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Abstract

Providing accurate simulations of polydisperse evaporating sprays dynamics in unsteady gaseous flows with large

scale vortical structures is both a crucial issue for industrial applications and a challenge for modeling and scientific

computing. The usual Lagrangian approaches developed in polydisperse unsteady configurations require tremendous

computational costs and may lead to a low level of resolution if not enough numerical parcels are used. Besides,

they induce coupling issues due to the different kind of description of the two phases that are involved. A large

range of Eulerian models have been recently developed to describe the dispersed liquid phase with a lower cost

and an easier coupling with a carrier gaseous phase. Among these models, the multi-fluid model allows a detailed

description of polydispersity and size/velocity correlations of droplets of various sizes. It has been studied in depth

from a mathematical and numerical point of view (see Laurent & al (2004); Laurent (2006); Massot & al (2009))

and validated through comparisons versus Lagrangian simulations in de Chaisemartin (2009) and experimental

measurements in Fréret & al (2008) in 2D and 2D-axisymmetrical configurations. However, the validation in

three-dimensional unsteady configurations still remains to be done. In this work, we study the non-evaporating

droplet segregation in three-dimensional Homogeneous Isotropic Turbulence (HIT) using a reference Lagrangian

spray model versus the Eulerian multi-fluid model. A spectral Direct Numerical Simulation solver is used to describe

the evolution of the turbulent carrier phase, whose characteristic properties remain statistically stationary due to a

semi-deterministic forcing scheme. We focus on the optimization via a parallel implementation of the multi-fluid

model and dedicated numerical methods which demonstrates the ability of the Eulerian DNS model to be used in high

performance computing for academic three-dimensional configurations. We provide qualitative comparisons between

the Euler-Lagrange and the Euler-Euler descriptions for two different values of the Stokes number based on the initial

fluid Kolmogorov time scale, St = 0.17 and 1.05. A very good agreement is found between the mesoscopic Eulerian

and Lagrangian predictions. We go further with first quantitative comparisons of the segregation effect of the vortices

on the spray mass density distribution showing the accuracy and ability of the multi-fluid model to be used in 3D

configurations from the tracer limit (St → 0) to unity.

Introduction

In many industrial combustion applications such as

Diesel engines, fuel is stocked in condensed form and

burnt as a dispersed liquid phase carried by a gaseous

flow. Two phase effects as well as the polydisperse

character of the droplet size distribution can signifi-

cantly affect flame structures. Size distribution effects

are also encountered in a crucial way in solid propel-

lant rocket boosters, where the cloud of alumina parti-

cles experiences coalescence and becomes polydisperse

in size, thus determining their global dynamical behav-
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ior, see Doisneau & al (2010). Consequently, it is of

interest to have reliable models and numerical methods

able to describe precisely the two-phase flows physics

where the dispersed phase is constituted of a cloud of

particles of various sizes that can evaporate, coalesce

or aggregate, break-up and also have their own inertia

and size-conditioned dynamics. In a “mesoscopic” de-

scription of the liquid phase, droplets are considered as

a cloud of point particles for which the exchanges of

mass, momentum and heat are described using a statis-

tical point of view, with eventual correlations, and the

details of the interface behavior, angular momentum of

droplets, detailed internal temperature distribution in-

side the droplet, etc., are not predicted. Instead, a finite

set of global properties such as size of spherical droplets,

velocity of the center of mass, temperature are modeled.

Since it is the only one which provides numerical simu-

lations at the scale of a combustion chamber or in a free

jet, this mesoscopic point of view will be adopted in the

present paper.

The main physical processes that must be accounted

for are (1) transport in real space, (2) acceleration of

droplets due to drag, (3) droplet heating and evaporation,

and (4) coalescence and break-up of droplets leading to

polydispersivity. Spray models have a common basis at

the mesoscopic level under the form of a number den-

sity function (NDF) satisfying a Boltzmann type equa-

tion, the so-called Williams equation (Williams (1958)).

The internal variables characterizing one droplet are the

size, the velocity and the temperature, so that the to-

tal phase space is usually high-dimensional. Such a

transport equation describes the evolution of the NDF

of the spray due to evaporation, to the drag force of the

gaseous phase, to the heating of the droplets by the gas

and finally to the droplet-droplet interactions, such as

coalescence and break-up phenomena. There are sev-

eral strategies in order to solve the liquid phase and the

major challenge in numerical simulations is to account

for the strong coupling between all the involved pro-

cesses. A first choice is to approximate the NDF by a

sample of discrete numerical parcels of particles of var-

ious sizes through a Lagrangian–Monte-Carlo approach

(see O’Rourke (1981)). It is called Direct Simulation

Monte-Carlo method (DSMC) by Bird (1994) and gen-

erally considered to be the most accurate for solving

Williams equation; it is especially suited for DNS since

it does not introduce any numerical diffusion, the par-

ticle trajectories being exactly solved. This approach

has been widely used and has been shown to be effi-

cient in numerous cases. Its main drawback is the cou-

pling of an Eulerian description for the gaseous phase

to a Lagrangian description of the dispersed phase, thus

encountering difficulties of vectorization/parallelization

and implicitation. Besides, it brings another issue asso-

ciated with the repartition of the evaporated mass at the

droplet location onto the Eulerian grid for the gas de-

scription. Moreover for unsteady computations of poly-

disperse sprays, a large number of parcels in each cell

of the computational domain is generally needed, thus

yielding large memory requirement and CPU cost. This

drawback makes attractive the use of a Eulerian formu-

lation for the description of the disperse phase, at least

as a complementary tool for Lagrangian solvers.

The Eulerian Multi-Fluid model, extended by Laurent &

Massot (2001) from the ideas of Greenberg & al (1993),

allows to describe polydispersivity of a spray in size

and the associated size-conditioned dynamics. This ap-

proach relies on the derivation of a semi-kinetic model

from the Williams equation using a moment method for

velocity conditioned by droplet size while keeping the

continuous size distribution function. This distribution

function is then discretized using a finite volume ap-

proach in the size phase space that yields conservation

equations for mass, momentum (and eventually other

properties such as temperature) of droplets in fixed size

intervals. This Multi-Fluid model is developed in the

framework of a DNS for laminar flows. However, it

is specific of the difficulties one will encounter in the

development of Large Eddy Simulation (LES) tools for

turbulent flows (see Boileau & al (2010)).

In the present work, we consider monodisperse non-

evaporating sprays in large scale vortical structures of an

unsteady forced HIT gaseous field. As we do not want

to cope with the difficulties of the two-way coupling but

solely compare two descriptions of the dispersed liquid

phase, we restrict the simulation to one-way coupling

and thus isolate the behavior of each method. The ex-

tension to polydisperse evaporating droplets has already

been discussed in Laurent & al (2004); de Chaisemartin

& al (2008); Reveillon & Demoulin (2007), crossing

phenomena in Kah & al (2010) and was not taken into

account here since we tend to validate the multi-fluid

model in 3D unsteady flows. Simulations were car-

ried out thanks to the coupling of a solver dedicated to

the Eulerian spray description (Muses3D) with an other

one which solves the Lagrangian liquid phase and the

gas phase on a Eulerian grid (Asphodele). Muses3D

solver has been developped by S. de Chaisemartin dur-

ing his thesis ( de Chaisemartin (2009)) and L. Fréret

at EM2C laboratory and Asphodele by J. Réveillon and

co-workers at CORIA laboratory. The coupling of these

two solvers allows the simultaneous numerical simula-

tion with the use of two models Eulerian and Lagrangian

for the liquid phase coupled to an unique gas carrier-

phase.

The paper is organized as follows. We first recall briefly

the modelling of the liquid phase, both from a La-
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grangian and Eulerian descriptions, as detailed in de

Chaisemartin (2009). We also discuss the numerical

methods for the two different descriptions as well as for

the gaseous phase. Next, we detail the optimization via

MPI parallel implementation done in Muses3D connect-

ing with numerical methods and the way we achieved

the coupling between parallel Muses3D and sequential

Asphodele. This allows to carry out simultaneous sim-

ulations of two descriptions of a spray dispersion in an

unsteady three-dimensional HIT configuration with two

different Stokes, from the tracer limit St = 0.17 to

St = 1.05 which leads to maximal segregation effects.

Qualitative comparisons are performed considering the

Eulerian liquid density, the Lagrangian droplet positions

and particle number density. Moreover, statistical prop-

erties of the dispersed phase such as particle-fluid ve-

locity correlation and Eulerian droplet segregation are

computed from both Lagrangian and Eulerian simula-

tions. Presented results account for our first quantitative

outcome on droplet segregation in an unsteady 3D con-

figuration.

Governing equations and modelling

In this study, we restrict ourselves to physical processes

such as (1) transport in real space and (2) acceleration of

droplets due to drag.

In order to introduce the non-dimensional equations, we

define the reference velocity U0 and length x0 based on

the macroscopic characteristics of the computational do-

main allowing to define a reference time scale for the

gaz: τg = x0/U0. These quantities, along with the phys-

ical constants for a reference physical mixture, ρ∞, µ∞

are taken to define the dimensionless system. To derive

the dimensionless equations, we define a normalization

Reynolds number based on the reference quantities

Re0 =
ρ∞x0U0

µ∞

. (1)

The Stokes number is given by St = τp/τκ where the

drag relaxation time is defined by τp = ρlS/(18πµg),
the liquid density is ρl and µg is the gas viscosity and τκ

is the Kolmogorov time scale.

Dimensionless variables are given such as:

u
∗ = u/U0, x

∗ = x/x0, t∗ = t/τg, S∗ = S/S0.

A number density function (NDF) of the spray fΦ is

introduced, the quantity fΦ(t,x, S,u)dtdxdSdu be-

ing the probable number of droplets with a position

in [x,x + dx], a surface in [S, S + dS], a velocity

in [u,u+ du] and at time t. The NDF satisfies a simpli-

fied Williams-Boltzmann equation:

∂tf + ∂x · (uf) + ∂u · (Ff) = 0, (2)

where F is the dimensionless Stokes law drag force

given by F = (ug − u)/St with ug the gas velocity.

Lagrangian liquid phase. To solve the kinetic equa-

tion (2) of the spray, we can use Lagrangian Monte-

Carlo methods. This leads to Euler-Lagrange numerical

methods, commonly used for the calculation of poly-

disperse sprays in various application fields (generally,

the gas phase is computed using a deterministic Eule-

rian solver, while the disperse phase is treated in a La-

grangian way). In our study, the Lagrangian reference

is not taken as a converged DSMC method, in order to

be closer to industrial concern. For the given gas DNS

configuration, we perform a Discrete Particle Simulation

(DPS). Indeed there is no need to use Stochastic Parcel

method, since all the droplets contained in the computa-

tional domain can be tracked. One can note that in the

infinite Knudsen limit meaning that there is no droplet

interaction, the DSMC computation is equivalent to an

ensemble of DPS, each numerical particle representing

one droplet with a weight equal to one.

The physical processes are then described by the classi-

cal following non-dimensional equations:




dvk

dt
=

1

St(Sk)
(ug (xk, t) − vk) ,

dxk

dt
= vk,

(3)

where vk and xk denote the dimensionless velocity and

position vectors of each droplet k. The vector ug rep-

resents the gas velocity at the droplet position xk. The

right hand-side term of the first equation in (3) stands for

a drag force applied to the droplet of size Sk.

The Lagrangian numerical particles ODE systems (3)

are solved with an explicit third order Runge Kutta

solver.

Eulerian liquid phase. The alternative to Lagrangian

particle tracking is the resolution of spray Eulerian

global quantities, as number or mass density and mo-

mentum. These Eulerian methods can be seen as mo-

ment methods derived from the kinetic equation (2).

The formalism and the associated assumptions needed

to derive the Eulerian multi-fluid model are introduced

in Laurent & Massot (2001). Two steps are to be real-

ized in order to obtain the Eulerian multi-fluid model’s

equations. In a first step, the size of the phase space is re-

duced by considering zero and one order moments with

respect to the velocity variable at a given time t, position

x and droplet size S : n =
∫

fdu and ū =
∫

ufdu/n
which depend on (t,x, S). The closure of the system is

obtained through the following assumptions:

[H1] For a given droplet size, at a given point (t,x),
there is only one characteristic averaged velocity

ū(t,x, S).
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[H2] The velocity dispersion around the averaged veloc-

ity ū(t,x, S) is zero in each direction, whatever the

point (t,x, S) is.

It is equivalent to presume the following NDF condi-

tioned by droplet size:

f(t,x, S,u) = n(t,x, S)δ(u − ū(t,x, S)), (4)

that is to reduce the support of the NDF to a one dimen-

sional submanifold parametrized by droplet size.

Such an assumption leads to a closed system of con-

servation equations called the semi-kinetic model on

the moments of order zero and one in velocity. It is

given by two partial differential equations in the vari-

ables n(t,x, S) and ū(t,x, S) which express the con-

servation of the number density of droplets and their

momentum, respectively, at a given location x and for

a given size S:

{
∂tn + ∂x · (nu) = 0,

∂t(nu) + ∂x · (nu ⊗ u) − nF = 0,
(5)

where F(t,x, S) is the Stokes’s drag force taken at

u = u.

The second step consists in choosing a discretization

0 = S(1) < S(2) < · · ·< S(p) < · · · < S(NS + 1) for

the droplet size phase space and to average the obtained

system of conservation laws over each fixed size inter-

vals [Sp, Sp+1[, called section. The set of droplets in

one section can be seen as a “fluid” for which conserva-

tion equations are written. The sections exchange mass

and momentum. To close the system, the following as-

sumptions are introduced:

[H3] In one section, the characteristic averaged velocity

does not depend on the size of the droplets.

[H4] The form of n as a function of S is supposed to

be independent of t and x in a given section, thus

decoupling the evolution of the mass concentration

of droplets in a section from the repartition in terms

of sizes.

The conservation equations for the kth section then read,

in our simplified case:

{
∂tm

k + ∂x · (mk
ū

k) = 0,

∂t(m
k
ū

k) + ∂x · (mk
ū

k ⊗ ū
k) = mk

F̄
k,

(6)

where mk is the mass concentration of droplets in the

kth section.

Eulerian multi-fluid numerical methods

Phenomena involved in our problem are of two differ-

ent types: transport induces an evolution in the physical

space without any interaction between the sections, and

by constrast, the transport in internal coordinate space

(velocity) are encountered through drag. This induces

an evolution without any coupling with the spatial co-

ordinates. It is then interesting to separate these two

transport types using an operator-splitting method and

to treat efficiently the different difficulties of the multi-

fluid system: a complex transport term (for the physi-

cal space) and stiff source terms (for the phase space).

The multi-fluid system (6) is then split into two systems

that we solve alternatively. We choose a Strang splitting

which is second order in time provided that all the steps

are second order in time, see (Descombes and Massot

2004). The scheme then takes the form:

H∆t
S ◦ G∆t

x
◦ G∆t

x
◦ H∆t

S = H∆t
S ◦ G2∆t

x
◦ H∆t

S , (7)

where Gα
x

(respectively Hα
S ) denotes the physical trans-

port (respectively the phase space transport) during time

α. This Strang splitting is composed of two Lie split-

ting step (Hα
S ◦ Gα

x
) of length α = ∆t and it alternates

the order in which they are performed (left part of equa-

tion (7)). It is equivalent to one Strang splitting step of

length 2∆t (right part of equation (7)). The splitting

approach has the great advantage to preserve the proper-

ties of the schemes we use for the different contributions

such as maximum principle on the velocity or positivity

of density.

In physical space, the system that we get from the

operator splitting is weakly hyperbolic and can gen-

erate δ-shock and vacuum zones. As precised in de

Chaisemartin (2009), we use second order kinetic

schemes which are finite volume schemes based on the

equivalence between a macroscopic and a microscopic

level of description for the pressureless gas equations

(see Bouchut & al (2003)). These schemes preserve the

positivity of mass density and reproduce a discrete max-

imum principle on the velocity. In addition, we use a

dimensional Strang type splitting. This allows to use

schemes in 1D configuration and it preserves the sec-

ond order of the method (see LeVeque (2002)). In the

3D case, the scheme then takes the form:

G∆t
x ◦ G∆t

y ◦ G∆t
z ◦ G∆t

z ◦ G∆t
y ◦ G∆t

x , (8)

where Gα
d denotes the physical transport in the direction

d (which can be x, y, or z) during time α. This form of

splitting does not lead to CFL reduction in a direction

as a classical Strang splitting algorithm would. Indeed

all the transport sub-steps are computed for a timestep

∆t. This splitting allows the same numerical diffusion
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in each direction. The global scheme we solve is then

obtained by replacing G2∆t
x

by the expression (8) in (7).

The system obtained in the phase space from the

splitting of system (6) is solved using an efficient ODE

solver based on an implicit Runge-Kutta 5th order

method RadauIIA (see Hairer & Wanner (1996)).

Eulerian multi-fluid optimization. As for standard

Eulerian computational fluid dynamics, domain decom-

position appears, for multi-fluid computation, as a very

interesting way to achieve parallel computation. Indeed

it offers the ability to use an arbitrary high number

of points, the number of processes used allowing to

have a sub-domain on each process with a reasonable

number of points, leading to reasonable computational

time and memory requirement. The difficulty of such

parallelization lies in the data communications due both

to multi-fluid peculiarities and dedicated numerical

methods.

The main issue of the multi-fluid, when dealing with

domain decomposition, is the size discretization lead-

ing to an extra dimension of the problem. As this

dimension typically contains five to twenty sections

for “classical” multi-fluid model, a 3-D computational

domain leads to a 4-D computation. Furthermore, the

operator splitting used for the numerical scheme makes

two blocks appear with different properties, as far as

domain decomposition is concerned. On the one hand

the physical space transport is local in size and would

naturally lead to a domain decomposition in size, each

process realizing the transport for one size section. In

this case no communication would be necessary in the

physical space. On the other hand, the phase space

transport is local in physical space and would then lead

to a decomposition in space, a process treating a space

sub-domain with all the size sections on it. Here, no

communication needs to take place on the phase space.

The different decomposition strategies available in

this context have been evaluated (see de Chaisemartin

(2009)). The first strategy is limited by the number

of sections used and will have to be coupled with

a partially spatial decomposition, in order to use an

important number of parallel processes (≃ 100). An

hybrid method, with size decomposition in the physical

transport, and space decomposition in the size phase

space transport lead to an array reorganization and

consequently to a high amount of communications.

Finally, the domain decomposition in space is a good

compromise between data calculations and MPI com-

munications. For this strategy, an efficacity close to one

has been obtained up to 128 cores that was the limit

of our cluster. The extensibility to a thousand core is

eventually foreseen and is the subject of our current

investigations.

Gas solver and turbulence forcing. The gaseous

carrier-phase is solved using a solver for Low Mach or

incompressible flows. This solver is based on finite-

difference (FD) prediction correction method for the ve-

locity evolution, as introduced in Chorin (1968). As far

as numerical methods are concerned, the time resolu-

tion is provided by a third order explicit Runge Kutta

scheme. Spatial evolution is done with a FD scheme,

the derivatives being computed with a Pade 6th order

scheme (see Lele (1992)).

At each time step, we perform a turbulence forcing

method to generate an isotropic homogeneous turbu-

lence. To maintain the major properties (energy, dis-

sipation rate, integral scale) of the spectral turbulence

close to constant values, a controlled amount of en-

ergy must be transferred into the spectral simulation

through a forcing procedure. There are various ways to

achieve the forcing of isotropic homogeneous turbulence

in a spectral DNS. In this work, we use the fully con-

trolled deterministic forcing scheme (FC-DFS) devel-

opped by Guichard & al (2004). Inspired from Overholt

& Pope (1998)’s deterministic scheme, FC-DFS scheme

has an efficient convergence rate and reduces drastically

the fluctuations of the prescribed properties. Turbulence

is forced by adding a linear source term to the balance

equation for the velocity field û in wavenumber space:

∂û

∂t
= â +

fκ

τf
û,

where â represents the classical Navier-Stokes contribu-

tions for an incompressible flow. The forcing function

fk is real and depends on both time t and wavenum-

ber magnitude κ. The value τf is the characteristic re-

laxation delay of the simulated spectrum Es towards a

model spectrum Em. The principle of FC-DFS model

is to relax the simulated spectrum Es towards a model

one Em only for a given range of low wavenumbers

(κ < κF ). The interested reader is referred to Guichard

& al (2004) for further information. The vorticity of the

field extracted at dimensionless time t = 20 from this

computation is plotted in Fig 1(a).

3D DNS configuration

A uniformly monodispersed non-evaporating spray

with a zero initial velocity is distributed initially in the

gaseous field in order to study droplet ejection from

the core of the vortices. The drag force sets particles

in motion. Owing to the multi-fluid size distribution

description, the evaporating case is easy to carry out and

will be addressed in a near future, the non-evaporating

case was a necessary first step.

Droplet dispersion and preferential segregation have
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(a) Gas vorticity norm, obtained with spectral resolution at time

t = 20

(b) Eulerian spray number density for St = 0.17 at time t = 20

(c) Eulerian spray number density for St = 1.05 at time t = 20

Figure 1: (a) Gas vorticity norm, obtained on a 1293

grid with spectral resolution at time t = 20, slice planes

inside the domain (x = 2, y = 2, z = 1).

Eulerian spray number density obtained with the multi-

fluid method on a 1293 Cartesian grid at time t = 20.

Slice planes at x = 2, y = 2, z = 1, for two Stokes

number: (a) St = 0.17, (b) St = 1.05.

(a) Normalized particle number density ξ/ξ0 measured from the La-

grangian simulation for St = 0.17 at time t = 20

(b) Normalized particle number density ξ/ξ0 measured from the La-

grangian simulation for St = 1.05 at time t = 20

Figure 2: Eulerian spray number density ξ/ξ0 obtained

from a Lagrangian simulation of 1283 particles by con-

sidering the droplets accumulated around each numeri-

cal grid node, at time t = 20. Slice planes at x = 2,

y = 2, z = 1 for two Stokes number: (a) St = 0.17, (b)

St = 1.05.
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been analyzed from a Eulerian point of view. Instanta-

neous fields of density are plotted for St = 0.17 in

Fig 1(b) and for St = 1.05 in Fig 1(c). This latter

case is a case of a Stokes number close to unity leading

to maximal segregation effects. The corresponding

vorticity field is presented in Fig 1(a). These three fields

have been captured at exactly the same dimensionless

time t = 20. Even without any quantitative analysis, it

is possible to see the dramatic impact on the particles’

inertia on their dispersion properties. Particles tend to

leave the vortex cores and segregate in weak vorticity

areas. For St = 1.05, the normalized liquid density

varies between 0 (no droplets) and 4 (four times the

mean density).

Numerical setup. We use a cubic computational

domain with periodic boundary conditions. As far as

spatial discretization is concerned, the same grid of

1293 points is used for the gas solver and the Eulerian

spray solver. One has to note that the space domain

decomposition for the multi-fluid method, implemented

using the MPI library, allows to use for the spray com-

putation a refined Eulerian grid at a low computational

time cost. This refinement is already available through

a trilinear interpolation procedure but was not used in

this study since our objectives were the validation of the

Eulerian model in a 3D unsteady and realistic context.

As the gas field is solved sequentially, it is globally

known on each processor and this allows to distribute

uniformly Lagrangian particles on each core. This

reduces significantly the number Nl of Lagrangian

particles on each core keeping the total particles number

N very high. We have Nl = N/np where np is the

core number. As the evaporation phenomena is not

taken into account and there is no interaction between

Lagrangian droplets, numerical particles are indepen-

dent from one to each other and no information goes

from droplets to the gas. Hence, there is no need to

consider MPI communications between nodes. No

particles have to be moved from one core to another

as it has to be done when the gas field is divided into

distinct sub-domains, see Garcia (2009). An other

point of view is to consider that we are doing np DPS

simulations with few numerical particles. The parallel

efficiency of such method is thus optimal and equal to

one. The simulations corresponding to the results that

are presented were performed on a cluster made of 8

nodes with 2 processors AMD Opteron 64 bits dual core

with speed 2.4 GHz, the 32 cores being connected by

an infinyband gigabit network. A computational time of

twenty hours was necessary to obtain the Eulerian and

the Lagrangian simulation up to a dimensionless time

t = 20.

In our simulations, N = 1283 mono-dispersed

non-evaporating particles are randomly embedded

throughout the computational domain with a zero

initial velocity. Hence, thanks to the use of 32 cores,

Nl ≃ 65530 droplets are tracked through the unsteady

gas field on each core. Droplet dispersion is usually

characterized by the Stokes number St = τp/τk, τk

being the Kolmogorov length scale, which indicates

the ability of droplets to capture local variations of

the carrier-phase velocity. Turbulence properties being

fixed, simulations were carried out by varying the τp

parameter. Two Stokes numbers have been considered,

0.17 and 1.05, corresponding to droplet diameters of

15 and 45 µm. The Reynolds number defined in (1)

is equal to 1000. We eventually provide dimensional

quantities for illustration purposes, based on an esti-

mated velocity of U0 = 1.5m/s and x0 = 0.01m, as

well as a typical value of 1.5 × 10−5 m 2 / s for µ∞.

In addition, we will let d0 = 0.001x0 (for St = 0.17)

and d0 = 0.003x0 (for St = 1.05), where d0 is the

diameter corresponding to the droplet surface area S0.

The computational domain has a size L3 with L = 2,

which corresponds to 8 cm3 in dimensional values.

We take as a reference solution for the liquid phase

the Lagrangian Discrete Particle Simulation with N
particles in the computational domain. We provide

comparisons between this Lagrangian reference and

the Eulerian multi-fluid monokinetic computations

by plotting the Lagrangian particle positions and the

particle number density measured from the Lagrangian

simulation versus the Eulerian number density.

Eulerian-Lagrangian comparisons

Qualitative liquid dispersion comparisons. The Eu-

lerian multi-fluid description of the spray dynamics are

presented in this section for two Stokes number, based

on the Kolmogorov length scale:

• St = 0.17, corresponding to droplet with diameter

d = 15µm, see Fig 1(b).

• St = 1.05, corresponding to droplet with diameter

d = 45µm, see Fig 1(c).

These two different inertia allow to study a spray ejected

from the center core and segregated in weak vorticity

areas. They are thus well suited for robustness eval-

uation of the multi-fluid method. Indeed high den-

sity regions, as well as vacuum, are created, that rep-

resent a challenging issue for a Eulerian method. Higher

Stokes number are not tackled here since it was shown

in Reveillon & Demoulin (2007) that, for Stokes num-

ber greater than unity, effects of maximal segregation in

turbulent flow occur. The droplets are inertial enough

to be ejected from a vortex and not follow the fluid

7
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particle like a tracer. Their velocities become decorre-

lated from the gaseous carrier phase velocity. In this

case droplet trajectory crossings have a strong impact on

the spray repartition and the mono-kinetic assumption

of the multi-fluid method might not allow to describe

it. Recently, Kah & al (2010) extended the multi-fluid

method to higher order moment method to take into ac-

count these droplet crossings and it would be interesting

to enrich the presented comparisons with Eulerian re-

sults provided by the extended multi-fluid multi-velocity

model.

To assess the multi-fluid description of the size-

conditioned dynamics, Eulerian density fields are com-

pared to Lagrangian droplet positions computed for the

same Stokes numbers at the same time t = 20, see

Fig 2(a) and Fig 2(b). Qualitative comparisons are ap-

plied in the planes x = 2 and y = 2. In the chosen iner-

tial range, the spray is ejected from the vortex cores and

accumulated in low vorticity areas. In order to link the

spray dispersion given by both methods to the gas vortic-

ity structure, the square norm of the gas vorticity is given

in Fig 3(d) and Fig 4(d), for the planes x = 2 and y = 2,

respectively. Qualitative comparisons between both ap-

proach can be done focusing on the vacuum zones de-

scription. These zones correspond to the gas vortex

cores, that can be identified from the vorticity represen-

tation. The repartition of these vacuum zones obtained

by the classical Lagrangian method is very precisely re-

produced by the multi-fluid on the different planes (see

Fig 3(a) and Fig 3(e) for the plane x = 2 and Fig 4(a)

and Fig 4(e) for the plane y = 2). Furthermore, the

evolution of droplet repartition with inertia is very well

captured by the multi-fluid. Indeed, the Eulerian density

fields for higher Stokes number still a present very good

agreement with the Lagrangian droplet repartitions, see

Fig 3(b), Fig 3(c) and Fig 3(f) for the plane x = 2 and

Fig 4(b), Fig 4(c) and Fig 4(f) for the plane y = 2.

Quantitative spray equilibrium comparisons. As

studied in Reveillon & Demoulin (2007), the equilib-

rium of the spray with its carrier phase is detected

through the statistics of the slip velocity

ω
E(x, t) = (ug − u)(x, t),

where ug and u are the Eulerian gas velocity field and

the liquid velocity field both taken at the numerical grid

point x. From a Lagrangian point of view, the slip ve-

locity of a droplet k is given by

ω
L(k, t) = (ug(xk) − vk)(t),

where vk is its velocity and ug(xk) is the gas ve-

locity taken at the droplet position xk. The mean

value of the Lagrangian slip velocity is defined by

ω̃(t) = 1/N
∑N

k=1
ω

L(k, t) with N the to-

tal particle number while its Eulerian equivalent is

ω(t) = L−3
∫

ω
E(x, t)dx. In the following, an over-

bar stands for a Eulerian quantity whereas a tilde denotes

a Lagrangian one. Because of the homogeneous nature

of the turbulence and the dispersion, the mean value

of the slip velocity remains equal to zero. However,

the slip velocity root mean square respectively defined

by ω̃

′

(t) = 1/N
(∑N

k=1

(
ω

L(k, t) − ω̃(t)
)2

)1/2

and

ω

′

(t) = L−3

(∫ (
ω

E(x, t) − ω(t)
)2

dx
)1/2

evolves

towards a stationary value ω∞ which corresponds to the

equilibrium of the spray with the carrier gas phase. At

initial time t = 0, the liquid spray is initially distributed

in the computational domain with a zero velocity, so

ω

′

(0)/u
′

g = ω̃
′(0)/u

′

g = 1 with u
′

g the initial

gas velocity r.m.s. As prescribed previously, the drag

force set the liquid spray in motion and, depending on

the Stokes number, the mean value of the slip velocity

reaches a steady state at t = 0.2 for a small Stokes

number (St = 0.17) whereas a longer time is needed

for the largest value of the Stokes number (St = 1.05).

The final mean stationary value of the slip velocity stan-

dard deviation ω

′

∞ is close to zero when the droplets are

small enough to follow all the velocity fluctuations of

the flow (St = 0.17) and it increases to reach 0.21 cor-

responding to droplets of St = 1.05. This result accords

with those presented in Reveillon & Demoulin (2007)

and are plotted in Fig 5. Values of ω

′

∞ and ω̃
′
∞ show

a very good agreement for St = 0.17, whereas ω

′

∞ is

smaller than ω̃
′
∞ and equal to 0.16 for St = 1.05.

8



7
th International Conference on Multiphase Flow,

ICMF 2010, Tampa, FL, May 30 – June 4, 2010

(a) Eulerian multi-fluid number density

for low inertia droplets St = 0.17
(b) Lagrangian droplet positions

for low inertia droplets St = 0.17
(c) Normalized particle number density

ξ/ξ0 measured from the Lagrangian

simulation for low inertia droplets St = 0.17

(d) Instantaneous Vorticity field

(e) Eulerian multi-fluid number density

for higher inertia droplets St = 1.05
(f) Lagrangian droplet positions

for higher inertia droplets St = 1.05
(g) Normalized particle number density

ξ/ξ0 measured from the Lagrangian

simulation for low inertia droplets St = 1.05

Figure 3: Eulerian Lagrangian comparisons of the liquid phase for two different Stokes St = 0.17 and St = 1.05, in

the (y − z) plane at x = 2 at time t = 20.
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(a) Eulerian multi-fluid number density

for low inertia droplets St = 0.17
(b) Lagrangian droplet positions

for low inertia droplets St = 0.17
(c) Normalized particle number density

ξ/ξ0 measured from the Lagrangian

simulation for low inertia droplets St = 0.17

(d) Instantaneous Vorticity field

(e) Eulerian multi-fluid number density

for higher inertia droplets St = 1.05
(f) Lagrangian droplet positions

for higher inertia droplets St = 1.05
(g) Normalized particle number density

ξ/ξ0 measured from the Lagrangian

simulation for higher inertia droplets St = 1.05

Figure 4: Eulerian Lagrangian comparisons of the liquid phase for two different Stokes St = 0.17 and St = 1.05, in

the (x − z) plane at y = 2 at time t = 20.
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Figure 5: Time evolution of the Eulerian (ω
′

(t)/u
′

g)

and Lagrangian (ω̃
′

(t)/u
′

g) slip velocity r.m.s. for

St = 0.17 and St = 1.05.

Conclusions and perspectives

We have presented comparisons between Lagrangian

and Eulerian liquid spray computations in a context

of three-dimensional unsteady forced HIT carrier-phase

gas. Results were presented for two different Stokes

values showing the impact of inertia on droplet seg-

regation as well as the robustness of the multi-fluid

model since Stokes values from tracer limit to unity were

used. Qualitative comparisons were conducted consid-

ering two slice planes and a very good agreement has

been obtained up a Eulerian density prediction quanti-

tatively close to DPS results. Preferential concentration

was quantitatively studied through the comparison of the

slip velocity r.m.s. These results are a first step in spray

equilibrium comparisons between the Eulerian and La-

grangian approach and will be completed in a near fu-

ture in both improved quantitative comparisons and an

extension to evaporating case.
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