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Ce travail s'intéresse à l'estimation d'état de systèmes linéaires à temps discret et en présence d'entrées inconnues en utilisant un observateur de type proportionnel multi-intégral sous une forme générale (P I p ). L'introduction de multiples actions intégrales dans l'observateur d'état, permet d'assurer une bonne précision de l'estimation même en présence des entrées inconnues décrites par des polynômes de degré p. Un exemple d'application numérique montre la validité de cette approche en utilisant un observateur doté de trois actions intégrales sur un système affecté par une entrée inconnue polynomiale.

I. Introduction

L'estimation d'état des systèmes a été et est largement étudiée dans la littérature en raison de l'importance considérable donnée aux procédure de surveillance de ces systèmes. En effet, l'élaboration d'une loi de commande ou la mise en place d'une stratégie de surveillance ou de diagnostic, nécessite, en général, la connaissance parfaite et complète de l'état d'un système. Cependant, en pratique,l'état d'un système n'est disponible que partiellement et les grandeurs accessibles pratiquement par mesure directe ne sont que les signaux d'entrée et de sortie. Une solution pour résoudre ce problème consiste à coupler au système un système auxiliaire, appelé estimateur ou observateur d'état capable de recouvrer cet état.

L'observateur fournit une estimation de l'état du système a partir de son modèle et des mesures de ses entrées et de ses sorties. Parmi la panoplie des observateurs utilisables, celui de luenberger [START_REF] Luenberger | An introduction to observers[END_REF] à gain proportionnel, est un observateur classique pour les systèmes linéaires. Cependant, les performance de l'observateur proportionnel se dégradent si la connaissance du modèle du système n'est pas parfaite ou sous l'effet des perturbations inconnues affectant l'état ou la sortie du système. Afin d'améliorer l'estimation malgré la présence de ces perturbations inconnues dans le système, l'observateur à gain Proportionnel-Intégral (P I) a fait l'objet de nombreux travaux. Le P I était une solution efficace pour résoudre les problèmes d'estimation d'état, de détection de défauts soit en temps continue [START_REF] Duan | Eigenstructure assignment design for proportional-integral observers : continuous time case[END_REF], [START_REF] Busawon | Disturbance attention using proportional integral observers[END_REF], [START_REF] Marx | Robust fault diagnosis for linear derscriptor systems using proportional integral observers[END_REF], [START_REF] Gao | Proportional multiple-intral observer design for descriptor systems with measurement output disturbances[END_REF] soit en temps discret [START_REF] Shafai | LTR Design of discrete-time proportional-integral observers[END_REF], [START_REF] Duan | Eigenstructure assignment design for proportional-integral observers : discrete-time case[END_REF], [START_REF] Chang | Applying discrete-time proportional-integral observers for state and disturbance estimations[END_REF]. En effet, un observateur proportionnel intégral permet d'avoir une estimation non biaisée de l'état malgré la présence des incertitudes ou des entrées inconnues [START_REF] Beal | Robust control system design with a proportional integral observer[END_REF], [START_REF] Zhiwei | Discrete-time proportional and integral observer and observer based controller for systems with both unknown input and output disturbances[END_REF], [START_REF] Weinman | Uncertain models and robust control[END_REF], [START_REF] Koenig | Unknown Input Proportional Multiple-Integral Observer Design for Linear Descriptor Systems : Application to State and Fault Estimation[END_REF].

Dans cette communication, on propose une version générale d'un observateur proportionnel intégral (P I p ) des systèmes linéaires à temps discret en présence des entrées inconnues. L'idée de cette approche est de procéder à des intégrations successives de l'erreur d'estimation de sortie pour estimer précisément les entrées inconnues puis de les utilisées pour corriger l'estimation de l'état et de la sortie du système. Une telle opération n'est possible que si on assure un découplage parfait entre l'état observé du système et les entrées inconnues.

Ce papier est organisé comme suit. Dans la deuxième section, on positionne le problème et on donne les hypothèses nécessaires à l'établissement de l'observateur. La section III traitera le problème de synthèse d'un observateur proportionnel multi-intégral. Des résultats de simulation sur un exemple numérique seront présentés dans la section IV. Enfin, on terminera dans la section V par une conclusion de ce travail.

II. Formulation du problème

On considère un système linéaire à temps discret décrit sous forme d'équation d'état : Dans la suite, on considère des observateurs de type Luenberger permettant de reconstruire l'état et les entrées inconnues du système.

x k+1 = Ax k + Bu k Dd k y k = Cx k + Ed k (1) où x ∈ R n représente l'état du système, y ∈ R m sa sor- tie, u ∈ R
L'estimation de l'état est effectuée de la façon suivante

   xk+1 = Ax k + Bu k + D dk + K ỹk ỹk = y k -ŷk ŷk = C xk + E dk (2) où K ∈ R r×m , E ∈ R m×q .
L'estimation des entrées inconnues est réalisée par l'observateur :

dk = ∆z k z k+1 = Λz k + Γỹ k (3) où z ∈ R pq , ∆ ∈ R q×pq , Λ ∈ R pq×pq
, et où la matrice Λ contient sur sa diagonale des blocs identité. L'observation est ainsi caractérisé par les matrices K et Γ dont il conviendra d'estimer les coefficients. Les développements qui suivent visent à expliciter les équations qui régissent l'évolution des erreurs d'estimation. Compte tenu de la structure de la matrice Λ, le vecteur z k est donc construit à partir des intégrations successives de l'erreur d'estimation ỹ de la sortie. Ce vecteur, ainsi que les différentes matrices introduites dans la structure de l'observateur, sont partitionnés sous la forme :

z k =     z 1,k z 2,k . . . z p,k     , Λ =       I 0 0 . . . 0 I I 0 . . . . . . 0 . . . I I 0 0 . . . 0 I I       (4) ∆ = 0 0 . . . I , Γ =       Γ 1 Γ 2 . . . Γ p-1 Γ p       (5)
Compte tenu de (3) et de l'expression de ∆, on note que :

dk = z p,k (6) 
Ainsi, l'entrée inconnue est estimée uniquement à partir de la dernière variable d'intégration. Considérons la variable :

ε k = Hd k -z k (7) 
avec

ε k =     ε 1,k ε 2,k . . . ε p,k     , H =       H 1 H 2 . . . H p-1 I       (8) 
En particulier, la dernière composante de ε s'explicite :

ε p,k = d k -z p,k (9) 
et en comparant ( 6) et [START_REF] Beal | Robust control system design with a proportional integral observer[END_REF], on vient de définir très simplement l'erreur d'estimation de l'entrée inconnue par :

dk = ε p,k = ∆ ε k (10)
Définissons les erreurs d'estimation d'état et de sortie respectivement par :

xk = x k -xk ỹk = C xk + E dk (11) 
A partir des équations (1), ( 2), ( 7), ( 10), [START_REF] Weinman | Uncertain models and robust control[END_REF] et en utilisant l'opérateur d'avance q d'un pas d'échantillonnage, les expressions suivantes permettent d'obtenir la dynamique de l'erreur ε :

           ε k+1 = Hd k+1 -z k+1 = Hd k+1 -(Λz k + Γỹ k ) = Hqd k -Λ(Hd k -ε k ) -Γỹ k = Hqd k -Λ(Hd k -ε k ) -Γ(C xk + E dk ) = (qI -Λ)Hd k + (Λ -ΓE∆)ε k -ΓC xk (12) puis celle de l'état :    xk+1 = x k+1 -xk+1 = Ax k + Bu k + Dd k -(Ax k + Bu k + F dk + K ỹk ) = (A -KC)x k + (D -KE) dk (13) 
Finalement, compte tenu des équations (10), ( 12) et ( 13), les deux erreurs d'estimation sont régies par une équation d'état sous la forme matricielle suivante :

ε k+1 xk+1 = Λ -ΓE∆ -ΓC (D -KE)∆ A -KC ε k xk + (qI -Λ)H 0 d k (14) 
L'équation (14) traduit la dynamique d'évolution des erreurs d'estimation de l'état et de l'entrée inconnue en fonction de l'entrée inconnue d k .

On note aussi que les matrices K et Γ interviennent de façon linéaire dans cette équation. Il est donc tout à fait possible de régler les coefficients de ces deux matrices de façon à respecter la stabilité de l'équation (14), où la Dstabilité (technique de placement de pôles par exemple) et de minimiser l'influence de l'entrée inconnue sur l'erreur d'estimation (technique de type H ∞ par exemple).

En fait dans ce qui suit, on s'intéresse à un découplage exact de l'influence de l'entrée inconnue sur l'erreur d'estimation en précisant la classe d'entrée inconnue permettant ce découplage III. Synthèse de l'observateur P I p Au cours de cette section, on va présenter les différentes étapes de la synthèse d'un observateur proportionnel multiintégral. On commence, tout d'abord, par le cas le plus simple. Il s'agit d'un observateur P I puis on abordera le cas le plus général, c'est-à-dire celui d'un observateur P I p .

A. Observateur P I

Dans ce paragraphe, on s'intéresse à la synthèse d'un observateur ayant un seul intégrateur, c'est-à-dire caractérisé par :

Λ = I 0 I I , Γ = Γ 1 Γ 2 , ∆ = 0 I (15)
Si on choisit la matrice H (8) sous la forme :

H = (q -1)I I (16) 
on obtient :

(qI -Λ)H = (q -1) 2 I 0 ( 17 
)
Compte tenu de ce résultat, en vertu de l'équation (14), on peut écrire :

  ε 1,k+1 ε 2,k+1 xk+1   =   I -Γ 1 E Γ 1 C I I -Γ 2 E Γ 2 C 0 D -KE A -KC     ε 1,k ε 2,k xk   +   (q -1) 2 I 0 0   d k (18) 
Ainsi, pour garantir un découplage total de l'influence de l'entrée inconnue d k sur les erreurs d'estimation, il faut respecter la condition :

(q -1) 2 d k = 0 (19)
Une solution de l'équation (19) est donnée pour une entrée inconnue de la forme :

d k = a 1 k + a 0 (20) 
L'estimation de l'entrée inconnue peut donc s'obtenir à partir de l'erreur d'estimation de la sortie :

   z 1,k+1 = z 1,k + Γ 1 ỹk z 2,k+1 = z 1,k + z 2,k + Γ 2 ỹk dk = z 2,k (21) 
Finalement, il reste à montrer que l'erreur d'estimation dk de l'entrée inconnue tend asymptotiquement vers zéro, c'est-à-dire dk → 0 quand k → ∞. Or, compte tenu de la contrainte (19) sur la nature de l'entrée inconnue, le système (18) est alors autonome et sa stabilité est assurée par un choix judicieux des gains K, Γ 1 et Γ 2 . Les erreurs d'estimation ε et x convergent donc vers 0, et compte tenu de [START_REF] Zhiwei | Discrete-time proportional and integral observer and observer based controller for systems with both unknown input and output disturbances[END_REF], cela garantit la convergence asymptotique de d vers 0. L'observateur proposé répond bien aux exigences de reconstruction de l'état et de l'entrée inconnue, les erreurs de reconstruction ayant une convergence garantie vers l'origine.

B. Observateur P I p

Dans ce paragraphe on traite le cas général, c'est-à-dire le cas d'un observateur P I p . La démarche est tout à fait semblable à celle décrite précédemment pour l'observateur P I, en prenant maintenant pour généraliser ( 16) :

H =     (q -1) p (q -1) p-1 • • • I     (22) 
L'équation (14) s'applique toujours et ici avec :

(qI -Λ)H =     (q -I) p+1 0 • • • 0     (23)
En vertu de (14), pour avoir une erreur d'estimation découplée totalement des entrées inconnues il faut donc que :

(q -1) p+1 d k = 0 ( 24 
)
ce qui correspond à la classe d'entrée suivante :

d k = a p k p + a p-1 k p-1 + • • • + a 1 k + a 0 ( 25 
)
Pour cette classe d'entrées inconnues, la dynamique de l'erreur d'estimation se réduit à :

ε k+1 xk+1 = Λ -ΓE∆ -ΓC (D -KE)∆ A -KC ε k xk (26)
La matrice d'état de cet observateur peut aussi se mettre sous la forme :

Λ -ΓE∆ -ΓC (D -KE)∆ A -KC = Ā -K C (27) avec Ā = Λ 0 D∆ A , K = Γ K , C = E∆ C (28) 
Ainsi, sous réserve de l'observabilité de la paire ( Ā, C), le réglage de l'observateur (c'est-à-dire le choix des gains K et Γ) peut être réalisé par placement de pôles. La condition d'observabilité de Hautus [START_REF] Hautus | Controllability and observability conditions of linear autonomous systems[END_REF] ici traduite par :

rang   sI -Λ 0 -D∆ sI -A E∆ C   = n + pq ∀s ∈ C (29) 
est satisfaite si la paire(A, C) est observable, la matrice Λ étant par définition de plein rang. Enfin, l'estimation de l'entrée inconnue est réalisée à partir des équations d'état :

           xk+1 z k+1 = A -KC D∆ -ΓC Λ -ΓE∆ xk z k + B K 0 Γ u k y k dk = ∆z k (30)

IV. Exemple

On considère les matrices du système décrit par les équations (1) et (2) avec les valeurs numériques suivantes :

A = 0.3 0.1 0.1 0.8 , B = 2 -1.5 , D = 1.2 0.5 C = 1 -1 0 1 , E = 1 2
Dans cet exemple, on utilise un observateur ayant trois intégrateurs et comme entrée inconnue le signal de la forme suivante : 

d k = a 3 k 3 + a 2 k 2 + a 1 k + a 0 avec a 3 = 0.0006, a 2 = -0.08, a 1 = 2 et a 0 = -35. La figure ( 
x 0 = 20 -50 , x0 = 0 0 , z 0 =     0 0 0 0     ,
D'après les résultats obtenus, on constate bien que l'observateur P I 3 permet d'obtenir une bonne estimation de l'état du système et de l'entrée inconnue, les écarts d'estimation costatés, au voisinage de l'origine, étant dus aux conditions initiales arbitrairement choisies.

La mise en oeuvre de l'observateur proposé nécessite l'ajustement de quelques paramètres. Outre le choix des gains de l'observateur liés aux pôles souhaités et qui doit être fait en fonction du niveau de bruit affectant les mesures de la sortie, l'utilisateur peut aussi modifier certains coefficients de la matrice Λ (4) qui intervient dans la définition de 

V. Conclusion

Dans ce travail, on a présenté une forme générale d'observateur à entrée inconnue des systèmes linéaires à temps discret. L'approche était de concevoir un observateur proportionnel multi-intégral (P I p ) qui permet de garantir une bonne précision de l'estimation de l'état du système malgré la présence des entrées inconnues sous forme polynomiale de degré p. L'idée sur laquelle repose cet observateur consiste à introduire des intégrations successives sur l'erreur d'estimation de sortie pour obtenir une bonne estimation de l'entrée inconnue et à partir de laquelle on corrige l'estimation de l'état. L'observateur proposé est testé sur un exemple numérique pour un système affecté par une entrée inconnue sous forme de polynôme de degré 3. Les résultats de simulation montrent la bonne précision avec laquelle l'entrée inconnue et l'état du système sont estimés en utilisant un observateur ayant trois actions intégrales (P I 3 ).

Dans la suite de nos travaux, il semble intéressant de généraliser cette approche à la recherche d'une classe d'entrées plus générale en recherchant d'autres structure de l'observateur multi-integral.
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