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Doppler Estimation and Data detection for Underwater Acoustic ZF-OFDM Receiver

A new scheme for Doppler estimation and data detection for OFDM underwater acoustic communications is derived in this paper. We design the OFDM symbol as a concatenation of two sub-blocks. The first one is shorter and carries out few data with few subcarriers whereas the second one contains both informative and pilot symbols. The first sub-block serves to estimate the Doppler scaling factor while the pilots in the second sub-block are used for estimating the equivalent channel. Both estimation approaches are based on high resolution methods for solving harmonic retrieval problems in time and frequency domains respectively. Each sub-block contains a cyclic suffix, which allows having more data to be processed. The effectiveness of the proposed scheme is evaluated by means of simulation results.

I. INTRODUCTION

Underwater acoustic channels are typically wideband in nature due to the small ratio of carrier frequency to the signal bandwidth, which introduces frequency-dependent Doppler shifts [START_REF] Li | Multicarrier communication over underwater acoustic channels with nonuniform doppler shifts[END_REF]. They also exhibit several propagation paths, so that the received signal is equivalent to the sum of several signals with different amplitude and time delays. Multipath delay and Doppler effects constitute the main obstacles to robust underwater acoustic communication. One common approximation is to treat the channel as having a common Doppler scaling factor on all propagation paths.

Orthogonal Frequency Division Multiplexed (OFDM) signals are particularly attractive because they lead to relatively simple channel estimation and data detection algorithms. Indeed, since subcarrier only experiences flat fading, complex time-domain equalizers are not necessary [START_REF] Bahai | Multi-carrier digital communications: theory and applications of OFDM[END_REF]. However, OFDM signals are particularly vulnerable to Doppler effects that destroy the orthogonality between subcarriers and thus induce intercarrier interference (ICI). In order to adequately recover the transmitted information, algorithms at the receiver must include estimation and compensation of the Doppler scaling factor, channel estimation, and information symbols estimation.

For estimating the Doppler scaling factor, several approaches have been suggested in the literature (see [START_REF] Sharif | A computationally efficient doppler compensation for underwater acoustic communications[END_REF] for example). In the OFDM case, they are based on the use of preamble and postamble of a packet consisting of multiple OFDM blocks [START_REF] Li | Multicarrier communication over underwater acoustic channels with nonuniform doppler shifts[END_REF] or by exploiting correlation induced by the cyclic prefix [START_REF] Kim | Parameter study of OFDM underwater communications system[END_REF]. Then, the received signal is resampled by using a sampling period related to the estimated Doppler scaling factor. Recently, the authors introduced a new scheme for estimating both Doppler and channel parameters by solving harmonic retrieval problems [START_REF] Kibangou | Joint channel and doppler estimation for multicarrier underwater communications[END_REF]. In this paper, we propose an improved version of the previous algorithm with a better use of the bandwidth and without explicitly estimating the paths gain and delay. Indeed, the lack of robustness to noise of the channel parameter estimators was a major drawback of the approach in [START_REF] Kibangou | Joint channel and doppler estimation for multicarrier underwater communications[END_REF], [START_REF]ZF OFDM receiver for underwater communications[END_REF]. Herein, instead of using a zero padding scheme, we introduce a cyclic suffix in the OFDM signal design. As in [START_REF] Kibangou | Joint channel and doppler estimation for multicarrier underwater communications[END_REF], the received data are processed block-byblock. The advantage of the proposed scheme is to avoid data resampling and residual CFO estimation and compensation.

II. SYSTEM MODEL

We consider an OFDM transmission system where each OFDM block is constituted with two sub-blocks of respective length 𝑇 𝑢 and 𝑇 𝑑 , with 𝑇 𝑑 /𝑇 𝑢 ∈ ℕ, as depicted in Fig. 1. Each sub-block is followed by a cyclic suffix (CS) of duration 𝑇 𝑔 . Therefore, the overall OFDM block duration is 𝑇 = 𝑇 𝑢 + 𝑇 𝑑 + 2𝑇 𝑔 . We denote by 𝑐 𝑞 the data symbols in the first sub-block. They are all informative and thus unknown to the receiver. In the second sub-block, all data symbols 𝑑 𝑘 are not informative; some of them are known to the receiver and will serve to estimate the equivalent channel parameters. In baseband, the signal 𝑠(.) to be transmitted can be viewed as a mixture of two signals 𝑠 𝑢 (.) and 𝑠 𝑑 (.), each one corresponding respectively to the first and to the second sub-blocks:

Data

𝑠(𝑡) = 𝑠 𝑢 (𝑡) + 𝑠 𝑑 (𝑡) (1) 
with

𝑠 𝑢 (𝑡) = 𝜂 ∑ 𝑞∈𝒦𝑢 𝑐 𝑞 𝑒 𝑗2𝜋𝑞𝑄Δ𝑓𝑡 Π 𝑇𝑢+𝑇𝑔 (𝑡) 𝑠 𝑑 (𝑡) = ∑ 𝑘∈𝒦 𝑑 𝑑 𝑘 𝑒 𝑗2𝜋𝑘Δ𝑓𝑡 Π 𝑇 𝑑 +𝑇𝑔 (𝑡 -𝑇 𝑢 -𝑇 𝑔 )
where Δ𝑓 = 1/𝑇 𝑑 denotes the minimal frequency spacing between consecutive subcarriers, Π 𝑇 allows taking the CS operation into account, i.e. Π 𝑇 (𝑡) = 1, 𝑡 ∈ [0, 𝑇 ], and Π 𝑇 (𝑡) = 0, otherwise, 𝜂 allows controlling the power of the first sub-block so that both sub-blocks have the same power, 𝑄 is an integer that allows increasing the frequency spacing between the subcarriers in 𝑠 𝑢 (.), 𝒦 𝑢 (resp. 𝒦 𝑑 ) the set of subcarriers in the first (resp. second) sub-block.

In the sequel, we consider that 𝒦 𝑢 ⊂ 𝒦 𝑑 , meaning that some of the subcarriers of the second sub-block are reused in the first sub-block. By denoting 𝐾 𝑢 (resp. 𝐾 𝑑 ) the cardinality of 𝒦 𝑢 (resp. 𝒦 𝑑 ), i.e. the number of used subcarriers, we get 𝐾 𝑢 < 𝐾 𝑑 , 𝒦 𝑑 = {-𝐾 𝑑 /2, ⋅ ⋅ ⋅ , 𝐾 𝑑 /2 + 1}, and 𝒦 𝑢 = {𝑞 0 , ⋅ ⋅ ⋅ , 𝑞 0 + 𝐾 𝑢 -1}, for a given integer 𝑞 0 .

In passband, the analytical representation of the signal to be transmitted is

𝑥(𝑡) = 𝑠 𝑢 (𝑡)𝑒 𝑗2𝜋𝑓𝑐𝑡 + 𝑠 𝑑 (𝑡)𝑒 𝑗2𝜋𝑓𝑐𝑡 , 𝑡 ∈ [0, 𝑇 ],
with 𝑓 𝑐 the central carrier frequency. This signal is transmitted through a multipath underwater channel whose impulse response is given by:

ℎ(𝑡, 𝜏 ) = 𝑃 ∑ 𝑝=1 𝐴 𝑝 (𝑡)𝛿(𝜏 -𝜏 𝑝 (𝑡)),
where 𝐴 𝑝 (𝑡) and 𝜏 𝑝 (𝑡) are respectively the gain and the delay associated with the 𝑝th path. The following assumptions are adopted:

• All paths are affected by a similar Doppler scaling factor 𝑎 such that 𝜏 𝑝 (𝑡) = 𝜏 𝑝 -𝑎𝑡. • The path delays 𝜏 𝑝 , the gains 𝐴 𝑝 , and the Doppler scaling factor 𝑎 are constant over the block duration 𝑇 .

• The guard interval 𝑇 𝑔 is chosen so that 𝑇 𝑔 > max{𝜏 𝑝 } = 𝜏 𝑚𝑎𝑥 .
Therefore, the received signal results on a mixture of scaled, dilated or compressed, and delayed versions of the original OFDM block as shown in Fig. ] and

𝐼 2 = [ 𝑇𝑢+𝑇𝑔+𝜏𝑚𝑎𝑥 𝜆 , 𝑇 +𝜏𝑚𝑖𝑛 𝜆 ]
, where 𝜏 𝑚𝑖𝑛 ≤ 𝜏 𝑝 ≤ 𝜏 𝑚𝑎𝑥 , 𝑝 = 1, ⋅ ⋅ ⋅ , 𝑃 , and 𝜆 = 1 + 𝑎.

In 𝐼 1 and 𝐼 2 , the analytical representation of the received signal is respectively given as follows:

𝑦(𝑡) = 𝜂 𝐾𝑢+𝑞0-1 ∑ 𝑞=𝑞0 𝐵 𝑞 𝑐 𝑞 𝑒 𝑗2𝜋(1+𝑎)𝜑𝑞𝑡 + 𝑤(𝑡), 𝑡 ∈ 𝐼 1 (2) 𝑦(𝑡) = 𝐾 𝑑 /2-1 ∑ 𝑘=-𝐾 𝑑 /2 𝐵 𝑘 𝑑 𝑘 𝑒 𝑗2𝜋(1+𝑎)𝑓 𝑘 𝑡 + 𝑤(𝑡), 𝑡 ∈ 𝐼 2 (3)
where

𝜑 𝑞 = 𝑓 𝑐 + 𝑞𝑄Δ𝑓 , 𝑓 𝑘 = 𝑓 𝑐 + 𝑘Δ𝑓 , 𝑤(𝑡) denoting the additive noise, 𝐵 𝑞 = 𝑃 ∑ 𝑝=1 𝐴 𝑝 𝑒 -𝑗2𝜋𝜑𝑞𝜏𝑝
, and

𝐵 𝑘 = 𝑃 ∑ 𝑝=1 𝐴 𝑝 𝑒 -𝑗2𝜋𝑓 𝑘 𝜏𝑝 . ( 4 
)
In both 𝐼 1 and 𝐼 2 , the received signal 𝑦(.) can be respectively viewed as a mixture of 𝐾 𝑢 and 𝐾 𝑑 harmonics with constant magnitudes. In the sequel, we intend to solve the problem of Doppler scale factor estimation as a Harmonic retrieval one. We make use of these two time windows for first estimating the Doppler scaling factor and then recovering the informative symbols contained in the OFDM block. Since the time windows involved in the estimation process depend on 𝜆, we assume that 𝜆 is bounded, such that 𝜆 𝑚𝑖𝑛 ≤ 𝜆 ≤ 𝜆 𝑚𝑎𝑥 . One can note that 𝜆 𝑚𝑎𝑥 and 𝜆 𝑚𝑖𝑛 are related to the maximal and minimal velocities of the underwater vehicles, which can be a priori known. In addition, we assume that 𝜏 𝑚𝑎𝑥 is known and 𝜏 𝑚𝑖𝑛 = 0. Therefore the involved time windows are modified as follows

𝐼 1 = [ 𝜏 𝑚𝑎𝑥 𝜆 𝑚𝑖𝑛 , 𝑇 𝑢 + 𝑇 𝑔 𝜆 𝑚𝑎𝑥 ] 𝐼 2 = [ 𝑇 𝑢 + 𝑇 𝑔 + 𝜏 𝑚𝑎𝑥 𝜆 𝑚𝑖𝑛 , 𝑇 𝜆 𝑚𝑎𝑥 ]
.

(5) Owing to the CS, the time windows to be used are larger than those obtained when using a ZP scheme as in [START_REF]ZF OFDM receiver for underwater communications[END_REF]. Obviously, with more observations, an improvement of the resulting estimation method is expected.

III. DOPPLER ESTIMATION

The harmonic retrieval problem has been extensively studied in the literature (see [START_REF] Kay | Modern spectral estimation, Theory and Application[END_REF], [START_REF] Stoica | Introduction to spectral analysis[END_REF], [START_REF] Roy | ESPRIT-Estimation of signal parameters via rotational invariance techniques[END_REF], [START_REF] Papy | Exponential data fitting using multilinear algebra: The single-channel and multi-channel case[END_REF] for example). In general the magnitude are assumed to be constant as in the case for 𝑦(.) in 𝐼 1 and 𝐼 2 . For solving (2) as a harmonic retrieval problem, we make use of the high resolution method called HTLS (Hankel Total Least Squares) [START_REF] Van Huffel | Enhanced resolution based on minimum variance estimation and exponential data modeling[END_REF]. This algorithm can be viewed as a special case of the ESPRIT algorithm [START_REF] Roy | ESPRIT-Estimation of signal parameters via rotational invariance techniques[END_REF] and also as a Total Least Squares variant of Kung et al.'s algorithm [START_REF] Kung | State-space and singular value decomposition-based approximation methods for harmonic retrieval problem[END_REF]. Resorting to a high resolution method is mandatory since the Doppler is to be estimated from a very slight deviation of the actual subcarrier frequencies. A search on discretized space of frequencies could need a very short step of discretization, implying a huge complexity. In other hand, FFT based methods have a lower bound of resolution incompatible in such a situation.

In the noiseless case, we consider the 𝑁 samples 𝑦 𝑛 , 𝑛 = 𝑛 0 , ⋅ ⋅ ⋅ , 𝑁 + 𝑛 0 -1, of the first portion (2) of the received signal:

𝑦 𝑛 = 𝜂 𝐾𝑢+𝑞0-1 ∑ 𝑞=𝑞0 𝑐 𝑞 𝐵 𝑞 𝑒 𝑗2𝜋𝜑𝑞(1+𝑎)𝑛𝑇𝑒 = 𝜂 𝐾𝑢+𝑞0-1 ∑ 𝑞=𝑞0 𝑐 𝑞 𝐵 𝑞 𝜙 𝑛 𝑞 , ( 6 
) 𝑇 𝑠 being the sampling period. In a harmonic retrieval problem, we aim to estimate both the poles 𝜙 𝑞 = 𝑒 𝑗2𝜋𝜑𝑞(1+𝑎)𝑇𝑠 and the magnitudes 𝜂𝑐 𝑞 𝐵 𝑞 of the 𝐾 𝑢 harmonics.

For this purpose, let us first build with the samples 𝑦 𝑛 the following 𝐿 × 𝑀 Hankel matrix

Y = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 𝑛0 𝑦 𝑛0+1 𝑦 𝑛0+2 ⋅ ⋅ ⋅ 𝑦 𝑛0+𝑀 -1 𝑦 𝑛0+1 𝑦 𝑛0+2 . . . ⋅ ⋅ ⋅ 𝑦 𝑛0+𝑀 𝑦 𝑛0+2 . . . . . . ⋅ ⋅ ⋅ 𝑦 𝑛0+𝑀 +1 . . . . . . . . . . . . . . . 𝑦 𝑛0+𝐿-1 𝑦 𝑛0+𝐿 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑦 𝑛0+𝑁 -1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , with 𝑁 = 𝐿 + 𝑀 -1, 𝐿 > 𝐾 𝑢 , 𝑀 ≥ 𝐾 𝑢 .
It admits the Vandermonde decomposition:

Y = S 1 𝑑𝑖𝑎𝑔(𝛼 𝛼 𝛼)T 𝑇 1 , (7) 
where S 1 and T 1 are two Vandermonde matrices with 𝜙 𝑞 as generators:

S 1 = ⎛ ⎜ ⎜ ⎜ ⎝ 1 ⋅ ⋅ ⋅ 1 𝜙 𝑞0 ⋅ ⋅ ⋅ 𝜙 𝐾𝑢+𝑞0-1 . . . . . . . . . 𝜙 𝐿-1 𝑞0 ⋅ ⋅ ⋅ 𝜙 𝐿-1 𝐾𝑢+𝑞0-1 ⎞ ⎟ ⎟ ⎟ ⎠ ∈ ℂ 𝐿×𝐾𝑢 T 1 = ⎛ ⎜ ⎜ ⎜ ⎝ 1 ⋅ ⋅ ⋅ 1 𝜙 𝑞0 ⋅ ⋅ ⋅ 𝜙 𝐾𝑢+𝑞0-1 . . . . . . . . . 𝜙 𝑀 -1 𝑞0 ⋅ ⋅ ⋅ 𝜙 𝑀 -1 𝐾𝑢+𝑞0-1 ⎞ ⎟ ⎟ ⎟ ⎠ ∈ ℂ 𝑀 ×𝐾𝑢 ,
while 𝛼 𝛼 𝛼 contains the complex magnitudes of the 𝐾 𝑢 harmonics:

𝛼 𝛼 𝛼 = 𝜂 ( 𝑐 𝑞0 𝐵 𝑞0 𝜙 𝑛0 𝑞0 ⋅ ⋅ ⋅ 𝑐 𝐾𝑢+𝑞0-1 𝐵 𝐾𝑢+𝑞0-1 𝜙 𝑛0 𝐾𝑢+𝑞0-1
) 𝑇

We intend to estimate the Doppler scaling factor from the angle of the generators 𝜙 𝑞 . In order to avoid any ambiguity since angles are obtained up to 2𝜋, the sampling period can be selected such that the angle of the generators belongs to [-𝜋, 𝜋]. For this purpose, it is enough to select 𝑇 𝑠 such that:

𝑇 𝑠 ≤ 1 2𝜆 𝑚𝑎𝑥 max{𝜑 𝑞 } . ( 8 
)
It should be noted that this condition corresponds precisely to the Nyquist-Shannon sampling theorem condition applied to the Doppler scaled spectrum of the received signal. We can also derive the following proposition:

Proposition 1: If the sampling period is such that 𝑇 𝑠 ≤ 1 2𝜆𝑚𝑎𝑥 max{𝜑𝑞} , the Vandermonde matrices S 1 ∈ ℂ 𝐿×𝐾𝑢 and T 1 ∈ ℂ 𝑀 ×𝐾𝑢 , 𝐿 > 𝐾 𝑢 , 𝑀 ≥ 𝐾 𝑢 , with 𝜙 𝑞 = 𝑒 𝑗2𝜋𝜑𝑞(1+𝑎)𝑇𝑠 as generators are full column rank. Proof: The Vandermonde matrices loose their rank if at least two generators have the same angle modulo 2𝜋. Owing to condition (8) on the sampling period we know that the angles of the generators belong to [0, 𝜋]. Therefore, the angle of the generator are all distinct modulo 2𝜋. Thus, the resulting Vandermonde matrices are full column rank.

Let us denote by φ𝑞 the poles estimated with the HTLS method (see [START_REF] Kibangou | Joint channel and doppler estimation for multicarrier underwater communications[END_REF] for details). If the sampling period 𝑇 𝑠 is chosen according to [START_REF] Stoica | Introduction to spectral analysis[END_REF], then the angle of φ𝑞 , denoted ∠ φ𝑞 , belongs to [-𝜋, 𝜋]. We deduce the following estimator for the Doppler scaling factor:

â = -1 + 1 𝐾 𝑢 𝐾𝑢+𝑞0-1 ∑ 𝑞=𝑞0 ∠ φ𝑞 2𝜋𝜑 𝑞 𝑇 𝑒 . ( 9 
)
One can note that such a Doppler scaling factor estimator is completely blind. However, since it is a SVD-based estimator, the computation load becomes significant when increasing 𝐾 𝑢 . So, we suggest to use few active subcarriers 𝐾 𝑢 . The choice of the optimal number is still an open question. Moreover, when dealing with subspace-based methods, the dimension of the initial matrix is very important. When applying HTLS, it has been shown that very good results are obtained for 𝐿 × 𝑁 -𝐿 + 1 matrices where 𝐿 ∈ [𝑁/3, 2𝑁/3] [13].

IV. DATA DETECTION Now, for recovering the transmitted information symbols, we assume that some pilot symbols have been inserted in the second OFDM sub-block. We first estimates channel parameters using pilot symbols before recovering the informative symbols. Recall that the symbols 𝑐 𝑞 are informative whereas only some of 𝑑 𝑘 are also informative. The samples corresponding to the time interval 𝐼 2 are given by:

𝑦 𝑛 = 𝑦(𝑡)| 𝑡=𝑛𝑇𝑒 = 𝐾 𝑑 /2-1 ∑ 𝑘=-𝐾 𝑑 /2 𝑑 𝑘 𝐵 𝑘 𝑒 𝑗2𝜋(1+𝑎)𝑓 𝑘 𝑛𝑇𝑒 .
In matrix form, we get: 𝑇𝑒 , and

y = Hb, ( 10 
)
with y = ( 𝑦 𝑛1 ⋅ ⋅ ⋅ 𝑦 𝑛1+𝑁1-1 ) 𝑇 , b = ( 𝑏 -𝐾 𝑑 /2 ⋅ ⋅ ⋅ 𝑏 𝐾 𝑑 /2-1 ) 𝑇 , 𝑏 𝑘 = 𝑑 𝑘 𝐵 𝑘 , φ𝑘 = 𝑒 𝑗2𝜋(1+â)𝑓 𝑘
H = ⎛ ⎜ ⎜ ⎝ φ𝑛1 -𝐾 𝑑 /2 ⋅ ⋅ ⋅ φ𝑛1 𝐾 𝑑 /2-1 . . . . . . . . . φ𝑛1+𝑁1-1 -𝐾 𝑑 /2 ⋅ ⋅ ⋅ φ𝑛1+𝑁1-1 𝐾 𝑑 /2-1 ⎞ ⎟ ⎟ ⎠ ∈ ℂ 𝑁1×𝐾 𝑑 .
It is straightforward to check that H is a full column rank matrix if 𝑁 1 > 𝐾 𝑑 and 𝑇 𝑠 ≤ 1 2𝜆𝑚𝑎𝑥 max{𝑓 𝑘 } . As a consequence, we can compute the least squares (LS) solution of [START_REF] Papy | Exponential data fitting using multilinear algebra: The single-channel and multi-channel case[END_REF] as: b = H † y [START_REF] Van Huffel | Enhanced resolution based on minimum variance estimation and exponential data modeling[END_REF] where H † denotes the pseudo-inverse operator of the matrix H. Since the entries of b result on the product of a symbol 𝑑 𝑘 and the equivalent channel parameters 𝐵 𝑘 , without lack of generality, by assuming that the subcarriers numbered 𝑘 = 0, 1, ⋅ ⋅ ⋅ , 𝐾 𝑝 -1, 𝐾 𝑝 < 𝐾 𝑑 /2, are devoted to pilot symbols, i.e. 𝑑 𝑘 ,𝑘 = 0, 1, ⋅ ⋅ ⋅ , 𝐾 𝑝 -1, are known to the receiver, we get:

B𝑘 = b𝑘 /𝑑 𝑘 . ( 12 
)
Now, the question is: how constructing B𝑘 associated with the information symbols from those estimated using the 𝐾 𝑝 pilots? First, we can note that (4) can also be written as

𝐵 𝑘 = 𝑃 ∑ 𝑝=1 𝛾 𝑝 𝜁 𝑘 𝑝 , 𝛾 𝑝 = 𝐴 𝑝 𝑒 -𝑗2𝜋𝑓𝑐𝜏𝑝 , 𝜁 𝑝 = 𝑒 -𝑗2𝜋Δ 𝑓 𝜏𝑝 .
(13) The expression above is particularly meaningful. Indeed, 𝐵 𝑘 can be viewed as a mixture of exponentials in the frequency domain. We can therefore obtain both 𝛾 𝑝 and 𝜁 𝑝 by solving a harmonic retrieval problem.

Assuming that the number of significative paths 𝑃 is known and provided 𝐾 𝑝 ≥ 2𝑃 , we make use of the HTLS method for solving the problem [START_REF] Van Huffel | Algorithm for time-domain NMR data fitting based on total least squares[END_REF] where 𝐵 𝑘 is replaced by its estimated value B𝑘 . For this purpose, we build an 𝐿 × 𝑀 Hankel matrix B, with 𝐾 𝑝 = 𝐿 + 𝑀 -1, 𝐿 > 𝑃 , 𝑀 ≥ 𝑃 , which admits the following Vandermonde decomposition:

B = S 2 𝑑𝑖𝑎𝑔(𝛾 𝛾 𝛾)T 𝑇 2 . ( 14 
)
with S 2 and T 2 some Vandermonde matrices having 𝜁 𝑝 as generators, and 𝛾 𝛾 𝛾 the vector with 𝛾 𝑝 as entries.

Let us denote ζ𝑝 the estimated poles. By replacing the poles by their estimated values in S 2 and T 2 , we can solve the following equation:

𝑣𝑒𝑐(B) = (T 2 ⊙ S 2 ) 𝛾 𝛾 𝛾, ( 15 
)
𝑣𝑒𝑐(.) denoting the vectorization operator whereas ⊙ stands for the Khatri-Rao product, i.e. a columnwise Kronecker product.

The entries of the least squares solution of (15), denoted γ, can be used for computing B𝑘 for any value of 𝑘 as B𝑘 = 𝑃 ∑ 𝑝=1 γ𝑝 ζ𝑘 𝑝 . Therefore, we can deduce the information symbols in the second sub-block as:

d𝑘 = b𝑘 𝑃 ∑ 𝑝=1 γ𝑝 ζ𝑘 𝑝 . ( 16 
)
while those of the first sub-block can be obtained as ĉ𝑞 = α𝑞

𝜂𝑒 𝑗2𝜋𝜑𝑞(1+â)𝑛0𝑇𝑠 𝑃 ∑ 𝑝=1 γ𝑝 ζ𝑞 𝑝 . ( 17 
)
α𝑞 being the corresponding entry of the least squares solution of the vectorized version of equation ( 7), i.e. 𝑣𝑒𝑐(Y) = (T 1 ⊙ S 1 ) 𝛼 𝛼 𝛼.

V. SIMULATION RESULTS

In these simulations, the range of frequency used by the underwater vehicles was [16𝑘𝐻𝑧 -27𝑘𝐻𝑧]. The Doppler scaling factor was set to 𝑎 = 8 × 10 -4 . We assume that |𝑎 𝑚𝑎𝑥 | = 10 -3 , meaning that the maximal relative speed is 1.5 m/s. The carrier frequency was set equal to 𝑓 𝑐 = 21 kHz, whereas the guard interval was 𝑇 𝑔 = 10 ms. We used 𝐾 𝑑 = 256 subcarriers for the second OFDM sub-block. The duration of this sub-block is 𝑇 𝑑 = 𝐾 𝑑 /𝐵, with 𝐵 = 11 kHz, whereas that of the first sub-block is 𝑇 𝑢 = 𝑇 𝑑 /10. Hence, the duration of one OFDM block is 45.6 ms. The data was modulated using a QPSK constellation. All the results presented below are averaged values over 100 independent Monte Carlo runs. The channel impulse response used for the simulation is depicted in figure 3. The additive noise was a complex valued white Gaussian noise. We evaluate the performance of the proposed scheme by computing the mean square error between the estimated and the actual values of the Doppler scaling factor. The data detection method is evaluated by means of the bit-error-rate (BER).

Fig. 4 depicts the mean value of the estimated Doppler scaling factor whereas the mean square error on the estimation of this factor is depicted in Fig. 5.

We can note the effectiveness of the Doppler estimation scheme. However, the performance is degraded when decreasing the SNR. The degradation is more accentuated when increasing the number of subcarriers in the first sub-block of the OFDM symbol. Indeed, by increasing 𝐾 𝑢 , the frequency spacing of the subcarriers is reduced. Therefore, the harmonic retrieval problem needs higher resolution and precision. Such a precision is difficult to obtain when the SNR decreases. Increasing 𝐾 𝑢 seems to be relevant only for high SNR values. This observation is directly related to the behaviour of HTLS in noisy cases. In Fig. 6, we depict the BER for three numbers 𝐾 𝑝 of pilots and two values for 𝐾 𝑢 . Increasing the number of pilot allows improving the BER.

From these simulations, we can conclude that increasing the number of pilots has a positive effect on the performance of the receiver while increasing the number of subcarriers 𝐾 𝑢 has a contrary effect.

VI. CONCLUSION

In this paper, we have presented a new scheme for both estimating the Doppler scaling factor and detecting the informative data. In the proposed scheme, each OFDM symbol is divided in two parts. The first one is shorter and carries out few data with few subcarriers whereas the second one contains both informative and pilot symbols. The first sub-block serves to estimate the Doppler scaling factor while the pilots in the second sub-block are used for estimating the equivalent channel. Both estimation methods are based on high resolution methods for solving harmonic retrieval problems in time and frequency domains respectively. The proposed scheme is particularly efficient for moderate to high SNR. Robustness to noise, for lower levels of SNR, and extension to the multi- user case will be investigated. In addition, effectiveness of the proposed approach using experimental data is to be considered in future works.
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 6 Fig. 6. BER for different number of pilots and two numbers of subcarriers in the first sub-block (𝐾 𝑑 = 256)
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