrical circuit analog to a beam, constituted only
by inductors, capacitors and elementary two-port transformers. To this aim we formulate
in a Lagrangian form the beam evolution equations, and spatially discretize its Lagrangian
functional.

A Piezo-ElectroMechanical (PEM) beam is designed, interconnecting an array of
piezoelectric bender transducers bonded to a host beam via the found completely passive
analog circuit. Assuming that a large number of transducers is positioned over the structural
element, a continuous model for the PEM beam is adopted. Referring to an experimental
setup, an aluminum PEM beam is designed using available lead zirconate titanate (PZT)
transducers, showing the technical feasibility of the novel proposed device.

As a sample application, the analysis of a simply-supported PEM beam is performed via
a standard modal analysis. Two optimality criteria for the damping of vibrations are proposed
and proper dissipative networks are added to the analog circuit to accomplish optimality
conditions. The achieved electrical dissipation will be shown to be independent of the beam
vibration mode.

2. SYNTHESIZING THE ANALOG CIRCUIT OF TIMOSHENKO
BEAMS BY LAGRANGIAN METHODS

In this section an analog circuit of the vibrating Timoshenko beam is synthesized. The
method proposed exploits the basic version of the Euler finite difference method (employed



628 U. ANDREAUS ET AL.

e}
o
o
o
o
~Q
o
o
o
o
o

Figure 1. Discretization grid on the beam.

for instance in numerical analysis as an alternative to the finite element method; see, for
example, Richards, 1977) and is articulated as follows.

1. We recall the variational principle governing the free vibrations of Timoshenko beams.

2. We define a mesh over the beam reference configuration and introduce (as a set of Lagrange
coordinates) the sampled values of the fields describing the beam kinematics at the mesh
nodes.

3. We approximate the infinite-dimensional Lagrangian for a Timoshenko beam via a finite-
dimensional Lagrangian in terms of introduced Lagrange coordinates.

4. With a well-known procedure (Gantmacher, 1980; Karplus and Soroka, 1959; Crandall et
al., 1968) we synthesize a lumped electrical circuit, the evolution of which is governed by
the so-found finite-dimensional Lagrangian.

Every material particle of the considered bending Timoshenko beam is labeled by an
abscissa (varying in the interval [0, /] where / is the length) in its reference configuration and
its state is characterized by a transverse displacement # and a rotation of the beam cross-
section ¥.

Let us subdivide the interval from 0 to / on the x-axis putting equally spaced points
Ax = /N units apart, where N is the number of intervals (see Figure 1), and label

X, = jAx, (1)

forj=0,...,N,soxo =0andxy =1/
The Hamilton principle is given as

11 t1
5/ Ldt:(s/ K—E— W, dt =0, )
to to

where L is the Lagrangian, K is the total kinetic energy, £ is the total strain energy, W;, is the
total input energy, and ¢, and #; are two arbitrary instants in time.

For a bending Timoshenko beam excited only at the ends, the Lagrangian reads (see, for
instance, Soedel, 1993; Meirovitch, 2000)

L:/lk(a,ﬁ> dx—/le(l?,u’,ﬁ/) dx — Tou (0) — Ty (1) — Mo (0) — Mid (1), (3)



PIEZOELECTRIC PASSIVE DISTRIBUTED CONTROLLERS 629

where a superimposed dot denotes derivative with respect to time, and a prime indicates
derivative with respect to space variable x. In equation (3), the density of kinetic energy &
and the density of elastic strain energy e are given by

k (a,i)) _! (piﬂ +1i72>

2N @)
e@u,0) =5 (Kr (w0 =9)" + Ky (9)7)
Ty, T1, My, and M, represent the transversal loads and bending moments applied at the edges
of the beam, p is the mass density per unit length, / is the cross-section moment of inertia,
K, is the bending stiffness, and K7 is the shear stiffness. Every constitutive parameter is

assumed to be constant over the length of the beam.
The Euler—Lagrange equations associated with equations (3) and (4) are

pit = Kr(u' —9)' =0 (5)
19— Kr(u' —9) — Ky d" =0
In order to approximate the infinite-dimensional system governed by the Lagrangian (3)
with a finite-dimensional Lagrangian system, we consider the following extended numerical
formula for the integration of the Lagrangian spatial density k£ — e appearing in equation (3):

N N—1
L~AxYk (uj,ﬁj) ~Ax Y ¢ (81,8 — Touo — Ty — Moo — Midy . (6)
j=0 j=0

Here, we have used the notation
(), =),

I (’)j+1 _(’)j ) (7)
V=AY

for the sampled values of the mechanical fields providing the values of the approximating
step functions, as well as the Lagrange parameters describing the time evolution of
the approximating finite-dimensional Lagrangian system. We explicitly remark that for
estimating spatial derivatives a forward finite differences rule has been chosen.

We can express &; and e;, i.e. the kinetic and strain energy densities at x; , by

2 2
(e (o) e ()
1 : '
k=35 (puj? +10j2)

Hence the Lagrangian of the Timoshenko beam can be conveniently approximated by
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1 al . -2
L ~ Esz<pujQ+Iﬁj>+
j=0
1 ML T 2 940 — D 2
- (KT (T"’f) + Ry (T) +
—  Toug — Tyuy — Mgy — Mdy = L™ . 9)

The Lagrangian L/™ in equation (9) can be regarded as the Euler finite difference
approximation for the Timoshenko beam Lagrangian given by equation (3).

The Euler—Lagrange equations obtained by equation (9) can be easily seen to govern the
evolution of a completely passive lumped circuit, once an analogy between mechanical and
electrical kinematical descriptors has been established. Therefore, we can directly obtain
an electric analog for Timoshenko beams. The standard procedure for determining physical
analogies requires the introduction of suitable scaling factors for the kinematical descriptors
to be recognized as analogs. In the considered instance we introduce the scaling factors u,
¥, W, ¢ respectively for transverse displacement, section rotation, and the two flux linkages,
respectively.

Therefore, the problem of the synthesis of the analog circuit can be stated as follows.

Synthesis Problem. Find a 2N + 2 degrees of fieedom electrical circuit the Lagrangian of
which is given by

~2
u’ . 16
L = —AxZ(p +?‘Pj>

~ 2 ~ 2
- uyj —y 0 D
sz ( Ax (;‘10./) + Ky <¢ Ax ) +

U ? ?
- Toilﬂo EWWN_MO¢¢O M$¢N7 (10)

—_

[\

where y; and ¢, represent the flux linkages of 2N + 2 nodes measured with respect of a common
reference ground.

Let us observe that to each mechanical sampling node must correspond two electrical
nodes in the analog circuit, as shown in Figure 2: y; is the electrical analog of the mechanical
deflection at node j, while ¢, is the electrical analog of the rotation also at node j. The
generalized variables of the electrlcal system are given by y; and ¢, withj varying between
0 and V. In this way it will be provided an analog circuit where the ﬂux linkages represent the
analog variables of the displacements and rotations, while the currents will be the electrical
analogs of the bending moments and shear contact actions.*
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Figure 2. Schematic representation of the beam and its analog circuit.

Solution to the Synthesis Problem. The synthesis of the analog circuit is really straight
forward, in fact let us connect each node of the circuit to a grounded capacitor; the value of which
is

Axpu?
C=—5,
v
if the flux linkage at that node is analog to the beam deflection, or
AxI 52
C2 = 2
4

if the flux linkage at that node is analog to the beam rotation. Following the presented procedure we
have designed a circuit the electric energy of which is given by the kinetic energy in equation (10):
i.e. the mechanical kinetic energy finds its electrical analog in the electric (capacitive) energy.
Interconnecting a pair of adjacent nodes the flux linkages of which are P and ¢, via an
inductor of inductance

~2

Ax ¢

Ll = PR

Ky 0

we immediately obtain the strain energy term (10), where the bending stiffness appears by means
of magnetic (inductive) energy. Furthermore, in order to obtain the remaining term in the strain
energy (10) — again by means of magnetic energy — a set of auxiliary nodes a; must be introduced

(see Figure 3), the flux linkages of which we want to fix equal to
_ @ Vitr — Y
y  Ax

&

This is done by means of an ideal transformer interconnected with a port between y; 1 and y;
and with the other port between ground and «;, the turns ratio is given by
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Pj—1 Pj Pj+1

Figure 3. Internal modules of the electrical analog of the Timoshenko beam.

Ay

n—= =
ou

Finally the nodes a; and ¢, must be interconnected by an inductor of inductance

~2
_Pr
2

AXKT 'D

L2:

The last four terms in equation (10), involving the input work of the concentrated external loads
at the ends of the beam, have as electric analogs four current generators applied in parallel
connections with the four capacitors at the boundary nodes of the circuit analog. For instance, the
current generator at the node Y imposes a current of value

IlzTOga
4

the current imposed by the other three sources are similarly determined (see equation (12)).

In such a way we have designed a completely passive circuit the Lagrangian of which is
given by

lem . .
L4 = §Z(C1V/J-2+C2(Pj2)+
j=0
I L (i —w) ! 2
EpS {5(7_%) +L_1(‘”f+1_"’f) +

— Lyo—Lyy — Ly, — Ly, (11)
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Figure 4. Boundary elements of the electrical analog.

with
( C1 = Axpu® [ y° I, = TOE
32 ~2 v
~ < I, =T =
Ly = Axp (KM if) Y (12)
~ ’ (A
L2 = &2/ (A)CKTﬁ2> 13 = MOg
Ax D b
pu \ 4

In Figure 3 the aforementioned analog circuit for the internal nodes of the Timoshenko
beam is exhibited, while Figure 4 explains the connection of the current sources simulating
the external loads at the edges.

Starting from relations (12) we immediately see that the following conditions —
independent of the adopted electromechanical scaling factors — hold:

(Ci , p 2
P TN
G II( )
C2L2 = —
kr (13)
C1L1n2 = K— (A)C)4
M
Ly Kr 2
“1 2T Ay
L K, (Ax)

These conditions imply that in the analog circuit of a given Timoshenko beam if two of the
electrical elements among C1, L1, and n have been chosen, then the other three are univocally
determined by the geometry of the beam, its material properties and the step of the grid.

Before concluding the section we specify the approximation scheme in which the lumped
circuit in Figure 3 verifies the Timoshenko equations.
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Pj—1 ®j Pj+1

Figure 5. Electrical analog of the Euler beam.

Indeed, Euler—Lagrange equations for the internal nodes are

.. 1 1
Ciy; — o (W1 =2y +yj0) + on (o, —p; 1) =0
L (Wi —y) 1 > 09
e J J
CQ‘pj_L_2< . _‘Pj)_L_l(‘/’j+1_2‘/’/+‘Pj—1):0

and, as expected, the previous set of ordinary differential equations (ODEs) represents a finite
difference approximation of the governing equations for the free vibrations of a Timoshenko
beam given by equation (5). Analogous considerations hold for the transversality conditions.

Up to now the problems of designing electrical circuits to simulate external constraints
acting on the beam have not been addressed. Nevertheless, the theory so far developed allows
for an immediate solution of this problem.

As an example, consider a simply-supported beam, for which it is well known that the
following boundary conditions hold:

u(0,0)=0
u(l,t)=0
M(0,)=0 - (15)
M(l,t)=0

Thus, the electrical analog of the simply-supported beam can be trivially synthesized
short-circuiting the nodes v, and y to ground and leaving open circuited ¢, and ¢, , i.e.
open-circuiting the two current generators /5 and /.

In the following discussion we will focus our attention on a Euler beam, hence we will
neglect the shear deformability by assuming K; — oo and we will disregard the rotatory
inertia assuming / = 0. These assumptions are motivated by the idea to control only low-
frequency modes of structures; hence, in this framework the elastica equations are quite
satisfactory.

The electric analog of the Euler beam can be thus immediately designed from the analog
of the Timoshenko beam by short-circuiting the inductor L, and opening the capacitor Cs, as
depicted in Figure 5.
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Figure 6. Boundary elements of the circuit analog to a simply-supported Euler beam.
The Lagrangian for the Euler beam circuit analog becomes

N 1 1

L = QZCH/// 2 L 5 (W1 — 2y +V/j—1)2+

li (WN —Yn-a

2
Y1 — Yo
— —1 —1 — I
2L, » <PN> 1Yo 2N 3 p

— Ly . (16)

The Euler-Lagrange equations for the internal nodes become

. 1 .
Ciy; + e (Wire =4y +6y; —4dy; 1 +y 2)=0, j=2,..,N=-2, (17
which is immediately recognized as a central finite difference approximation of the elastica.
Let us now concentrate again on the electrical analog of the simply-supported beam, for
which the boundary elements of the analog circuit are shown in Figure 6.
The governing equations are

( . 1 )
Ciy; + e (Wiyo —4yj 0 +6y; —4dy; 1 +y; 2)=0, j=2,..,N-2
1
Ciy1 + — I 5 By —dps +y3) =0
1
Cigyn_1 +— I (5l//N 1 — 4wy +yy_3)=0
wo=wy =0
\

(18)
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Figure 7. PEM beam.
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Figure 8. Schematic representation of a PEM element.
3. PEM BEAM

In this section we define a novel smart structure which we have called (dell’Isola and Vidoli,
1998; Alessandroni et al., 2002) a PEM beam, making use of the analog circuit designed in
the previous section. Such a circuit will interconnect (see Figure 7) an array of piezoelectric
transducers uniformly distributed over the structural element?, which in this paper will be
assumed to be a rectangular cross-section beam.

The array of piezoelectric transducers will be positioned on the upper and lower surface of
the beam, each pair of patches will be in the so-called “bender” configuration, i.e. in parallel
connection, with a terminal connected to the ground and with the same poling directions
(see Figure 8). The ungrounded piezoelectric terminals will be interconnected via the analog
circuit of the Euler beam synthesized in the previous section where the patches will replace
the capacitors in the analog circuit.
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3.1. Constitutive Equations for a Bender Transducer

Our analysis starts by introducing an elementary model for a bender piezoelectric transducer
employed in PEM beams. In Figure 8 a pair of piezoelectric elements in the bender
configuration is shown surface—bounded to the beam to be controlled.

Let us assume the thickness 0 of the piezoelectric transducers to be negligible compared
to the thickness of the beam /4 and that a perfect bonding between the beam and the actuators
is realized.

Moreover, we will assume that in each patch the stress and the electric field are of the
following forms (see Figure 8):

o, 0 7
v = do, 00y 0Ty
= 0 0 0 |; O _ 9% _ g L= (19)
. 0 0 dy 0z dy
and
0

0E., O0E, OE.
El=1] 0 [; — =—=—=0. (20)
0x )% 0z

=

For more details, see Hanagud et al. (1992), Hagood and von Flotow (1991) and Crawley
and de Luis (1987).

These assumptions are physically well-grounded when 6 << % (see IEEE, 1987).

Once the transversely isotropic constitutive equations for piezoelectric three-dimensional
(3D) continua are assumed (see, for example, IEEE, 1987; Mason, 1950), the one-
dimensional constitutive equations for the piezoelectric patches are given by

Ex _ Sfl _d31 Oy
5= ] E] @

where ¢, is the strain, D, is the electrical displacement, d3, is the piezoelectric constant, s&;
is the elastic compliance at constant electric field, and € % is the dielectric constant at constant
stress.

We assume that the variation of the strain along the thickness of the actuators is negligible,
so that we can assume

e = ——u(x,t
X 2“()6, )

2 , 22)
)lc = +§u (xa t)l/

&

where the superscripts # and / indicate, respectively, the upper or lower patch.

Furthermore, we have assumed also that the electrical displacement field is constant over
the thickness of the patch (see equation (20)). As the flux of D, over the two-patch electrodes
is equal to the charge stored in each actuator, then integrating the electric displacement field
over the surface of the piezo-layer, it is easy to obtain
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Ly (Sfleiz’; - d%l)

w hwd.
Qp ([) =2 SES Vo ([) - -
11

£
S11

W) - (). @)

where O, is the charge stored in the bender transducer, w and /, are respectively the width
and length of the actuator, u’ (x*) are the rotations of the cross-sections of the beam at the
edges of the patch and v, is the voltage drop measured with respect to the ground. Sometimes
the electromechanical coupling coefficient k3; is used and the previous expression takes the
form

lyes hwd.
0y () =25 (1= K3 ) vy (0 = = (0 () =/ (), 2
with
1
k31 = d31 m (25)

The bending moment at a generic transversal section between x* and x~ is equal to

h/2+6
M (x,t) = —w/ 0,zdz. (26)

h/2—0

Considering the constitutive relation in equation (21) and neglecting higher-order terms we
obtain

2 G
M(x,1) = (EI+ h W5> o () + T, ), 27)

E
2513 §11

where / is the moment of inertia of the cross-section and E is the Young modulus of the beam.
Hence the constitutive equations for the PEM beam element in Figure 8 can be written

as
{ M(x,t) = Kyt (x,8) + ke v, (7) (28)
Op (t) = kee vy (8) = home (W' (x7) — /' (x7)) 7
with
hwé
Ky = EI
M + 2sE
w(sfleg _d:?l) Wlpeg 2
kee =2 L, =2 1—k . 29
SlElé 14 5 ( 31) ( )
e = 101
S11

Assuming that the number of patches positioned over the beam (each of them of a length
equal to Ax, i.e. /[, = Ax) is large enough, it is conceivable to assume the voltage drop and
the stored charge to be distributed variables over the length of the beam. Thus the constitutive
equations become
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Vi ¥ Viti— ¥

Figure 9. Electric analog connected to the bender transducers. (Aﬁj = u; 41— u;)

{ M(x,t) = Kyu'" (x,8) + ke W (x, 1)
; (30)

kee . "
q ()C, [) = EV/ (xa t) - kme u ()C, t)

where ¢ is the charge per unit length of the PEM beam and  is the flux linkage.
Equation (30) follows from the homogenized model of PEM beams, which assumes that
the piezo-layer introduces:

1. adistributed capacitance and charge source proportional to the curvature of the beam (elec-
trical viewpoint);

2. anadditional bending stiffness and a surplus of bending moment driven by the piezoelectric
voltage drop (mechanical viewpoint).

3.2. Non-Dissipative PEM Beam
3.2.1. Deduction of Evolution Equations

Interconnecting the bender transducers as shown in Figure 9 (i.e. interconnecting the bender
transducer between x; and x; ; as the capacitor at node y; of the electrical analog circuit
in Figure 5) the analysis of the exhibited circuit is easily performed. Indeed, the balance of
currents at node y; and equation (28), specifying how the current sources are controlled by
mechanical time rate strains implies

k. l//J — ke (il/ (xj+1) — i (xj)) :Ij _Ij+1~ (31)

On the other hand, because of the constitutive equations of ideal transformers and
inductors we obtain (see Figures 5 and 9):
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1
I =5 =)
1
P =W —w-1) : (32)
1 /1 1
-1 = L_1 (; (Wj —wj—1) — Z('//j—l —l//j2))

Substituting equation (32) into equation (31) leads to the following evolution equations for
the “mechanically fed” analog circuit:

1 : .
— W2 — Ay 6y — Ay 0+ ) = ke (@ (x;41) — i (7)),

kee.. '
Wj + Lln

j = 2,.,.N—2 (33)
When the homogenized model can be used equation (33) becomes

(Ax)°

L1n2

kee . .
an "

y' + ke 1" = 0. (34)

Considering the constitutive equations (30), the equation for the free vibrations of the
beam in terms of the deflection (see, for example, Soedel, 1993) becomes

Ky u" + piit + kye v = 0, (35)

where p is the density of mass per unit length of the PEM beam, i.e.
p =2p, 0w+ pywh. (36)
p p 1s the density of mass per unit volume of the patches and p 5 is the density per unit volume

of the material constituting the beam.
Summarizing, the homogenized governing equations of the PEM beam are

T
k.. WE 5

Y = (Ax) =2 5 (1_k§1)

K,f utv + pii+ ke "' =0 a7
. i , v = ;
mv/w+7¥/—kmeu =0 (A.X)
PR
(Ax)

where y, v, and 4 are respectively the piezo-capacitance per unit length, turns-ratio per unit
length and inductance per unit length.

In order to guarantee an efficient multimodal control based on internal resonance, it is
necessary, as proved in Vidoli and dell’Isola (2000), to tune the electrical circuit so as to



PIEZOELECTRIC PASSIVE DISTRIBUTED CONTROLLERS 641

Table 1. Properties and dimensions of the host beam.

Coefficient Value Units

[ 510 x 1073 m

w 40 x 1073 m

h 4 %1072 m

E 70 x 10° Pa
P 2700 kg m~>

2 P
yVIA = X, (38)

Furthermore, it is very useful to non-dimensionalize the previous coupled equations in
order to estimate the efficiency of the gyroscopic coupling (for some details on gyroscopic
systems, see for example, Meirovitch, 1974, 1975; Yang, 1991) ensured by the coefficient
k. Thus, introducing as usual the scaling parameters u, ¥, [, and @ for the deflection, the
flux linkage, length and frequency?®, the dimensionless coupled equations become

/ 2 4
. wipl
o =

=wyviilt
Kt T
w +atii+ " =0 , 0Pk W . @9
o oty — i =0 " ="Ky ’
2wl AV

where with an abuse of notation the dimensional and dimensionless variables are denoted
with the same symbols.

In order to maintain the form of the gyroscopic coupling, it is sufficient to choose the
scaling parameters for the flux linkage and for the deflection as follows®:

v_.2 (40)
i y
w12km€ £ :'ﬁQ (41)

so we obtain:

=)
I N
)

I
o
s

I

3.2.2. Design of a Prototype of a PEM Beam

In order to assess the physical realizability and the efficiency of the proposed device, let us
consider an aluminum beam, the geometry of which is presented in the Table 1.
Let us position nine bender transducers constituted by piezoceramic patches (T110-H4E-
602 (PSI-5H4); see Piezo Systems, Inc., Cambridge, MA, http://www.piezo.com) made of
PZT. (For details on the different types of piezoelectric actuation, see Niezreski et al., 2001).
The characteristics of these piezoceramic transducers are presented in Table 2.
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Table 2. Properties and dimensions of the T110-H4E-602 (PSI-5H4).

Coefficient Value Units
Py 7800 kg m—3
(sE)~ 62 x 10° Pa
ds; —320 x 10712 mV~!
el 3800 x 8.85 x 1072 Fm™!
0 0.267 x 1073 m

The step for the finite difference grid is given by
Ax =1/9 ~ 56.667 x 107 m. (42)

The stiffness and mass per unit length of the PEM beam can be evaluated to be

h2wo
~ 20.23 Nm?
2511 023 Nm : (43)

p =2p,0w+ pywh =~ 5986 kg m ™"

while the coupling parameter £, is given by

th31
E

kme = ~ 3174 x 10> Nm V. (44)

S11

The product of inductance per unit length and the square of the turns ratio per unit length is
given by

p
(1 —k3,) Ky

vi = ~ 3620H m >, (45)

T
We 5

2
0

Using transformers the turns ratio of which is equal to 10 the inductances to be used should
be

L, ~ 6.587 mll. (46)

Let us explicitly remark that the extremely reduced values of the used inductances and of the
transformer turns ratio lead to a completely passive realization of the whole electrical analog
network.

In the following we will choose as the angular frequency scaling parameter, the angular
frequency of the first mode of the simply-supported PEM beam with all the bender actuators

short-circuited:
2
K
w= /=L = 220.6Tad s 47)
2 p
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3.3. Dissipative PEM beam

Alessandroni et al. (2002) have studied the vibration damping induced by a set of resistors
in parallel connection with the PZT actuators. In this paper we want to consider a different
type of electric dissipation. In particular, we will show that connecting the resistors between
the PZT capacitors, i.e. connecting the nodes y; .1 and y; also by a resistor, it is possible
to obtain the same damping factor for the evolution of each mode. Furthermore we will
approach the optimization problem defining a criterion which seems to be closer to practical
engineering problems.

Let us introduce in the coupled set of dimensionless homogenized evolution equations
an electrical dissipation of the following differential form

M a?k l//
DIy = yu—mgr 48)
k=0

where the constant M is a prescribed number and y; are real constants®. Thus, the governing
equations for the dissipative PEM beam are

18 45 25 1
{u +atu+ By =0 49)

Q//IV + 0!4.1;1/ _IB2a// - D [l//] =0
The class of dissipation operators (48) has been chosen for the following reasons.

1. As shown in Figure 10, it is easy to synthesize a circuit governed by equation (49), with
p=0.

2. Itis of Rayleigh type.

In the case of a simply-supported PEM beam it represents a proportional damping.

4. As will be shown in Section 4, in it one can find a dissipation operator which is optimal
simultaneously for all vibration modes.

et

In the following section we will find, according to two different optimality criteria,
the optimal form of the electrical dissipation operator D [iz]. Once such an expression is
determined the synthesis problem of a dissipative network governed by the so-found optimal
form of equation (49), will be addressed.

The circuit depicted in Figure 10 is governed by a central finite difference approximation
of the homogeneous version (f = 0) of equation (49),. In fact, the flux linkages denoted by
goj’F , where k indicates the “floor”, are recognized to be determined by the following recursive
relations

(le _ Wj+1n— Vi
(pk—l —§DIF_1 ’ (50)
pf="1 T k=2 ,M-1
n

in terms of the flux linkages y; ;1 and y; .

On the other hand, the balance of currents at nodes (pj’F yields the following recursive
set of relations for the currents flowing through the ports of the transformers connected to
ground:
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Figure 10. Electric analog circuit to the Euler beam, where dissipative elements are properly introduced
to synthesize the generic operator D|].

( 1
M—1 _ M1 M—1 |, M—1
1 1
k K - k - k k+1 k+1 .
I = (0 =200+ 1) = (07 —11) k=2, M =2
I .2 | .2 1 1
= (@5 =207 + 05 1) + (9]0 = 20) + 9] 0) =~ (7 = 171)
\ 4 1

(D

The balance of currents at node y/; yields in terms of the Lagrangian coordinates of the
electrical lumped circuit:

. 1. 1. . ) 1
Ciyy + o= — = (W1 =29 i) — = (1} —1},1) =0. (52)
Ry R n
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Analog circuit + dissipative network

Ty A

Host beam

Figure 11. Simply-supported PEM beam.

From the recursive set of relations (51) it is possible to express the currents / jl and / }_1 ,
appearing in equation (52), in terms of the set of flux linkages <pjlf , which are themselves
related to the independent coordinates y; by equation (50). Thus, it is easy to understand that,
once the above-mentioned relations have been exploited, equation (52) represents a central
finite difference approximation of the homogeneous version of equation (49), in terms of the
flux linkage field v, i.e.

. (Ax)4 v L. (Ax)z 1 (Ax)4, v (Ax)6- VI
CtTTE Y TRY TR, VR Y T ar Y Tt
2M
M+1 (Ax) . (2M)
+ (=1) TR p = 0. (53)

The grid step Ax has been introduced in order to homogenize equation (52), according to the
notation (7).

Non-dimensionalizing equation (53) it is easy to establish the following set of relations
among the resistances of the resistors in the circuit depicted in Figure 10 and the real constants
y; appearing in equation (48):

yO — _wl4ﬂ
(Ax)" Ry
N . (54)
YVor = (—1)k+1 R—l (A_x) k=1,.M
2k

4. APPLICATION SAMPLE: VIBRATIONS OF SIMPLY-SUPPORTED
DISSIPATIVE PEM BEAM

In this section we address the problem of undamped and damped free vibrations of a simply-
supported PEM beam (shown in Figure 11)° beam via a modal analysis (Section 4.1.).
Subsequently (Sections 4.2. and 4.3.) we consider purely electrically dissipative PEM beams
and determine the optimal dissipation operator in the specified class (48), the associated
circuital topology and consequently the required optimal resistances.
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In order to achieve the aforementioned goals two different optimality criteria are adopted.

1. A criterion involving the mechanical strain energy time envelope (Juang, 1984), given by
the shaded areas in Figure 15; such a criterion seems in the authors’ opinion to be suitable
when control of fatigue phenomena is needed (Section 4.2).

2. A “critical damping” criterion, often called the pole placement technique (see, for exam-
ple, Hagood and von Flotow, 1991; Miller and Crawley, 1988), in which the time rate
decay of free vibrations is maximized (Section 4.3).

4.1. Modal Analysis

In this subsection we perform a modal analysis for a simply-supported PEM beam’, based
upon the Galerkin method.

The set of basis functions chosen to represent the deflection u (x, ¢) and the flux linkage
 (x, 7) of the PEM beam is constituted by the eigenfunctions ¢, (x) of the spatial differential
operator determining the modal forms for both the uncoupled motions:

¢, (x) = V2sin (mmx) , m=12,.... (55)

Consequently, a Fourier expansion for the solution of equation (49) is considered

u(x, ) ] e { pu (1) }
= X s 56
[mx,t) 2| gy | W 0
where p,, () and g,, () are respectively the mechanical and electrical Fourier coefficients of
the expansion. With simple calculation the following system of ODEs governing the time
evolution of a generic pair of electrical and mechanical Fourier coefficients is obtained, in
which unitary dimensionless modal masses are made to appear:

[ p? (mm)’ |
- 1 Pm (¢ 10
| et b | L] = 0] °7
I—— P
where the polynomial Pp (m) is defined by
M
Pp (m) = (1) yoy (mm)™. (58)

k=0

Let us explicitly remark that because of the performed choices, i.e.
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1. boundary conditions (simply-supported PEM beam);
2. basis functions (modal shapes of both the uncoupled electrical and mechanical systems);
3. class of dissipation operators (48);

we obtained a set of uncoupled evolution problems for each electromechanical mode. Thus,
it is possible to easily derive the analytical solution for the Fourier coefficients; otherwise
cumbersome numerical analysis should be performed.

For our purposes it will be more useful to consider the associated system in the state
space form:

D (1) 0 0 1 0 D (1)
d[ Pm (t) —ap O 0 Cm Pm (t)
Qm (t) 0 —ay —Cpy _dm qm (t)
with:
R
at 0 0 1 0
52 (m7r)2 - 0 0 0 1
Cm = P ’ 4 —a,, 0 0 Cm (60)
dm PD Sm) 0 —dap —Cm _dm
a

Let us remark that the dissipative parameter d,, depends linearly on the set of dimensionless
damping parameters y;.

As a preliminary to the study of vibration damping, let us consider the conservative case,
when d,, = 0 (for more details on the analysis of non-dissipative system PEM beams, see
Alessandroni et al., 2002). Indeed the solution of equation (59) shows a beating phenomenon
in which the mechanical energy is transferred into the electrical form and vice versa. The
dimensionless modal angular frequency of the “beating” envelope is

w_ 2p

- )
¢ o*tm?

()]

(61)

while the dimensionless carrier modal frequency is

2 2 92 2
o = 1+(%) (%> : (62)

Hence, a possible measure of the efficiency of the piezoelectric coupling can be chosen
to be the beating ratio defined as the ratio of the envelope angular frequency and the carrier
angular frequency:
wl B 1 Kome 1

[

o2 iy (pjaay VYR VT e [ Ki)

(63)
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Figure 12. Time evolution of the first mechanical and electrical modes.

This coefficient is completely independent of the mode and for the aluminum beam introduced
in Section 3.2.2. can be evaluated to be

m

P 0.1225. (64)

mn
wC

For illustrative purposes we consider for the introduced aluminum PEM beam the time
evolution of the first mechanical and electrical modes for purely mechanical initial conditions
of the form:

TERNETE
=0 Ym0 "7h ©
0. (0) =0 n (0)=0

We plot these in Figure 12.

4.2. Resistance Optimizations by Infinite Horizon Minimization

The objective of our optimization procedure is to minimize the strain energy time envelope
of the vibrating beam for given initial conditions (for more details on this optimization
technique, see Juang, 1984). Thus, let us define the following set of modal cost functions
by which an optimal design of the dissipative elements can be pursued:

1 [~ 1 [
In Vo, evm ) = 5/ a, p2 dt =: 5/ (Z,:Qm Zm) dz. (66)
0 0
Here we have adopted the following matrix notation:
a, 0 0 0
. 0 000
Zy = [PusnPunls O =1| o 0 0 (67)
0 000
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By taking the limit as time goes to infinity (infinite horizon minimization), we are seeking
a time-independent solution of the optimization problem. Let us explicitly remark that
22 (1) O 2 (t) represents the generic mechanical strain modal energy at time .

We can now show that there exists a value of M and a consequent choice of the damping
coefficients y1, ... y), which allows for a simultaneous minimization of every modal cost
function for every initial set of mechanical modal displacements {p?, p9, ...}.

Indeed, as the system is dissipative (i.e. the real part of the eigenvalues of the state matrix
A,, in equation (59) are negative) for every choice of y; the modal cost function can be written
as

Jm (y()7"'yM):__ (Zy(y)l)TPmZy(y)la (68)

where z° is the modal initial condition to be considered. P,, is the unique solution of the

m

following Lyapunov equation

T
Am P, +P,4, = Qm ) (69)
where A4,, is the state matrix in equation (59).
Equation (69) yields
_(um +c”2’) _ Gpdy A _1 Em__ 1
2d,, 22 2m 2 2d,,
_Gm _ (a,,, +C’?’ ) L 0
2¢,, 2dy, 2dp
Pm (yO:yM) = . (70)
_1 Cm _ 1 _ dy 1
2 2d,, 2d,, 22 2m
Cm 1 1
T 2d, 0 2m " 2d,

Considering only modal mechanical initial displacement, the generic modal cost function
becomes

Jm =735 (p?n )QPWIM . (71)

Substituting the aforementioned expression for the matrix P,, we finally obtain
1 2 ((am +¢2)  and
In == (P} i ). 72
3 (#h) < 2d, | 22 72)

Differentiating this expression with respect to the dimensionless damping parameters y; and
equating to zero we find the following M + 1 conditions:

0y dJy (—l)kJrl (m7T)2k
ayk N ddm 204

=0, k=0,.M (73)

These are simultaneously satisfied if and only if
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dJ,
W (y0> yM) =0, (74)
which yields
2
A% = ¢ [14+ 2 (75)

A

The minimum value attained by the modal cost function is

T = % (ph)" (7 + 1) Ve (76)

which is clearly independent of the value of the dimensionless damping parameters y;, but
depends exclusively on the electromechanical parameters o and £ of the non-dissipative PEM
beam. In particular, the minimum value of the modal cost function can be easily written as
follows

— T, K
:Um_ 1+y M:
T Kone

where T, is the dimensionless period of free vibrations for the mth mode (7,, = 27/,/a,,)
and U,, is the dimensionless mean value of the mechanical modal strain energy for free

vibrations, 1.e.
— 1 (™1 2r \\*, 1
U, = E/@ §am (P?n COS (T:- t)) dr = Zam (pgl )2 : (78)

Now let us determine the values of the damping parameters in the analog circuit
substituting the expressions in equation (60) into equation (75):

Pp (m) _ (mﬂ)zi—j 1+ <£> . (79)

J,

Mmin

(77)

a?t a

This last equation characterizes a surface of damping parameters all points of which optimize
the cost function J,, . However, according to equation (58), the following choice

v =0, k=0,2,3.M

4 80
W= 1+ <§> 0

allows for the simultaneous minimization of the cost functions J,, for all m.

It is suggested to interpret the previous algebraic results in a geometrical way. In the
space of “damping parameters” {y; }, the optimal values for the mth mode belongs to the
hypersurface characterized by equation (74). Formula (80) shows that there exists a unique
choice of damping parameters belonging to all the modal optimal hypersurfaces.
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Figure 13. Dissipative circuit satisfying the optimality condition.

Hence the optimal electrical dissipative differential operator efficient for simultaneously
for all modes is

opt -

Dyl =y3"¥". (81)

Once the optimal dissipation operator has been established, a suitable dissipative
electrical network has to be connected to the analog electrical circuit in Figure 5 in order
to obtain the following homogenized evolution equation:

I//IV + a l// ﬁ2 1 l)pt l//” — 0 (82)

This dissipative network is easily synthesized from Figure 11 interconnecting the
capacitors by a set of resistors as in Figure 13. The value of the resistances can be obtained
from equation (54):

2
Ro= —E_op, (83)
y2 (Ax)

In order to verify the optimality condition (80) the value of the resistances has to be
chosen as follows

RO Lin ol — Ln*wl? (Ax)
2 - 0
v (AX)Q (Ax) 521/14_ ﬁ’/a kme \/1+ ke /Kur) (1/3’)

(84)

For the aluminum PEM beam introduced in Section 3.2.2. we obtain the following value
for the damping parameter y»

yF' ~2.509 (85)
and as a consequence the resistance is determined by

RY" ~ 4.690 k<. (86)
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Figure 14. First modal cost function.

In Figure 14 we plot the graphics of the cost function for the first mode as a function of
the parameter y,, assuming unitary initial condition, where the minimum value achieved is
given by

Ji_. =~ 2.086. (87)

Let us exhibit in Figure 14 the evolution of the first modal strain energies for three
different values of the damping parameter; the shaded area is the value of introduced cost
function J;.

4.3. Resistance Optimization by Pole Placement Technique

Another possibility for choosing the coefficient y; in the dissipation operator (48) to be
employed in the electrical analog is provided by a different optimality criterion, i.e. the pole
placement technique widely discussed in Hagood and von Flotow (1991) and Miller and
Crawley (1988). The pole placement criterion is based on a cost function of a different form
with respect to equation (66). Once the mth modal time rate decay is defined by

Tm (yov"'yM) = i:I{liIl4 HRe M;n]” ) (88)
where 47" are the eigenvalues of the state space matrix A4, , it is necessary that the chosen
values {y; } must maximize 7, .

Considering the eigenvalues of the generic state matrix 4, it is easy to show that 7, is

maximized when
d, =2c,, (89)

and in this case there are only two complex conjugate eigenvalues of multiplicity two (see,
for example, Miller and Crawley, 1988). For this last circumstance, the present optimization
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Figure 15. Time evolution of the first modal strain energy for (a) resistance larger than the optimal value,
(b) resistance smaller than the optimal value, and (c) optimal resistance.

criterion is often called the critical damping criterion. The criticalness of the above-
mentioned criterion is to be ascribed to the time vibration envelope which switches (according
with increasing values of bifurcation parameters d,, ) from underdamped to overdamped
decay. The maximum time rate decay 7% can be easily evaluated to be equal to ¢,, /2.

The imaginary parts of the eigenvalues A7 evaluated at d,, = 2c,, are recognized to be

equal to +4/a,, — (¢ / 2)2. Hence, the damping ratio evaluated when condition (89) holds
becomes

Lo = n /2 - o (90)

\/<cm/2>2+( am—<cm/2>2)2 o

Taking into account relations (60) it is easy to see that

B ke [ 1
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hence, the damping ratio of the mth mode, once condition (89) has been satisfied, does not
depend on the mode number .
It is still possible to accomplish this optimality condition for each mode by means of a
unique choice of the resistances. In fact, choosing d,, = 2c¢,, we obtain
2
—2(mm (92)

al

Pp (m)

which can be satisfied, according to equation (58), for every mode by choosing

opt .
{yk =0, k=0,1,3..M ©3)

¥ =2p

Once again, the interconnection to be used is simply constituted by a set of resistors
interconnecting the PZT capacitors, and the value of these resistors is determined by

Ln? 1(Ax) |/
y¢27p (AX) 2 kme Y
For the PEM beam designed in the previous section the pole placement optimization
criterion yields

opt
R,

y¥' ~ 4.873, (95)
and consequently the optimal resistance is found to be
RY" ~2.415kS). (96)

In Figure 16 we show the detail of the first mode root locus in the neighborhood of the
bifurcation (critical) point, which corresponds to the optimal value for the resistance, as the
dissipative parameter ¢ varies from 0 to infinity.

The optimal damping ratio achieved by the pole placement criterion is equal to

¢~ 12.34%. 7)

In order to show that the particular connection for the resistances in the analog circuit
realized by R, allows for the simultaneous optimal damping for each mode, let us show in
Figure 17 the root locus for the second and third modes. Condition (91) establishes that the
damping ratio is a parameter independent of the specific mth mode, and thus all the critical
points (occurring at the same resistance R5) in the complex plane have the same phase, while
the modules are found to be equal to a,, .

The crosses in the root loci depicted in Figures 16 and 17 represent the roots determined
for vanishing y,, while the empty circles indicate the roots for infinite value of y, and the
arrows denote the versus of the y, increment.
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Figure 16. First mode root locus for increasing value of the damping parameter y-.
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Figure 17. Root locus for the second and third modes, increasing the value of ys.

5. CONCLUSIONS

A novel completely passive device for multimodal structural vibration damping based on
distributed piezoelectric effect has been conceived and designed for engineering applications.
The novel passive smart structure consists of a host beam, an array of bender transducers
uniformly distributed on it, and an analog passive circuit completed by dissipative elements
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interconnecting the terminals of the piezo—transducers. Such an analog passive circuit can
be regarded as a distributed electric controller for mechanical vibrations. The introduced
PEM beam allows for an efficient multimodal vibration damping and control in despite
of inductances of extremely reduced value in the analog circuit and low-cost piezoelectric
transducers. It has to be stressed that, to our knowledge, in the literature the problem
of structural mechanical vibration suppression is never addressed by combining the two
concepts of

1. distributed piezoelectric actuation and
2. multiresonant passive electric control.

The device considered in the present paper ensures a multifrequency and modal-
form-adapted energy transduction, and consequently the simultaneous multimodal vibration
suppression. Indeed, we may state that the electric controller can respond to mechanical
excitation with exactly the same electrical modal forms and frequencies as the mechanical
structure, and that the piezoelectric transducers are consequently bound to exert forces in a
synergetic way in the absence of any external control law. In a suggestive way, the electric
controller interconnecting the piezoelectric transducers is synthesized for resonating at the
same frequencies as the structural element to be damped. However, in addition, it is designed
to respond by driving every transducer with the electric potential needed to suppress every
mechanical modal forms eventually excited.

Finally we fixed two optimality dissipation criteria and managed to find a placement (in
the electric circuit topology) of resistors which ensured the simultaneous optimal damping
of every mechanical excitation. This result is not always possible, as is well known by the
theory of control, and is related to the use of the electromechanical analogy which we have
exploited. The two optimality criteria refer to different mechanical phenomena: the first is
related to the strain energy stored in the structure during the whole course of vibration, the
second is associated with the time rate decay of vibration. However, they provide:

1. technological feasibility of the entire passive control device;
2. the same placement for the resistors in the circuit;
3. comparable values for the optimal resistances.

As far as point 3 is concerned, and as can be reasonably expected, the two used criteria
yield slightly different, yet not coincident, resistances. Such difference can be explained
on the basis of the following comment: the former criterion refers to a purely mechanical
feature (strain energy stored during the whole course of vibration), while the latter, which
is widely adopted in the literature, does not allow us to distinguish electric and mechanical
contributions in the overall energy.

The main limit of the effectiveness of the presented controller is due to the lumped nature
of the employed electric circuit and piezoelectric transduction devices. This circumstance
obviously approximately imposes as a lower bound to the wavelength of mechanical modes
which may be damped the size of the typical piezoelectric actuator used.

The design of an experiment to validate the novel concepts and methodology is addressed
for an aluminum beam, considering available PZT transducers and practically interesting
results are exhibited via analytical and numerical techniques. With a view towards the
construction of a demonstrative prototype it has to be remarked that:
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1. the topology of the analog circuit is extremely simple;

2. the analog circuit can be entirely realized by means of light, low-cost, passive elements,
dispensing the use of any external feeding;

3. an efficient multimodal control of mechanical vibrations is guaranteed;

4. mechanical vibrations are rapidly suppressed by means of suitable resistors properly in-
serted in the analog circuit.

Future theoretical and experimental investigations should include:

1. the study of more complex PEM structures constituted by different structural elements, as
beams, plates and shells;

2. the study of PEM trusses as fundamental structural elements in aerospace technology;

3. the development of a finite element code for the analysis of PEM structures taking into
account the finite degrees of freedom of the electrical analog circuit and the comparison
with the results achieved by the homogenized distributed model;

4. the optimization of dissipative circuits for specific tasks as in forced vibrations of PEM
structures.

As far as point 1 is concerned, special interest will be addressed to the problem of
multimodal vibration control of plates; in more detail, we will face the synthesis of a lumped
circuit analog to a Kirchhoff~Love plate discretized via finite difference method. As already
performed for beams, in the present paper, our effort will be focused on synthesizing an analog
circuit which can dispense with the use of any external feeding. Coupling of a mechanical
plate and electric network will be worked out exploiting a uniformly distributed array of
piezoelectric transducers. The homogenization of the PEM plate will be achieved exploiting
an energy identification method. The vibration suppression will be ensured by resistors
properly inserted in the analog circuit.
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NOTES

1. Nevertheless, the problem may be solved also in a different way, looking for an analog circuit where
the displacements are represented by stored charges and the contact actions by voltage drops.

2. The piezo-layer constituted by distinct patches is assumed to completely cover the whole beam span.

3. Once the characteristic frequency has been chosen equal to wo, then the scaling parameter for the time
variable is assumed to be 1 /0.

4. This condition establishes that the characteristic capacitive energy in the analog circuit has to be equal
to the characteristic kinetic energy of the vibrating beam.
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5. The sign of each constant y2, has to be established in order to guarantee the passivity of the electrical
circuit.

6. The electrical simply-supporting conditions establish that the bender transducer at the beam left edge
has to be short-circuited to ground. Thus it can be omitted, since it does not contribute to the energy
transfer between the electrical and the mechanica system.

7. Homogeneous electrical boundary conditions of the form 1%/ (0,t) = ¥ (1,t) = 0 with j varying
from O to max{2 (M — 1),1} are considered.
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