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The paper presents an extension of the mixed Sky-hook and ADD to Magneto-Rheological dampers. Firstly, a semi-active automotive suspension equipped with a nonlinear Magneto-Rheological damper is introduced. The interest of this nonlinear model is that the bi-viscous and hysteretic behaviors of MR dampers can be taken into account in the controller design. Hence, the designed controller is more adaptive with real MR dampers. Finally, the new mixed Sky-hook and ADD algorithm for MR dampers is proposed to enhance the passenger comfort. The performances of the proposed control method are then analyzed, based on simulations on a nonlinear vehicle model. The results show that the Mixed Sky-Hook and ADD can be successfully extended to Magneto-Rheological dampers.

INTRODUCTION

It is a well-known fact that semi-active suspensions have been more and more widely used in automobile industry. The controllable damping force makes them outperform the passive suspensions. Despite the passivity constraint (i.e it is impossible to deliver forces on the body having the same direction of the suspension elongation speed), the semi-active suspensions have considerable advantages compared with fully active suspensions. They can potentially achieve the majority of the performance criteria (see [START_REF] Ivers | Experimental comparison of passive, semi-active on-off, and semi-active continuous suspensions[END_REF], [START_REF] Patten | Suppression of vehicle induced bridge vibration via hydraulic semi-active vibration dampers[END_REF]) while they are smaller in weight and volume, cheaper in price and they significantly consume less energy than active ones.

The Magneto-Rheological (MR) dampers are dissipative nonlinear components driven by electric current and belong to a class of semi-active suspensions. In recent years, MR dampers have become very attractive devices in automotive applications and in other fields like civil, aerospace... The highlights of MR dampers are the failsafe characteristic (they operate as passive dampers once failures happen), low-power consumption, fast response... However, the main drawback of these devices is the high nonlinearity. This creates difficulties in the controller design. In fact, the modeling of the transient response, the Force-Velocity and Force-Deflection characteristics of an MR damper always raise difficult problems. There are different modeling approaches for example physical signification of coefficients by [START_REF] Jr | Phenomenological model of a mr damper[END_REF], coefficients related to the hysteresis by [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF], non parametric by Savaresi et al. (2005a), coefficients related to damping, stiffness and amplitude of force [START_REF] Choi | Vibration control of magneto-rheological damper system subjected to parameter variations[END_REF]. Among these, the approach proposed by [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF] based on a tangent hyperbolic function to model the hysteresis characteristic is very interesting in terms of both modeling and controller design. With some modifications on the original model in [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF], [START_REF] Lozoya-Santos | Building training patterns for modelling mr dampers[END_REF] proposed a new one where the electric current is considered as a control input which is suitable for controller synthesis (see also [START_REF] Do | An lpv control approach for semi-active suspension control with actuator constraints[END_REF]).

During the last few decades, semi-active suspension control has attracted many researchers. In general, there are three important issues: passenger comfort (ride quality), handling (road-holding) and suspension travel (stroke limits) control. Although multi-objective controller synthesis is a trend in semi-active suspension design (see in [START_REF] Lu | Multiobjective optimal suspension control to achieve integrated ride and handling performance[END_REF], [START_REF] Güvenc | Semi active suspension control system development for a light commercial vehicle[END_REF] and [START_REF] Poussot-Vassal | New semi-active suspension control strategy through LPV technique[END_REF]), it is true that the most important and basic issue to be studied is the passenger comfort. One of the first comfort-oriented control methods, which has been successfully applied in commercial vehicles, is the Skyhook control proposed by [START_REF] Karnopp | Vibration control using semi-active force generators[END_REF]. In this linear-model based control design, the damping coefficient is adjusted continuously or switched between a maximum and a minimum value. Then numerous approaches have been also developed such as optimal control [START_REF] Savaresi | Acceleration driven damper (ADD): an optimal control algorithm for comfort oriented semi-active suspensions[END_REF]), clipped optimal control [START_REF] Giorgetti | Hybrid model predictive control application toward optimal semi-active suspension[END_REF], [START_REF] Canale | Semiactive suspension control using fast model-predictive techniques[END_REF]), or H ∞ control [START_REF] Rossi | H ∞ control of automotive semi-active suspensions[END_REF], [START_REF] Sammier | Skyhook and H ∞ control of active vehicle suspensions: some practical aspects[END_REF]). Recently, the mixed Skyhook and ADD (SH-ADD) algorithm proposed by [START_REF] Savaresi | Mixed sky-hook and ADD: Approaching the filtering limits of a semi-active suspension[END_REF] has been known to be one of the most efficient comfort-oriented controllers. The previous studies have shown that the Sky-hook provides the best comfort at low frequency and the ADD is ideal for maximizing the passenger comfort at high frequency. The successful combination of Sky-hook and ADD in [START_REF] Savaresi | Mixed sky-hook and ADD: Approaching the filtering limits of a semi-active suspension[END_REF] has resulted in an almost optimal comfort-oriented controller.

The mixed Sky-hook and ADD above has been proposed for linear dampers where the nonlinear characteristics (i.e the bi-viscous and the hysteretic behaviors) have not been taken into account. The application by analogy of this algorithm for nonlinear MR dampers may deteriorate the performance of the closed-loop system. The contribution of the paper is to propose a new Mixed Sky-hook and ADD suitable for MR dampers where the nonlinearities are taken into consideration. This paper is organized as follows. In Section 2, the quarter car model with a nonlinear MR damper is presented. This is a simple model for semi-active suspension control. In Section 3, the conventional Mixed Sky-hook and ADD is recalled. The extension of the conventional Mixed Skyhook and ADD to MR dampers is then presented in Section 4. In Section 5, the results obtained in simulations with a nonlinear quarter car model are discussed. Finally, some conclusions and perspectives are drawn in Section 6.

QUARTER CAR MODEL

Consider a simple model of quarter vehicle (see Fig. 1) made up of a sprung mass (m s ) and an unsprung mass (m us ). A spring with the stiffness coefficient k s and a semiactive damper connect these two masses. The wheel tire is modeled by a spring with the stiffness coefficient k t . In this model, z s (respectively z us ) is the vertical position of m s (respectively m us ) and z r is the road profile. It is assumed that the wheel-road contact is ensured. The dynamical equations of a quarter vehicle are governed by

m s zs = -k s z def -F damper m us zus = k s z def + F damper -k t (z us -z r ) (1) 
where z def = z sz us is the damper deflection (m) (assumed to be measured or estimated), żdef = żsżus is the deflection velocity (m/s) (can be directly computed from z def ).

F damper is the semi-active damper force. In this paper, to represent the behavior of an MR damper, the following nonlinear equation, as in [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF], is used

F damper = c 0 żdef + k 0 z def + f I tanh c 1 żdef + k 1 z def (2)
where c 0 and k 0 are the damping and stiffness coefficients of a passive damper (when f I = 0), c 1 and k 1 are the damping and stiffness coefficient beyond the limits of elasticity and f I is a controllable force within the limits of elasticity. The passivity constraint of a semi-active damper is obtained by considering only the positivity constraint 0

≤ f min ≤ f I ≤ f max (3)

CONVENTIONAL MIXED SKY-HOOK AND ADD CONTROL

The conventional Sky-hook, ADD and mixed Sky-hook and ADD are linear-model based control designs where the damping coefficient is adjusted continuously or switched between a maximum and a minimum value and the semiactive damper force F damper = c żdef where żdef is the deflection velocity and the damping coefficient c min ≤ c ≤ c max . The dynamical equations of a quarter car are the following

m s zs = -k s z def -c żdef m us zus = k s z def + c żdef -k t (z us -z r ) (4) 
In the system (4), the damping coefficient c (N m/s) is the control input.

Sky-hook Control

The well-known Sky-hook control is first developed for the linear semi-active suspension systems by [START_REF] Karnopp | Vibration control using semi-active force generators[END_REF]. The two-state Sky-hook algorithm for two-state damper is given by

c = c max if żs żdef > 0 c min if żs żdef ≤ 0 (5)

ADD Control

The ADD is developed for the linear suspension systems in [START_REF] Savaresi | Acceleration driven damper (ADD): an optimal control algorithm for comfort oriented semi-active suspensions[END_REF] using optimal-control theory. It has been proven to be optimal in minimizing the body car acceleration without any road preview. The implementation of ADD control requires a two-state damper and is given by

c = c max if zs żdef > 0 c min if zs żdef ≤ 0 (6)

Mixed Sky-hook and ADD Control

The Sky-hook provides the best comfort at low frequency while the ADD improves considerably the comfort at high frequency. The Mixed Sky-hook and ADD algorithm guarantees the best behavior of both Sky-hook and ADD.

c =        c max if (z 2 s -α ż2 s ≤ 0 ∧ żs żdef ≥ 0)∨ (z 2 s -α ż2 s > 0 ∧ zs żdef ≥ 0) c min if (z 2 s -α ż2 s ≤ 0 ∧ żs żdef < 0)∨ (z 2 s -α ż2 s > 0 ∧ zs żdef < 0) (7) 
In ( 7), α is the SH-ADD crossover frequency (at which the frequency responses of closed-loop systems using Sky-hook and ADD controllers intersect) and the amount (z 2 sα ż2 s ) is the frequency-range selector. See in [START_REF] Savaresi | Mixed sky-hook and ADD: Approaching the filtering limits of a semi-active suspension[END_REF] for more details on Mixed Sky-hook and ADD Control.

MIXED SKY-HOOK AND ADD FOR MR DAMPERS

The frequency response analysis (see Appendix B) in this section is done using the quarter car vehicle model (parameters found in table 1) with a nonlinear spring whose force is presented in Fig. 5.a (i.e the stiffness coefficient k s is not constant). The terms "Soft MRD" and "Hard MRD" represent the MR damper with f I =f min and the MR damper with f I =f max , respectively.

Sky-hook Control for MR Dampers

Sky-hook for MRD -A: As seen in ( 1), ( 2) and ( 3) and from conventional Sky-hook control design in Section 3.1, by analogy, the classical Sky-hook Control for MR dampers can be given as

f I = f max if żs żdef > 0 f min if żs żdef ≤ 0 (8)

Sky-hook for MRD -B:

The main idea of the Skyhook for linear suspension system is that the damper exerts a force that reduces the velocity of the body mass żs . By using the same principle, the modified Sky-hook for MR damper will be as follows

f I = f max if żs ρ > 0 f min if żs ρ ≤ 0 (9)
where ρ = tanh(c

1 żdef + k 1 z def ).
The comparison of performance between two strategies "Sky-hook for MRD -A" and "Sky-hook for MRD -B" is presented in Fig. 2. 1), ( 2) and (3) and from conventional ADD control design in Section 3.2, by analogy, the classical ADD Control for MR dampers can be given as

f I = f max if zs żdef > 0 f min if zs żdef ≤ 0 (10)

ADD for MRD -B:

The following modified ADD for MR dampers is inspired by the physical meaning of the existing ADD algorithm presented in (6). The proof is given in Appendix A. But it turns out very simple to explain. Looking at the (1) and ( 2), the only variable parameter is f I , so when zs tanh (c 1 żdef + k 1 z def ) > 0, for example zs and tanh (c 1 żdef + k 1 z def ) are positive, zs will rapidly decrease to zero if f I =f max . On the contrary, when zs tanh (c 1 żdef + k 1 z def ) ≤ 0, zs will be kept not floating away from zero if f I =f min , and so on. Finally, the modified ADD for MR dampers is given as

f I = f max if zs ρ > 0 f min if zs ρ ≤ 0 ( 11 
)
where ρ = tanh(c

1 żdef + k 1 z def ).
The comparison of performance between two strategies "ADD for MRD -A" and "ADD for MRD -B" is presented in Fig. 3. 

A New Mixed Sky-hook and ADD Control for MR Dampers

As seen in Fig. 2 and Fig. 3, strategies B result in better performances than strategies A do. The reason for this improvement is that the nonlinearity of the MR damper is taken into account in strategies B while the same is not true in strategies A. The presence of nonlinearity ρ in strategies B creates a reduction in the first resonances of the closed-loop frequency responses.

Quite obviously, the modified Sky-hook (9) and the modified ADD (11) are used for the implementation of the Mixed Sky-hook and ADD Control for MR Dampers which is given as

f I =        f max if (z 2 s -α ż2 s ≤ 0 ∧ żs ρ > 0)∨ (z 2 s -α ż2 s > 0 ∧ zs ρ > 0) f min if (z 2 s -α ż2 s ≤ 0 ∧ żs ρ ≤ 0)∨ (z 2 s -α ż2 s > 0 ∧ zs ρ ≤ 0) (12) 
where ρ = tanh(c 1 żdef + k 1 z def ).

As in Section 3.3, the amount (z 2 sα ż2 s ) is the frequencyrange selector and the SH-ADD crossover frequency α = 2πf SHADD rad/s where f SHADD = 2.1 Hz.

As seen in Fig. 4, the mixed SH-ADD for MR dampers dramatically improves the first resonance compared with the modified ADD (11) while keeping the best quality of each strategy (Sky-hook at low frequency and ADD at high frequency) in the whole range of frequency (except for a slight increase in the frequency response at low frequency). 

k 0 3884[N/m] kt 210000[N/m] f min 0[N ] - - fmax 870[N ] - - c 1 11.06[s/m] - - k 1 58.3[1/s] - - C min 800[N m/s] - - Cmax 8000[N m/s] - - F min -1440[N ] - - Fmax 1440[N ]

Model Parameters

The quarter vehicle using in this paper is the quarter car Renault Mégane Coupé (1/4 RMC) model (see [START_REF] Zin | A nonlinear vehicle bicycle model for suspension and handling control studies[END_REF]) and the parameters are presented in table 1. The spring used in this simulation is a nonlinear one where the spring force is as in Fig. 5.a.

The MR damper model parameters are chosen according to the MR damper in Do et al. (2010a) and summarized in table 1. The Force-Velocity behavior of the MR damper is presented in Fig. 6.

To evaluate the efficiency of the controlled MR damper (the Sky-hook in (9), the ADD in ( 11) and the mixed Skyhook and ADD in ( 12) for MR dampers), the simulation results are compared with those obtained with a nonlinear passive RMC damper (optimized for the Renault Mégane Coupé model to enhance the passenger comfort) whose force is a nonlinear function of żdef (see Fig. 

Testing Scenarios and Results

The two testing scenarios for the evaluation of the proposed control method in time domain are presented as follows.

Test 1 The road disturbance input is a 0.01 (m) step. 

Test 2

The road disturbance input is designed as an integrated white noise, band-limited within the frequency range [0-30] Hz (see Fig. 9). To evaluate the efficiency of the proposed method, the following criterion is used and compared between different strategies

J = 1 T T 0 zs 2 (t) ( 13 
)
where T is the simulation time. Here T =100 s.

As in Fig. 10, compared with the nonlinear passive RMC damper (optimized for this RMC model), the MR damper with the proposed mixed Sky-hook and ADD improves 17 % in passenger comfort which cannot be achieved by Soft MR dampers, Hard MR dampers, modified Sky-hook MR dampers or modified ADD MR dampers. There is no doubt that the proposed modified mixed Sky-hook and ADD for MR dampers is the best in terms of passenger comfort. is simple with only one current-dependent parameter (i.e the controllable force f I ). It will be interesting to consider the control design problem with more general models for MR dampers (hence, more exact models) where both the damping coefficient and the stiffness coefficient beyond the limits of elasticity depend on input current (i.e c 1 = c 1 (I) and k 1 = k 1 (I)). In addition, future works will concern also the multi-objective control to deal with the trade-off between comfort and road holding, between comfort and suspension travel or even between comfort, road holding and suspension travel.

Appendix A. PROOF OF ADD FOR MR DAMPER

The proof presented here is based on that given in [START_REF] Savaresi | Acceleration driven damper (ADD): an optimal control algorithm for comfort oriented semi-active suspensions[END_REF].

The dynamic equations of a quarter car model equipped with an MR damper are given by A state-space representation of (A.1) is given by ẋ = f (x) + Bu + P z r (A.2)

         m s zs = -k s z def -c 0 żdef -k 0 z def -f I tanh (c 1 żdef + k 1 z def ) m us zus = k s z def + c 0 żdef + k 0 z def f I tanh (c 1 żdef + k 1 z def ) -k t (z us -z r ) ḟI = -βf I + βu (A.
where x = ( żs żus f I z s z us ) T , f (x) =          -k m s (x 4 -x 5 ) - c 0 m s (x 1 -x 2 ) - ρ(x) m s x 3 k m us x 4 - k + k t m us x 5 + c 0 m us (x 1 -x 2 ) + ρ(x) m us x 3 -βx 3 x 1 x 2         
where k = k s + k 0 and ρ(x) = tanh(c 1 (x 1x 2 ) + k 1 (x 4x 5 )), B = ( 0 0 β 0 0 ) 

J = t f t0 z2 s dt = t f t0 l(x)dt (A.3) where l(x) = ( -k ms (x 4 -x 5 ) -c0 ms (x 1 -x 2 ) -ρ(x) ms x 3 ) 2 subject to ẋ = f (x) + Bu (A.4) u ∈ [f Imin , f Imax ] (A.5) t f = t 0 + ∆T (A.6)
The Hamiltonian function is defined by H(x * (t), u(t), λ(t)) (A.9)

H(x, u, λ) = l(x) + λ T [f (x) + Bu] (A.
The problems (A.8) and (A.9) are difficult to solve, however, it can be seen from Eq. (A.7) that the optimal control law of a semi-active suspension with comfort objective without preview is a genuine on-off strategy and is given by

u * (t) = f Imin if B T λ(t) > 0 f Imax if B T λ(t) ≤ 0 (A.10)
In order to find an explicit solution of u, consider the linear approximation of system (A.2) around the initial condition (x(t 0 ), u(t 0 ), z r (t 0 ). After some manipulations, one has ẋ = Ax + Bu + P z r + E (A.11)

where

A =         - a 0 m s a 0 m s ρ 0 m s - a 1 m s a 1 m s a 0 m us - a 0 m us ρ 0 m us a 1 m us - a 1 m us 0 0 -β 0 0 1 0 0 0 0 0 1 0 0 0         , a 0 = c 0 + x 30 (1 -ρ 0 2 )c 1 , a 1 = k + x 30 (1 -ρ 0 2 )k 1 , ρ 0 = ρ(x(t 0 )) = tanh(c 1 (x 10 -x 20 ) + k 1 (x 40 -x 50 )) and
x i0 is the i th component of the state vector x(t 0 ).

E =          ((x 10 -x 20 )c 1 + (x 40 -x 50 )k 1 )x 30 (1 -ρ 0 2 ) m s - ((x 10 -x 20 )c 1 + (x 40 -x 50 )k 1 )x 30 (1 -ρ 0 2 ) m us 0 0 0         
By using the Lagrange Formula, x(t) at t 0 + ∆T can be computed

x(t 0 + ∆T ) = e A(∆T ) x(t 0 ) + t0+∆T t0 e A(t0+∆T -τ ) (Bu(τ ) + P z r (τ ) + E)dτ (A.12)
Assume that, during the sampling interval ∆T , the control input is constant u = u and the body car acceleration zs (t) or ẋ1 (t) does not change its sign. The optimal solution u is given as and subscript "1" indicates the first element of the vector u t t0 e A(t-τ ) Bu(τ )dτ . By using Taylor series expansion for e A(t-τ ) , the following approximation is used for the calculation of g u (t 0 + ∆T ):

e A(t-τ ) = I + A(t-τ )+ 1 2 A 2 (t-τ ) 2 + 1 6 A 3 (t-τ ) 3 (A.14)
Finally one has g u (t 0 + ∆T ) = -uρ 0 βγ(∆T, ρ 0 , x 30 ) (A.15)

Due to the length and the complexity, the explicit form of γ(∆T, ρ 0 , x 30 ) is not given here. But note that with the damper's bandwidth β = 40π, ρ 0 ∈ [-1, 1] and the initial state x 30 ∈ [0, 870], one always has γ(∆T, ρ 0 , x 30 ) > 0 (see Fig.

A.1). From Eq. (A.13) and Eq. (A.15), the optimal solution is finally given as:

u opt (t 0 , t 0 + ∆T ) = f Imin if zs (t 0 )ρ 0 > 0 f Imax if zs (t 0 )ρ 0 ≤ 0 (A.16)

The control law proposed in (11) has been proved. The following nonlinear frequency response analysis is done by using the "variance gain" algorithm (see [START_REF] Savaresi | Acceleration driven damper (ADD): an optimal control algorithm for comfort oriented semi-active suspensions[END_REF]) for nonlinear systems. The "variance gain" is simple and provides a good approximation to frequency response.
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 1 Parameter values.

	1/4 RMC	Value	MR damper	Value
	ms	315[kg]	c 0	737[N s/m]
	mus	37.5[kg]