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Abstract: The paper presents an extension of the mixed Sky-hook and ADD to Magneto-
Rheological dampers. Firstly, a semi-active automotive suspension equipped with a nonlinear
Magneto-Rheological damper is introduced. The interest of this nonlinear model is that the
bi-viscous and hysteretic behaviors of MR dampers can be taken into account in the controller
design. Hence, the designed controller is more adaptive with real MR dampers. Finally, the new
mixed Sky-hook and ADD algorithm for MR dampers is proposed to enhance the passenger
comfort. The performances of the proposed control method are then analyzed, based on
simulations on a nonlinear vehicle model. The results show that the Mixed Sky-Hook and ADD
can be successfully extended to Magneto-Rheological dampers.
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1. INTRODUCTION

It is a well-known fact that semi-active suspensions have
been more and more widely used in automobile industry.
The controllable damping force makes them outperform
the passive suspensions. Despite the passivity constraint
(i.e it is impossible to deliver forces on the body having
the same direction of the suspension elongation speed),
the semi-active suspensions have considerable advantages
compared with fully active suspensions. They can poten-
tially achieve the majority of the performance criteria (see
Ivers and Miller (1989), Patten et al. (1994)) while they
are smaller in weight and volume, cheaper in price and
they significantly consume less energy than active ones.

The Magneto-Rheological (MR) dampers are dissipative
nonlinear components driven by electric current and be-
long to a class of semi-active suspensions. In recent
years, MR dampers have become very attractive devices
in automotive applications and in other fields like civil,
aerospace... The highlights of MR dampers are the fail-
safe characteristic (they operate as passive dampers once
failures happen), low-power consumption, fast response...
However, the main drawback of these devices is the high
nonlinearity. This creates difficulties in the controller de-
sign. In fact, the modeling of the transient response, the
Force-Velocity and Force-Deflection characteristics of an
MR damper always raise difficult problems. There are
different modeling approaches for example physical sig-
nification of coefficients by Jr et al. (1997), coefficients
related to the hysteresis by Guo et al. (2006), non para-
metric by Savaresi et al. (2005a), coefficients related to

damping, stiffness and amplitude of force Choi and Sung
(2008). Among these, the approach proposed by Guo et al.
(2006) based on a tangent hyperbolic function to model the
hysteresis characteristic is very interesting in terms of both
modeling and controller design. With some modifications
on the original model in Guo et al. (2006), Lozoya-Santos
et al. (2009) proposed a new one where the electric cur-
rent is considered as a control input which is suitable for
controller synthesis (see also Do et al. (2010b)).

During the last few decades, semi-active suspension control
has attracted many researchers. In general, there are three
important issues: passenger comfort (ride quality), han-
dling (road-holding) and suspension travel (stroke limits)
control. Although multi-objective controller synthesis is
a trend in semi-active suspension design (see in Lu and
DePoyster (2002), Güvenc et al. (2006) and Poussot-Vassal
et al. (2008)), it is true that the most important and basic
issue to be studied is the passenger comfort. One of the
first comfort-oriented control methods, which has been
successfully applied in commercial vehicles, is the Sky-
hook control proposed by Karnopp et al. (1974). In this
linear-model based control design, the damping coefficient
is adjusted continuously or switched between a maximum
and a minimum value. Then numerous approaches have
been also developed such as optimal control (Savaresi et al.
(2005b)), clipped optimal control (Giorgetti et al. (2006),
Canale et al. (2006)), or H∞ control (Rossi and Lucente
(2004), Sammier et al. (2003)). Recently, the mixed Sky-
hook and ADD (SH-ADD) algorithm proposed by Savaresi
and Spelta (2007) has been known to be one of the most



efficient comfort-oriented controllers. The previous studies
have shown that the Sky-hook provides the best comfort
at low frequency and the ADD is ideal for maximizing
the passenger comfort at high frequency. The successful
combination of Sky-hook and ADD in Savaresi and Spelta
(2007) has resulted in an almost optimal comfort-oriented
controller.

The mixed Sky-hook and ADD above has been proposed
for linear dampers where the nonlinear characteristics (i.e
the bi-viscous and the hysteretic behaviors) have not been
taken into account. The application by analogy of this
algorithm for nonlinear MR dampers may deteriorate the
performance of the closed-loop system. The contribution
of the paper is to propose a new Mixed Sky-hook and
ADD suitable for MR dampers where the nonlinearities
are taken into consideration.

This paper is organized as follows. In Section 2, the quarter
car model with a nonlinear MR damper is presented. This
is a simple model for semi-active suspension control. In
Section 3, the conventional Mixed Sky-hook and ADD is
recalled. The extension of the conventional Mixed Sky-
hook and ADD to MR dampers is then presented in
Section 4. In Section 5, the results obtained in simulations
with a nonlinear quarter car model are discussed. Finally,
some conclusions and perspectives are drawn in Section 6.

2. QUARTER CAR MODEL

Consider a simple model of quarter vehicle (see Fig. 1)
made up of a sprung mass (ms) and an unsprung mass
(mus). A spring with the stiffness coefficient ks and a semi-
active damper connect these two masses. The wheel tire is
modeled by a spring with the stiffness coefficient kt. In this
model, zs (respectively zus) is the vertical position of ms

(respectively mus) and zr is the road profile. It is assumed
that the wheel-road contact is ensured.

h
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Fig. 1. Model of quarter vehicle with a semi-active damper.

The dynamical equations of a quarter vehicle are governed
by

{

msz̈s = −kszdef − Fdamper

musz̈us = kszdef + Fdamper − kt (zus − zr)
(1)

where zdef = zs − zus is the damper deflection (m) (as-
sumed to be measured or estimated), żdef = żs − żus is
the deflection velocity (m/s) (can be directly computed
from zdef ).

Fdamper is the semi-active damper force. In this paper, to
represent the behavior of an MR damper, the following
nonlinear equation, as in Guo et al. (2006), is used

Fdamper = c0żdef + k0zdef + fI tanh
(

c1żdef + k1zdef

)

(2)

where c0 and k0 are the damping and stiffness coefficients
of a passive damper (when fI = 0), c1 and k1 are the
damping and stiffness coefficient beyond the limits of
elasticity and fI is a controllable force within the limits of
elasticity. The passivity constraint of a semi-active damper
is obtained by considering only the positivity constraint

0 ≤ fmin ≤ fI ≤ fmax (3)

3. CONVENTIONAL MIXED SKY-HOOK AND ADD
CONTROL

The conventional Sky-hook, ADD and mixed Sky-hook
and ADD are linear-model based control designs where the
damping coefficient is adjusted continuously or switched
between a maximum and a minimum value and the semi-
active damper force Fdamper = cżdef where żdef is the
deflection velocity and the damping coefficient cmin ≤ c ≤
cmax. The dynamical equations of a quarter car are the
following

{

msz̈s = −kszdef − cżdef

musz̈us = kszdef + cżdef − kt (zus − zr)
(4)

In the system (4), the damping coefficient c (Nm/s) is the
control input.

3.1 Sky-hook Control

The well-known Sky-hook control is first developed for the
linear semi-active suspension systems by Karnopp et al.
(1974). The two-state Sky-hook algorithm for two-state
damper is given by

c =

{

cmax if żsżdef > 0
cmin if żsżdef ≤ 0

(5)

3.2 ADD Control

The ADD is developed for the linear suspension systems
in Savaresi et al. (2005b) using optimal-control theory. It
has been proven to be optimal in minimizing the body car
acceleration without any road preview. The implementa-
tion of ADD control requires a two-state damper and is
given by

c =

{

cmax if z̈sżdef > 0
cmin if z̈sżdef ≤ 0

(6)

3.3 Mixed Sky-hook and ADD Control

The Sky-hook provides the best comfort at low frequency
while the ADD improves considerably the comfort at
high frequency. The Mixed Sky-hook and ADD algorithm
guarantees the best behavior of both Sky-hook and ADD.

c =















cmax if (z̈2
s − αż2

s ≤ 0 ∧ żsżdef ≥ 0)∨
(z̈2

s − αż2
s > 0 ∧ z̈sżdef ≥ 0)

cmin if (z̈2
s − αż2

s ≤ 0 ∧ żsżdef < 0)∨
(z̈2

s − αż2
s > 0 ∧ z̈sżdef < 0)

(7)

In (7), α is the SH-ADD crossover frequency (at which the
frequency responses of closed-loop systems using Sky-hook



and ADD controllers intersect) and the amount (z̈2
s −αż2

s)
is the frequency-range selector. See in Savaresi and Spelta
(2007) for more details on Mixed Sky-hook and ADD
Control.

4. MIXED SKY-HOOK AND ADD FOR MR
DAMPERS

The frequency response analysis (see Appendix B) in
this section is done using the quarter car vehicle model
(parameters found in table 1) with a nonlinear spring
whose force is presented in Fig. 5.a (i.e the stiffness
coefficient ks is not constant). The terms ”Soft MRD” and
”Hard MRD” represent the MR damper with fI=fmin and
the MR damper with fI=fmax, respectively.

4.1 Sky-hook Control for MR Dampers

Sky-hook for MRD - A: As seen in (1), (2) and (3) and from
conventional Sky-hook control design in Section 3.1, by
analogy, the classical Sky-hook Control for MR dampers
can be given as

fI =

{

fmax if żsżdef > 0
fmin if żsżdef ≤ 0

(8)

Sky-hook for MRD - B: The main idea of the Skyhook for
linear suspension system is that the damper exerts a force
that reduces the velocity of the body mass żs. By using
the same principle, the modified Sky-hook for MR damper
will be as follows

fI =

{

fmax if żsρ > 0
fmin if żsρ ≤ 0

(9)

where ρ = tanh(c1żdef + k1zdef ).

The comparison of performance between two strategies
”Sky-hook for MRD - A” and ”Sky-hook for MRD - B” is
presented in Fig. 2.
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Fig. 2. Sky-hook for MR - Frequency Responses z̈s/zr

4.2 ADD Control for MR Dampers

ADD for MRD - A: As seen in (1), (2) and (3) and
from conventional ADD control design in Section 3.2, by

analogy, the classical ADD Control for MR dampers can
be given as

fI =

{

fmax if z̈sżdef > 0
fmin if z̈sżdef ≤ 0

(10)

ADD for MRD - B: The following modified ADD for
MR dampers is inspired by the physical meaning of the
existing ADD algorithm presented in (6). The proof is
given in Appendix A. But it turns out very simple to
explain. Looking at the (1) and (2), the only variable
parameter is fI , so when z̈s tanh (c1żdef + k1zdef) > 0,
for example z̈s and tanh (c1żdef + k1zdef) are positive, z̈s

will rapidly decrease to zero if fI =fmax. On the contrary,
when z̈s tanh (c1żdef + k1zdef) ≤ 0, z̈s will be kept not
floating away from zero if fI =fmin, and so on. Finally,
the modified ADD for MR dampers is given as

fI =

{

fmax if z̈sρ > 0
fmin if z̈sρ ≤ 0

(11)

where ρ = tanh(c1żdef + k1zdef).

The comparison of performance between two strategies
”ADD for MRD - A” and ”ADD for MRD - B” is presented
in Fig. 3.
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Fig. 3. ADD for MR - Frequency Responses z̈s/zr

4.3 A New Mixed Sky-hook and ADD Control for MR
Dampers

As seen in Fig. 2 and Fig. 3, strategies B result in better
performances than strategies A do. The reason for this
improvement is that the nonlinearity of the MR damper
is taken into account in strategies B while the same is
not true in strategies A. The presence of nonlinearity ρ in
strategies B creates a reduction in the first resonances of
the closed-loop frequency responses.

Quite obviously, the modified Sky-hook (9) and the mod-
ified ADD (11) are used for the implementation of the
Mixed Sky-hook and ADD Control for MR Dampers which
is given as

fI =















fmax if (z̈2
s − αż2

s ≤ 0 ∧ żsρ > 0)∨
(z̈2

s − αż2
s > 0 ∧ z̈sρ > 0)

fmin if (z̈2
s − αż2

s ≤ 0 ∧ żsρ ≤ 0)∨
(z̈2

s − αż2
s > 0 ∧ z̈sρ ≤ 0)

(12)



where ρ = tanh(c1żdef + k1zdef ).

As in Section 3.3, the amount (z̈2
s −αż2

s) is the frequency-
range selector and the SH-ADD crossover frequency α =
2πfSHADD rad/s where fSHADD = 2.1 Hz.

As seen in Fig. 4, the mixed SH-ADD for MR dampers
dramatically improves the first resonance compared with
the modified ADD (11) while keeping the best quality of
each strategy (Sky-hook at low frequency and ADD at high
frequency) in the whole range of frequency (except for a
slight increase in the frequency response at low frequency).
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5. RESULTS ANALYSIS

Table 1. Parameter values.

1/4 RMC Value MR damper Value

ms 315[kg] c0 737[Ns/m]
mus 37.5[kg] k0 3884[N/m]
kt 210000[N/m] fmin 0[N ]
− − fmax 870[N ]
− − c1 11.06[s/m]
− − k1 58.3[1/s]
− − Cmin 800[Nm/s]
− − Cmax 8000[Nm/s]
− − Fmin −1440[N ]
− − Fmax 1440[N ]

5.1 Model Parameters

The quarter vehicle using in this paper is the quarter car
Renault Mégane Coupé (1/4 RMC) model (see Zin et al.
(2004)) and the parameters are presented in table 1. The
spring used in this simulation is a nonlinear one where the
spring force is as in Fig. 5.a.

The MR damper model parameters are chosen according
to the MR damper in Do et al. (2010a) and summarized
in table 1. The Force-Velocity behavior of the MR damper
is presented in Fig. 6.

To evaluate the efficiency of the controlled MR damper
(the Sky-hook in (9), the ADD in (11) and the mixed Sky-
hook and ADD in (12) for MR dampers), the simulation
results are compared with those obtained with a nonlinear
passive RMC damper (optimized for the Renault Mégane
Coupé model to enhance the passenger comfort) whose
force is a nonlinear function of żdef (see Fig. 5.b).
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Fig. 5. Nonlinear RMC Spring (a) and Nonlinear Passive
RMC damper (b) characteristics.

Fig. 6. Force vs. Suspension Deflection Velocity

5.2 Testing Scenarios and Results

The two testing scenarios for the evaluation of the pro-
posed control method in time domain are presented as
follows.

Test 1 The road disturbance input is a 0.01 (m) step.
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Fig. 7. Acceleration w.r.t 0.01 (m) step input

As seen in Fig. 7, the SH creates a high value peak
(second peak) but it provides a good damping rate (as
Hard MR damper). The ADD is good in reducing the
peak values (as efficient as the Soft MR damper) but the
damping rate is bad. The nonlinear passive RMC (which
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Fig. 8. Acceleration w.r.t 0.01 (m) step input: comparison
between ADD for MRD and mixed SH-ADD for MRD

is optimized for the quarter car RMC model) provides an
intermediate damping rate and peak value reduction. The
mixed SH-ADD for MR damper is the most efficient in
reducing the peak values and provide a very good damping
rate. For better visibility, the comparison of two control
methods, ADD and Mixed SH-ADD for MR dampers, is
also presented in Fig. 8.

Test 2 The road disturbance input is designed as an
integrated white noise, band-limited within the frequency
range [0-30] Hz (see Fig. 9).
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To evaluate the efficiency of the proposed method, the
following criterion is used and compared between different
strategies

J =

√

1

T

∫ T

0

z̈s
2(t) (13)

where T is the simulation time. Here T=100 s.

As in Fig. 10, compared with the nonlinear passive RMC
damper (optimized for this RMC model), the MR damper
with the proposed mixed Sky-hook and ADD improves 17
% in passenger comfort which cannot be achieved by Soft
MR dampers, Hard MR dampers, modified Sky-hook MR
dampers or modified ADD MR dampers. There is no doubt
that the proposed modified mixed Sky-hook and ADD for
MR dampers is the best in terms of passenger comfort.
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6. CONCLUSION

In this paper, a new mixed Sky-hook and ADD for MR
dampers has been introduced. The simulation results in
the frequency and time domains have shown that the
Mixed Sky-Hook and ADD has been successfully extended
to MR dampers. The MR damper model used in this paper
is simple with only one current-dependent parameter (i.e
the controllable force fI). It will be interesting to consider
the control design problem with more general models for
MR dampers (hence, more exact models) where both the
damping coefficient and the stiffness coefficient beyond the
limits of elasticity depend on input current (i.e c1 = c1(I)
and k1 = k1(I)). In addition, future works will concern
also the multi-objective control to deal with the trade-off
between comfort and road holding, between comfort and
suspension travel or even between comfort, road holding
and suspension travel.

Appendix A. PROOF OF ADD FOR MR DAMPER

The proof presented here is based on that given in Savaresi
et al. (2005b).
The dynamic equations of a quarter car model equipped
with an MR damper are given by



















msz̈s = −kszdef − c0żdef − k0zdef

− fI tanh (c1żdef + k1zdef )
musz̈us = kszdef + c0żdef + k0zdef

fI tanh (c1żdef + k1zdef) − kt (zus − zr)

ḟI = −βfI + βu
(A.1)

where β represents the bandwidth of a real MR damper
and u is the control input which can take its values in
[fImin, fImax].

A state-space representation of (A.1) is given by

ẋ = f(x) + Bu + Pzr (A.2)

where
x = ( żs żus fI zs zus )

T
,



f(x) =



















−k

ms

(x4 − x5) −
c0

ms

(x1 − x2) −
ρ(x)

ms

x3

k

mus

x4 −
k + kt

mus

x5 +
c0

mus

(x1 − x2) +
ρ(x)

mus

x3

−βx3

x1

x2



















where k = ks + k0 and ρ(x) = tanh(c1(x1 − x2) + k1(x4 −
x5)),

B = ( 0 0 β 0 0 )
T
, P =

(

0
kt

mus

0 0 0

)T

The global optimization using the Minimum Principle of
Pontryagin can be used for nonlinear system (A.2) with
a constraint on control input u ∈ [fImin, fImax]. Consider
only the known parts of (A.2) (without road disturbance
Pzr). Let define the control problem

minimize J =

∫ tf

t0

z̈2
sdt =

∫ tf

t0

l(x)dt (A.3)

where l(x) = (−k
ms

(x4 − x5) −
c0

ms
(x1 − x2) −

ρ(x)
ms

x3)
2

subject to

ẋ = f(x) + Bu (A.4)

u ∈ [fImin, fImax] (A.5)

tf = t0 + ∆T (A.6)

The Hamiltonian function is defined by

H(x, u, λ) = l(x) + λT [f(x) + Bu] (A.7)

Let (u∗(t), x∗(t)) is the optimal solution of problem (A.3).
The adjoint equation is

λ̇(t) = −∇xH(x∗(t), u∗(t), λ(t)) (A.8)

with λ(tf ) = 0.

Minimization of the Hamiltonian gives

u∗(t) = arg min
u(t)∈[fImin,fImax]

H(x∗(t), u(t), λ(t)) (A.9)

The problems (A.8) and (A.9) are difficult to solve, how-
ever, it can be seen from Eq. (A.7) that the optimal control
law of a semi-active suspension with comfort objective
without preview is a genuine on-off strategy and is given
by

u∗(t) =

{

fImin if BT λ(t) > 0
fImax if BT λ(t) ≤ 0

(A.10)

In order to find an explicit solution of u, consider the linear
approximation of system (A.2) around the initial condition
(x(t0), u(t0), zr(t0). After some manipulations, one has

ẋ = Ax + Bu + Pzr + E (A.11)

where

A =

















−
a0

ms

a0

ms

ρ0

ms

−
a1

ms

a1

msa0

mus

−
a0

mus

ρ0

mus

a1

mus

−
a1

mus
0 0 −β 0 0
1 0 0 0 0
0 1 0 0 0

















,

a0 = c0 + x30(1 − ρ0
2)c1, a1 = k + x30(1 − ρ0

2)k1,
ρ0 = ρ(x(t0)) = tanh(c1(x10 − x20) + k1(x40 − x50)) and
xi0 is the ith component of the state vector x(t0).

E =



















((x10 − x20)c1 + (x40 − x50)k1)x30(1 − ρ0
2)

ms

−
((x10 − x20)c1 + (x40 − x50)k1)x30(1 − ρ0

2)

mus
0
0
0



















By using the Lagrange Formula, x(t) at t0 + ∆T can be
computed

x(t0 + ∆T ) = eA(∆T )x(t0)

+

∫ t0+∆T

t0

eA(t0+∆T−τ)(Bu(τ) + Pzr(τ) + E)dτ

(A.12)

Assume that, during the sampling interval ∆T , the control
input is constant u = u and the body car acceleration z̈s(t)
or ẋ1(t) does not change its sign. The optimal solution u
is given as

uopt(t0, t0 + ∆T ) = argmin
u∈[fImin,fImax]

(ẋ1(t0 + ∆T )2)

=







argmin
u∈[fImin,fImax]

(ẋ1(t0 + ∆T )) if z̈s(t0) > 0

argmin
u∈[fImin,fImax]

(ẋ1(t0 + ∆T )) if z̈s(t0) ≤ 0

=







argmin
u∈[fImin,fImax]

(gu(t0 + ∆T )) if z̈s(t0) > 0

argmin
u∈[fImin,fImax]

(gu(t0 + ∆T )) if z̈s(t0) ≤ 0

(A.13)

where gu(t0 + ∆T ) =
d(u

∫

t

t0
eA(t−τ)Bu(τ)dτ)1

dt

∣

∣

∣

∣

∣

t=t0+∆T

and

subscript ”1” indicates the first element of the vector

u
∫ t

t0
eA(t−τ)Bu(τ)dτ . By using Taylor series expansion

for eA(t−τ), the following approximation is used for the
calculation of gu(t0 + ∆T ):

eA(t−τ) = I +A(t−τ)+
1

2
A2(t−τ)2 +

1

6
A3(t−τ)3 (A.14)

Finally one has

gu(t0 + ∆T ) = −uρ0βγ(∆T, ρ0, x30) (A.15)

Due to the length and the complexity, the explicit form of
γ(∆T, ρ0, x30) is not given here. But note that with the
damper’s bandwidth β = 40π, ρ0 ∈ [−1, 1] and the initial
state x30 ∈ [0, 870], one always has γ(∆T, ρ0, x30) > 0 (see
Fig. A.1). From Eq. (A.13) and Eq. (A.15), the optimal
solution is finally given as:

uopt(t0, t0 + ∆T ) =

{

fImin if z̈s(t0)ρ0 > 0
fImax if z̈s(t0)ρ0 ≤ 0

(A.16)

The control law proposed in (11) has been proved.
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Fig. A.1. γ(∆T, ρ0, x30)

Appendix B. NONLINEAR FREQUENCY RESPONSE
- (PSEUDO-BODE)

The following nonlinear frequency response analysis is
done by using the ”variance gain” algorithm (see Savaresi
et al. (2005b)) for nonlinear systems. The ”variance gain”
is simple and provides a good approximation to frequency
response.

• Feed the system with a sinus signal zri
= Arsin(ωit)

(ωmin ≤ ωi ≤ ωmax, i=1,2,3...N and t ∈ [0, T ]).
• For each input, measure output signals; for example,

to evaluate the comfort, the body car acceleration z̈si

is measured.
• The approximate variance gain is computed and is

defined as

Facc(ωi) =

√

√

√

√

1
T

∫ T

0
(z̈si

)
2
dt

1
T

∫ T

0
(zri

)
2
dt

(i = 1, 2, 3...N) (B.1)
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