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EXPLICIT ASSOCIATOR RELATIONS FOR MULTIPLE ZETA
VALUES

ISMAEL SOUDERES

ABSTRACT. Associators were introduced by Drinfel’d in [Dri91] as a mon-
odromy representation of a Knizhnik-Zamolodchikov equation. Associators
can be briefly described as formal series in two non-commutative variables
satisfying three equations. These three equations yield a large number of al-
gebraic relations between the coefficients of the series, a situation which is
particularly interesting in the case of the original Drinfel’d associator, whose
coefficients are multiple zetas values. In the first part of this paper, we work
out these algebraic relations among multiple zeta values by direct use of the
defining relations of associators. While well-known for the first two relations,
the algebraic relations we obtain for the third (pentagonal) relation, which are
algorithmically explicit although we do not have a closed formula, do not seem
to have been previously written down. The second part of the paper shows
that if one has an explicit basis for the bar-construction of the moduli space
Mo,5 of genus zero Riemann surfaces with 5 marked points at one’s disposal,
then the task of writing down the algebraic relations corresponding to the pen-
tagon relation becomes significantly easier and more economical compared to
the direct calculation above. We discuss the explicit basis described by Brown
and Gangl, which is dual to the basis of the enveloping algebra of the braids
Lie algebra, UBs5.

In order to write down the relation between multiple zeta values, we then
remark that it is enough to write down the relations associated to elements
that generate the bar construction as an algebra. This corresponds to looking
at the bar construction modulo shuffle, which is dual to the Lie algebra of
5-strand braids. We write down, in the appendix, the associated algebraic
relations between multiple zeta values in weights 2 and 3.
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1. INTRODUCTION

In the first part of this introduction we recall the necessary definitions concern-
ing associators, and in the second part, we recall the definitions and main results
concerning multiple zeta values. In the third part, we give the outline of the paper
and state the main results.

1.1. Associators. Let k be a field of characteristic 0. Let UF2 = k{(Xo, X1)) be
the ring of formal series over k in two non-commutative variables. The coproduct
A on Ug3 is defined by

AXo)=Xo®1+1® Xy AX)=X1®1+1®X;.

An element ® = ®(Xy, X1) € UF2 is group-like if it satisfies A(P) = d&P where
® denotes the complete tensor product.

Remark 1.1. We remark that the constant term of a group-like element is 1.

Definition 1.2. If S is a finite set, let S* denote the set of words with letters in
S, that is the dictionary over S. If S = {s1,...,s,} we may write, {s1,...,s,}"
Let Wo.1 be the dictionary over {Xo, X;}.

We remark that the monomial in UF, are words in W 1; the empty word () in
Wo,1 will be 1 by convention when considered in Ug2. The following definition
allows us to define a filtration on Ugs.

Definition 1.3. The depth dp(WW) of a monomial W € UgFa, that is an element of
Wo,1, is the number of X7, and its weight (or length) wt(W) = |W/| is the number
of letters.

The algebra Ugs is filtered by the weight, and its graded pieces of weight d are
the subspaces generated by the monomial of length d; U§s is thus a graded algebra.
Let U5 be the enveloping algebra of B5, the completion (with respect to the
natural grading) of the pure sphere braid Lie algebra; that is, U85 is the quotient
of C((X;;)) with 1 <4 <5 and 1 <j <5 by the relations
) X”:Oforlgng\,
[ ] Xij:in forléi,jgf),
5
° ZXZJZOfOI‘1<Z<5,
j=1
o [Xij, Xw] =0if {i,5} N {k,1} = 0.
Definition 1.4 (Drinfel’d [Dri91]). A group-like element ® in Ugs, with zero
coefficient in degree 1, together with a p € k* is an associator if it satisfies the
following equations

@ D(Xo, X1)P(X3, Xo) =1
(ID)
eFN0D(X oo, X0)e XD (X1, Xoo)e2 X1 (X0, X1) =1 with Xo+ X; + Xoo =0

(I10)
D (X2, Xo3)P (X34, Xu5)P(X51, X12)P(Xo3, X34)P(Xys5, X51) =1 in UB5
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We will write an associator as

O(Xo, X1)= Y ZwW=1+ >  ZwW.
WeWo,1 WeWo,1
W0

We have Zp = 1 because ® is group-like.

In [Dri91], Drinfel’d gives an explicit associator ® iz over C, known as the Drin-
fel’d associator and associated to a Knizhnik-Zamolodchikov equation (KZ equa-
tion). More precisely, consider the KZ equation (see also [Fur03][§3]).

(KZ) 99 _ (ﬁ TS ) - g(u)

ou  \ u 1—u

where g is an analytic function in one complex variable u with values in C((Xo, X1))
(analytic means that each coefficient is an analytic function). This equation has
singularities only at 0, 1 and oo. The equation (KZ) has a unique solution on
C =C\ (] —0,0]U[1, 00[) having a specified value at a given point in C, because C
is simply connected. Moreover, at 0 (resp. 1), there exists a unique solution go(u)
(resp. g1(u)) such that

go(u) ~ u™®  (u— 0) (resp. gi(u) ~ (1 —u)™ (u—1)).

As go and g1 are invertible with specified asymptotic behavior, they must coincide
up to multiplication on the right by an invertible element in C({(Xo, X1)).

Definition 1.5. The Drinfel’d associator ' | ®k 7, is the element in C({Xo, X1))
defined by

go(u) = g1(u) P z(Xo, X1).
In [Dri91], Drinfel’d proved the following result.

Proposition 1.6. The element ® 5 is a group-like element and it satisfies (),
() with p = 2imw, and ({[II) of definition[IJ). That is,
(Ixz) Prz(Xo, X1)Prz(X1,Xo) =1

(IMgz) €™ X0®k 7 (Xoo, X0)e™ ¥ =Py 7( X1, Xoo)e™ 1 @y (X, X1) =1

(Illxz) Prz(Xi2,X23)Pxrz (X34, Xu5)Prz(X51, X12)Prz(Xa3, X34)
(I)Kz(X45,X51):1 m U%g)

1.2. Multiple zeta values. For a p-tuple k = (k1,...,kp,) of strictly positive
integers with k; > 2, the multiple zeta value ((k) is defined as

1
C(k) = Z kl kp :
n1>..>np>0 M1 " Tp

Definition 1.7. The depth of a p-tuple of integers k = (k1,...,kp) is dp(k) = p,
and its weight wt(k) is wt(k) = k1 + - -+ + k.

To the tuple k, with n = wt(k), we associate the n-tuple:

k=(0,...,0 ,1,..., 0,...,0 ,1)=(cp,...,€1)
—— N——
k1—1 times kp—1 times

In [Dri9], Drinfel’d actually defined ¢xz rather than ®xz, where ¢rz(Xo,X1) =
7 (5= Xo, ﬁXl) and is defined via the KZ equation a—ﬁ = o (ﬁ + %) - g(u).

21w ] 247 u
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and the word in {Xg, X1 }*

X, - X.,.
This makes it possible to associate a multiple zeta value (W) to each word W in
Xo{Xo, X1} X (where W begins with X, and ends with X7 ).

Following Kontsevich and Drinfel’d, one can write the multiple zeta values as a
Chen iterated integral [Che73|

R

U — €y u—e1

Note that, as k1 > 2, we have €,, = 0. This expression as an iterated integral leads
directly to an expression of the multiple zeta values as an integral over a simplex

g(k):/A (_1)17&/\.../\&

t1 — €1 tn —€n

where A, ={0<t; <...<t, <1}

Thanks to the work of Ecalle, Zagier, Ihara, Kaneko or Furusho we can extend the
definition of multiple zeta values to tuples without the condition k1 > 2 (see [Rac02],
[IKZ06] or [Fur03]). These extended multiple zeta values are called regularized
multiple zeta values and we speak of regularizations. We will be interested in a
specific regularization, the shuffle reqularization.

Definition 1.8 (Shuffle product). A shuffle of {1,2,...,n} and {1,...,m} is a
permutation o of {1,2,...,n+ m} such that :

o(l)<o(2)<---<oan) and cn+1l)<on+2)<---<an+m).
The set of all the shuffles of {1,2,...,n} and {1,...,m} is denoted by sh(n,m)

Let V=X; ---X;, and W =X, - X;, ., betwowordsin Wy 1. The shuffle
of V and W is the collection of words
Sh(V’ W) = (Xig—l(l)XiU—l(Z) T Xi(,fl(n+m))d€sh(n,m)-

Working in C{{(Xy, X1)), we will also consider the sum

VmW = Z U= Z Xis o Xir e X v
Uesh(V,W) o€sh(n,m)

and extend the shuffle product m by linearity.

Definition 1.9. The shuffle reqularization of the multiple zeta values is the col-
lection of real numbers (¢™(W)) such that:

WeWo
(1) ¢"(Xo) = ¢"(X1) =0,
(2) ¢"(W) =((W) for all W € XoWh1X1,
(3) C*(V)CEW) = Y (U(U) forall V.V € Wo,
Uesh(V,W)

These regularized multiple zeta values (™ (W), for W not in XoWp 1 X1, are in
fact linear combinations of the usual multiple zeta values, as it has been shown
explicitly by Furusho in [Fur03].

The coefficients of the Drinfel’d associator can be written in an explicit way using
convergent multiple zeta values [Fur03].

Proposition 1.10. Using the shuffle reqularization we can write (JLM96], [Fur03])

Oz (Xo, X1) = Y (=))W
WeWo, 1
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1.3. Main results. In Theorem[2.2land Theorem 2.§ we will give explicit relations
between the coefficients of the series defining an associator ® equivalent to the
relation () and (II) satisfied by ®. Both were well-known as it is easy to expand
the product of the associators in UgFs even if the author does not known whether
the relations of Theorem have been written in the literature. In the case of
the pentagon relation ([II), writing down relations between the coefficients implies
fixing a basis B of UB5. Even if fixing such a basis breaks the natural symmetry
of the pentagon relation ([II)), it is then possible to write a new family of relations
between the coefficients of ® equivalent to ([IIxz]). More precisely, decomposing a
word W in the letters X3 4, X4 5, X204, X1 2, X2 3 in the basis B we have

W= "lwb,

beB

and we obtain the following theorem.

Theorem (Theorem[212). The relation ([II) s equivalent to the family of relations

Vbe B (b#1) > Ly wCs.w =0
We{Xs,4,X4,5,X2,4,X1,2,X2,3}*

where Cs w are explicitly given by :

Cs,w = Z Zp (U1) Zp3(U2) L ps (Us) Zpa (Us) L ps (Us) -
Ui,...,Us€EW
Uy---Us=W

Applying this theorem to the particular basis B4 coming from the identification
UBs ~ k((X3,4, Xu5, X2.4)) ¥ k((X1,2, X23)),

one can compute the coefficients [, 1 using the equation defining U*B5. In particular
it is easy to see that [, 1 is in Z in that case.

After each family of relations between the coefficients, we apply our results to
the particular case of the Drinfel’d associator and give the corresponding family
between multiple zeta values in equations (3)), (§) and (II).

In Section [} of the article, we explain how these families of relations between
multiple zeta values are induced by iterated integrals on Mg 4 and My 5 using the
bar construction studied by Brown in [Bro09|. The geometry of M 5 allows us in
Proposition to interpret the coefficients C5 1 using iterated integrals.

Proposition (Proposition BI6). For any bar symbol wy dual to a word W in the
letters X34, X45, X24, X12, X23, we have

Csw :/Reg(ww,v)
Y

where Reg(w, D) is the reqularisation of a bar symbol in & H' (Mg 5)®" along bound-
ary components D C OMo 5.

This is a consequence of Theorem [B.I4] which links the family of relations (T
to the bar construction.

Theorem (Theorem BI4). The relation ((Ilkz) is equivalent to the family of re-

lations
Vby € By /Reg(bz,v) =0
¥

which is exactly the family of relations [Il). Here (b})p,cnB, denotes the basis in
V(Mos), the bar construction on Mg, dual to the basis By of UB5 described
earlier.
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More generally, we then have that, for any basis F = (f)fer on V(Myys), the
pentagon relation ([lIz) is equivalent to

VfeF /Reg(f,fy):O.
v

Brown, Gangl and Levin in [BGL10|] obtain, using different methods and for
another purpose, the same basis B} of V(Mg s). In their work, the basis Bj is
described using combinatorial objects. More precisely, they use maximal triangu-
lations of rooted decorated polygons.

Instead of looking all the elements of a basis F' of V(Mys), it is enough to
consider only a subbasis that generates V(Mo ) as a shuffle algebra. Indeed, if
w in V(M) is equal to fi m fo, the iterated integral f,yw is equal to f,y fi f,y fo.
Thus it does not give a new relation between multiple zeta values. Considering
a set of generators of the shuffle algebra leads to computing many less relations.
In degree 2 and 3 we have respectively 4 and 10 generators instead of 19 and 65
elements in the vector space basis. In the appendix, we will give these relations in
degree 2 and 3 using the basis Bj.

The multiplicative generators that we have found don’t have a particularly simple
expression in terms of symbols wyy dual to words W in the letters X34, X5, Xo4,
X192, Xo3. But it seems to be linked with our particular choice of identification.
The identification

UBs5 ~ k((X3.4, X714, X0.4)) ¥ k{({(X1,2,X23))

leads to another basis By of UB55. Then, multiplicative generators can be found
with a particularly simple expression in terms of symbols wy dual to words W in
the letters X34, X14, Xo4, X12, Xo3. More precisely, writing such a word W as

W= Z 1547Wb4’
ba€By
we can write BZ = > w s, www. The generators are elements BZ such that the
number of [; y; is as minimal as possible. This seems to be a general fact.

2. COMBINATORIAL DESCRIPTION OF ASSOCIATORS RELATIONS

The goal of this section is, for any associator and for the particular case of ®x 7,
to give an explicit expression for the relations between the coefficients derived from
the associator relations (Il), (IT) and ([II)). For each of these relations, we will first
study the case of a general associator and then deduce, for the Drinfel’d associator,
relations between the regularized multiple zeta values. Let

P = Z ZwW
WeWo,1

be an associator. The idea will be to expand the product in the right hand side of
the equations (I}, (IT) and (III) in a suitable basis of the space UF2 or UBs.

2.1. The symmetry, () and ([xz). Let P be the product ®(Xg, X1)®(X1, Xj).
As the monomials in Ug3, that is words in W) 1, form a basis of Ug2, we can write
P as

Py, = Z ngvW =14+ Z ngvW.

WEWo,l WEWo,l,W#@
The relation (I) tells us that for each W € Wy 1, W being nonempty, we have
(1) Cow = 0.

Example 2.1. In low degree we have the following relations:
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e In degree one, there are just 2 words : Xy and X; and (1)) gives:
Coxy =%4x,+2Zx, =0
Cox, =Zx, +Zx,=0
e In degree two there are 4 words XoXo, XoX1, X1 X0 and X;X; and (d)
gives:
Coxoxo = LxoXxo T+ Lx02x, + Zx,x, =0
Coxoxy, = Zxox: + Lx02Zx0 + Zx,x, =0
Cox,xo = Zx1x0 + Zx,Zx, + Zxyx, =0
Coxoxo = Zx1x1 + 4x,Zxy + Zxyx, =0
e In degree three there are 8 words. Looking at the coefficients of the words
X0X0X1 in Py, equation () gives:
ZxoxoX: T ZxoX04x0 + Zx0Zx,1X%0 + Zx1 XX, =0
Let 6 be the automorphism of UFy that sends Xy to X; and X7 to Xg. Then

we have:

Theorem 2.2. The relation (1) is equivalent to the family of relations

(2) YW e WOJ \ {@}, E ZU1Z9(U2) =0.
U1,U2eW0,1
U,Ua=W

Proof. As (X1, Xo) = 6(®(Xo, X1)), we have

(X1, Xo)=0 |1+ > ZyW|=1+ > Zwb(W)

WeWs 1 WeWp 1
=1+ Z ZowyW.
WeWp 1
W0

Then, expanding the product P, and reorganizing, we have

(X0, X1)O(X1, Xo) = |1+ D> ZuUi| |14+ Y. ZownU2
U1EWo,1 Ux€W01
U1 #0 Uz #£0D

Z Z Zu, Zouy) | W-

WeWo,1 | Ur,U2eEW0,1

W0 Uy Up=W
(I
Corollary 2.3. The relation ([gz) is equivalent to the family of relations
(B) YW eWoa, > (~)TOIEO)(=D)POTDE9(Us) = o,
U1,U2eEW0,1
Uy Up=W

that family being equivalent to the following

@) YWeWor, Y, (=)l @) (Os)) = 0.

U1, U2€EWp 1
U, Ua=W
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2.2. The 3-cycle or the hexagon relation, ([I) and ([Ixz)). For any element
P = ZWewo LawW in Uy, let Co,1(P|W) be the coefficient aw of the monomial
w.

Let P3 be the product

Py = e2X00(X o, Xo)e? X ®(X1, Xoo)e? X1 0(Xo, X1).
We can write P53 as
Ps= Y Cor(BW)W= > CswW.
WeWo,1 WeWo,1
The relation () tells us that for each W € Wy 1, W # ), we have
(5) Csw =0.
In order to make these coefficients explicit, we will need some definitions.
Definition 2.4. Let agp (resp. a; and a) be the endomorphism of UFs defined
on Xy and X; by :
aO(XO) = XO and ao(Xl) = 0,
respectively
Oél(Xo):O and Oél(Xl):Xl
and
Qoo = —(ap + 1).

Let &; be the composition of «; with Xg, X7 — 1.

The following proposition is a consequence of the expression of the exponential

Pn
VPeUFy  exp(P)=) —
n=0

and of the equality
(6) (—Xo—X)"= > (=p"w

WeWp,1
|[W|=n

Proposition 2.5. Let W be a word in Wy 1, we have

C 2 X, _ /’LlW‘ ~
o= W) = S G0 (V).
C (e%X1|W)=ﬂa (W)  and
o1 W W
C (%X“W — (_1\IWI MlW‘
01(ez W) = (-1) ST

In order to describe the coefficient of ®(X;, X;), with either one of the variables
being X, we introduce a set of different decompositions of W into sub-words.
Definition 2.6. Let W be a word in Wy 1. For ¢ € {0,1}, let deco 1(W, X;) be
the set of tuples (Vl,Xfl,Vg,sz,...,Vp,Xf”) with 1 < p < o0, V; € Wp,1 and
Va, ...,V # 0 such that

W =WViXPv,xke v, x)

We will write (V,k) € deco (W, X;) instead of (Vi, X1, Vo, Xk ..V, X[7) €
deco,1 (W, X;) and |V| (resp. |k||) will denote [Vi|+---+|V,| (vesp. ki + -+ kp).
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The following proposition describes the coefficient of W in the series ®(Xg, X1),
®(Xoo, Xo) and (X1, Xoo).
Proposition 2.7. Let W be a word in Wy1. We have
Co1(®(Xo, X1)|W) = Zwy.
The coefficients Co,1(P(Xoo, X0)|W) and Co1(P(X1, Xoo)|W) can be written as
_ _1vI
C()J(@(XOO,X()”W) - Z ( 1) ZX(\)Vl\Xflx(\)Vz\Xf‘QWX(\)VP\Xfp
(V.,k)€Edeco,1 (W, X0)
and
Co,1(®(X1, Xoo)|W) = > Pl)lV\ZXlV”X(’lel‘VZ‘X(fZ“‘Xl‘v”‘xf"'
(V,k)edeCU,l(W,Xl)

Proof. The first statement is immediate. Let Lo .(N) denote the set of double p-
tuples (0 < p < o0) of integers ((I1,...,1p), (k1,...kp)) with k;,l; € N and let (1, k)
denote an element of £ (N). We can write (X, Xo) as

k kp
(I)(XOO;XO) = Z ZXé1Xf1”,XéprPX<l;)XOI XégXO
(Lk)eL2,(N)
which equals
k
> Zxixhxl ke (—1)M(Xo + X1)" X5+ (Xo + X1)' X"
(Lk)eL2 (N)

Reorganizing, we see that the expression of Co 1(®(Xoo, Xo)|W) follows from (@);
the case of Cp 1(P(X1, Xoo)|W) is identical. O

Theorem 2.8. The relation (1) is equivalent to the family of relations

(7) YW e W071 \ {@},
'u/‘Wl‘ N
Z 72|W1||W1|!QO(W1)X

Wy -We=W
[Ws|

_1)lUl W M
<Z> O Z it | GO Srmrg
Uk)e

deco,1(W2,Xo)
[Ws|

Z (*1)‘V|Z Vil iy Vpl wlip Ldl(WE))ZWG:O.
Ve XU Xtee X P X 2‘W5||W5|!

deco,1 (W1,X1)
Proof. The relation ([I)) is equivalent to the family of relations
VW € Woi \ {0} Co, (P, W) = 0.

As Pj is a product of six factors, this is equivalent to

YW e Wo \ {0}

Co,1 (5%, W)Co 1 (®(Xoo, Xo), W)-

Co,1(e2X=, W)Co 1 (P(X1, Xoo), W)-
Co,1(e2X*, W)Co,1(®(Xo, X1), W) = 0.

The proposition follows, then, from Proposition and 2.7 O
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Corollary 2.9. The relation ([Igz) is equivalent to the family of relations
(8) YW € Wo\ {0},

Z (im) Wl o (W) x

.- LAl
1,.-,W6€Wo 1
Wi We=W

I Up kp | (2T
> et | (i S
O [Ws)!

€deco,1 (W2,Xo)

(»L'ﬂ-)|W5\
|Ws!

. v Vol vlp
oo Mxg X

A
€deco,1(W4,X1)

ay (Ws) (—1) Vo) ¢ (W) = 0,

2.3. The 5-cycle or the pentagon relation, ([II) and ([lIkz). In order to
find families of relations between the coefficient equivalent to () and ([I)) we have
decomposed the product P, and Ps on a basis of U2, the words in Xy and X;.
We will do the same thing here but the monomials in the variable X;; are not a
linear basis of UB5 because there are relations between the X;;. Using the relation
defining U*B5 we can see that X5; = — X312 — X135 — X714 and that

Xs51 = —X54 — X53 — X52
= 2Xo3 +2X94 + 2X34 + X12 + X3 + X14.

Then, as the characteristic of k is zero, we have X5; = Xa3 + Xo4 + X34. In this
section, we will expand the product in the R.H.S of [Tl using this relation and then
decompose this product on a linear basis of UB5. Let B denote a linear basis of
UBs5 (with 1 being an element of B) and By the basis of UB5 coming from the
identification
UDB5 ~ k((Xaa, X34, Xus)) X k((X12,X23)).

This identification is induced by the morphism U85 — UgJ2 that maps X;4 to
0 (1 <i<5b), Xi2 to Xg, Xa3 to X1, the images of the other generators being
easily deduced from those. The basis B, is formed by 1 and the monomials, that
is WOI’dS7 U245‘/123 where U245 is a word in 24W34745 = {X24,X34,X45}* and V123
is in W'2:23 = [ X5, Xo3}*. Speaking of the empty word () in By, we will mean 1
when seen in UB5 and () when seen as the word.

Let W be the dictionary {X24, X34, X5, X102, ng}*, and let 24W§2 and 24W§j’23
be respectively the sub-dictionary {Xa3, Xa4, X34}* and {X12, Xog, Xo4, X34}*.

Let P5 be the product in U*Bs.

D (X 12, Xo3)P (X34, X45)P(X51, X12)P(Xa3, X34)P(Xss5, X51).
As X571 = Xoz + Xo4 + X34, we can write P5; without using X5,
Ps = ®(X12, Xo3)P (X34, X45)P(Xo3 + Xoa + X, X12)P(Xa3, X34)
D(Xy5, Xog + Xoa + Xs34).

Expanding the terms (Xo3 + Xo4 + X34)™ as

2. m

WeuWss
|[W|=n
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we have
(9) Pi= Y CswW.
wew

Despite that this writing is not unique, as a decomposition of P5 in W, those Cs w
are the coefficients of a word W just after expanding the product Ps without X5,
(that is replacing X51 by Xas+ X24 + X34) and as such are unique and well defined.

Lemma 2.10. Let p1, p2, p3, pa, ps be the morphisms from UB5 to UFo defined
respectively on the monomial Xogq by, X34, X5, X12, Xo3 as :

p1(Xi2) = Xo, p1(Xa3) = X1, p1(X34) =0, p1(Xas5) =0, p1(Xo4) =0,
p2(X12) =0,  pa(Xa3) =0,  pa(Xsa) = Xo, p2(Xas) = X1, p2(X24) =0,
p3(X12) = X1, p3(Xa3) = Xo, p3(Xza) = Xo, p3(Xas) =0,  p3(Xas) = Xo,
pa(X12) =0,  pa(Xaz) = Xo, pa(Xsa) = X1, pa(Xas) =0,  pa(Xo4) =0,
p5(X12) =0,  p5(Xa3) = X1, Ps(X34) = X1, ps5(Xas) = Xo, ps5(Xaa) = Xy,

Proposition 2.11. For all words W € W (W # 0), the coefficient Cs w is given

by

(10) Cow = Y. Zpwn)Zos ) Zos(Us) Zos(Un) Do (Us):
Ui,...,UsEW
Uy Us=W

where by convention Zy = 0.

Proof. Tt is enough to show that the ¢-Th factor of P; without using X5; can be

written as

Y ZownUi

U,ew
The first, second and forth factor being similar, we will discuss only the first one.
It is clear in the case of ®(X12, Xa3) that either Uy is in W!2:23 and its coefficient is
then Z, v,y ; or Uy is not in W'*23 and it does not appear in ®(X12, X23) which
means that its coefficient is 0.

The third and fifth factor are similar and thus we will treat only the former. We

can write ®(Xa3 + Xog4 + X34, X12) as

1 kp
E ZXzIXkIMXLpka (ng + Xo4 + X34)IIX{€2 ce (ng + Xo4 + X34)IPX12 .
o X1 o X1
(Lk)EL2,c(N)

We can rewrite the previous sum as running through all the words in the letters
Xi2, Xo3, Xo4 and X34 because (Xa3 + Xo4 + X34)! is equal to

>oow

WeuWss
|W =l

Using the unique decomposition (as word) of Uy € 54Wg;>* a
— k1 kyp : 23
Uy = V1X12 .- ~VpX12 with V; € 24W34,

we see that each word Uy in 24W§f 23 appears one and only one time in ®(Xa5 +

Xo4 + X34, X12) with the coefficient ngvl‘xfl---xgvp‘xl' We finally have

O(Xo3 + Xog + X34, X12) = Z Zps(Us)Us-
UseWw
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Fixing a linear basis B of UB5 (1 being an element of the basis) we have for
every W in W a decomposition (in UB5)

W=> lhwB lwek
beB
and then a family of relations equivalent to ().

Theorem 2.12. The relation ([[II) is equivalent to the family of relations

vbe B (b#1) > bwCsw =0
wew

where Cs w are given by Proposition [Z.11).

Proof. As B is a basis, for a given W in W there are only finitely many [, y that
are non zero. Moreover, as UB5 is a graduated vector space (the grading is given by
the weight, that is the length, of the monomial) with finite dimensional graduated
part, for any b in B there are only finitely many [ w that are non zero. The product
Ps is equal to

Ps= Y CowW
wew
- 3 o (Tuws)
Wew beB
X (5 b ) o
beB \Wew
The relation ([II) tells us that
Ps=1
which, because 1 is in B, means that C5 g = 1 and
Vbe B (b#1) > bwCsw =0.

wew

Using the more common basis By we have:
Corollary 2.13. The relation () is equivalent to the family of relations

Vby € By (by # 1) > lhwCsw =0
wew

where the Csw are given by Proposition 211

Remark 2.14. In the case of the basis B4 one can check that the coefficients l;, w
are in Z.

The previous corollary, applied to the particular case of the Drinfel’d associator
and making explicit the Cs - in terms of multiple zeta values, gives:

Theorem 2.15. With the convention that (™ (0) = 0, the relation ((Ilkz)) s equiv-
alent to the family of relations

(11) Vb, € By (b4 75 1)

Zlb47W < Z (71)dpl(U1)+dP2(U2)+dps(U3)+dp4(U4)+dP5(U5)
w Up---Us=W

" (p1(U1))¢" (p2(U2))¢™ (p3(Us)C™ (pa(Ua))C™ (Ps(Us))> =0
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where dp;(U) is the depth of p;(U) and the words W, U; are in W.

3. BAR CONSTRUCTION AND ASSOCIATOR RELATIONS

In this section, we suppose that k is C. We review the notion of bar construction
and its links with multiple zeta values. Those results have been shown in greater
generality in [Che73| and [Bro09]. We will recall the Brown variant of Chen’s
reduced bar construction in the case of the moduli spaces of curves of genus 0 with
4 and 5 marked points, Mg 4 and M 5.

3.1. Bar Construction. The moduli space of curves of genus 0 with 4 marked
points, My 4, is

M074 = {(Zl, .. .,2’4) S (P1)4 | Z; 75 Zj if 4 75 j}/PGLQ(/{Z)
and is identified as

MO,4 = {t € (]P)l) |t 7& 05 1700}
by sending the point [(0,%,1,00)] € Mg 4 to t.
The moduli space of curves of genus 0 with 5 marked points, Mg s, is

M075 = {(Zl, .. .,25) S (P1)5 |Zi 75 Zj if 4 75 j}/PGLQ(/{Z)

and is identified as
M0,5 = {(1',y) S (P1)2 |Z',y 7é 05 1700 and x 7& y}

by sending the point [(0,zy,y,1,00)] € Mo to (z,y). This identification can be

interpreted as the composition of

Mo 5 M0,4 X M074

)

(21, - s 25)] = [(21, 22, 23, 25)] X [(21, 23, 24, 25)]
with the previous identification of My 4 using the fact that
[(0, 2y, y,00)] = [(0, 2,1, 00)].

For M = Mp4 or M = My, Brown has defined in [Bro09] a graded Hopf
k-algebra

(12) V(M) = @%_ Vi (M) C @%_ Hh g (M)®™.

Here V(M) = k, Vi(M) = Hhg (M) and V,, (M) is the intersection of the kernel
N for1<i<m—1:

Ai : Hpr (M)®™ ——= Hpp (M)®™ "1 @ Hpyp (M) © Hpg (M)® !

Vi @ - Q1

l/m®"'®(l/i+1/\l/i)®"'®l/1.

Suppose that wy, ..., wy form a basis of Hyg (M), then the elements of V;,(M) can
be written as linear combinations of symbols

> alwinl - fwi),
I:(ila---vim)
with ¢; € k, which satisfies the integrability condition
(13) Z chim®---®wiH2®(wiH1/\wij)®wij71®---®wim =0
I=(i1,.rim)
forall 1 <j<m—1.
Definition 3.1. The Brown’s bar construction over M is the tensor product

B(M) =0pm @ V(M).
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Theorem 3.2 (|[Bro09]). The bar construction B(M) is a commutative graded Hopf
algebra isomorphic to the zero™ cohomology group of Chen’s reduced bar complex
on Op :

B(M) ~ HY(B(Q*On)).

Let vy, . ..,v1 be m holomorphic 1-forms in Q!(M). The iterate integral of the
word vy, - - - 1, denoted by

VUmpO-+-0Ulq,

is the application that sends any path v : [0,1] — M to

/I/mO~~~Ol/1:/ Y ri(t) A Ay v (tn).
v 0<ts <...<tm,

This value is called the iterated integral of v, ---1v; along v. We extend these
definitions by linearity to linear combinations of forms ), crv;,, ... v;,.
When, for any -, the iterated integral

/E CIVm O+ 0y
Y oI

depends only of the homotopy class of v, we say it is an homotopy invariant iterate
integral and note it [ 3" ¢jvy,0- - -ovy. Let L(M) denote the set of all the homotopy
invariant iterated integral.

Proposition 3.3 (|Bro09]). The morphism p defined as
p: BM) LM)

S erlein - le [ S erun, o0 0w,
I

I

18 an isomorphism.

Remark 3.4. In particular for any such v homotopically equivalent to zero we have
for all 3~ crfw;, |- - |wiy ] in V(M) :

E cf/wimO---owil:O
I v

3.2. Bar Construction on Mg 4, symmetry and hexagon relations. Here,
we will show how the symmetry relations ([gz) and the hexagon ([Ixz)) relations
are related to the bar construction on Mg 4.

First of all we should remark that B(M0,4) is extremely simple.

Proposition 3.5. Let wy and wi denote respectively the differential 1-form, in
Ql(MOA), % and t[i_tl
Then, any element [we, |-+ |we, ] with g; in {0,1} is an element of V(Mo 4).

Moreover, the family of these elements is a basis of V(Mo 4).

Proof. As wy A wy = 0, the integrability condition (I3) is automatically satisfied
so that any element [w,, |- |we,] (€, = 0,1) is an element of V(Mg 4). Moreover,
as (wo,w1) is a basis of Hhg(Moa), the elements [w., |---|w.,] form a basis of
V(Moa). O

Sending Xy on wg and X; on w; gives a one to one correspondence between words
W = X, ---X., in Wp,1 and the elements [we, |- |we,]| of the previous basis of
V(Mo.4). This correspondence allows us to identify V(M 4) with the graded dual
of US'Q,

V(Moa) ~ (US2)"
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The word, W = X, --- X, is sent to its dual W* = wy = [we, | -+ * |we, |-

Remark 3.6. Let o and 8 be two paths in a variety with a(1) = £(0). We will
denote by o « the composed path beginning with « and ending with 3.

The iterated integral of w = w,, - --w; along B o « is then equal to

(14) zn:(/ﬂwno---own_k_,_l) (/awn_ko...owl).

k=0

Following [Bro09] and considering the three dihedral structures on Mg 4, one
can define 6 tangential based points : O_i, 1_0, 150, 051,050 and Oco. Let p denote
the path beginning at the tangential based point 01 and ending at 10 defined by
t+— t and let p~! denote its inverse ¢t — 1 — ¢.

If v is a path, starting at a tangential based point P (and/or ending at a tangen-
tial based point P ) an iterated integral f w may be divergent. However, one can
define (as in [Bro09]) a value to that divergent integral ; we speak of regularised
iterated integral.

If W is a word in XoW,y,1X1, the iterated integral fp ww is convergent and is
equal to (—1)®MW)¢(W). If W is a word beginning by X; and/or ending by Xo
(that is in Wy 1 \ XoWo,1X1), then the regularised iterated integral fp ww is equal
to (—1)2W)¢m (1),

We may, thereafter, omit the term regularised in the expressions “regularised
iterated integral ” or “regularised homotopy invariant iterated integral”.

Theorem 3.7. The relation (k7)) is equivalent to the family of relations
YW e W011 / ww =0
pop~*

which is exactly the family (B).

Proof. Considering the KZ equation (KZ)
8g o XO Xl
0u<u+1—u 9(w)

and the two normalized solutions at 0 and 1, go and g1, Pk z(Xo, X1) is the unique
element in UF, such that

go(u) = g1(u) Pk z(Xo, X1).

Using the symmetry of the situation we also have
91(u) = go(u) Pk 2 (X1, Xo).
The equation ([gz]) comes from the unicity of such a solution normalized at 1
(15) 91(u) = g1(u)Px z(Xo, X1)Px z(X1, Xo).
The elements @z (Xo, X1) and Pxz(X1, Xo) can be expressed using regularised

iterated integrals as
D z(Xo, X1) = Z (/ww> %%
WeWo, 1 P

pz(X1,Xo) = Y (/p ww> w.

WeWp,1

and

Equation (I3 corresponds to the comparison of the normalized solution g; with
the solution given by analytic continuation of g; along p o p*. The product

D7 (Xo, X1)Pxz (X1, Xo)
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> (o)

WeWo, 1

is then the series

As the path p o p~! is homotopically equivalent to 0, all the previous iterated

integrals (for W # () are 0. We deduce that ([gz) is equivalent to
YW € W011 / ww = 0.
pop~*

Now, fix any W = X, ---X., in Wy and compute the regularised iterated
integral fpop,l ww . Using ([I4)), we have

n
/ wwy = E (/wgno..~ow€nk+1) (/ wgnko..-ow&).
pop~?! k—o \/P p~!

Setting Uy = X, -+ Xe,_,, and Us = X, _, -+ X¢,, we have

/wen, O+ 0We, 411 — (_1)dp(U1)Cm (Ul)
p

As p~1is given by t — 1 — ¢, we have for ¢ in {0,1}
(P ) (we) = wie.

Moreover, as p*(w:) = we, one computes

/71 We,_p OO Wey = (p_l)*(wéﬁ (tl)) ARERNAN (p_l)*(wanfk(tn—k))

S—

0<t1<..<tp—k

Wi—e, (L) A Awie,  (tn—k)
<t1<..<tp—k

_—

wlen,k 0:-+0 wl*El = /we(Uz)ﬂ
p

where 6 exchange Xy and X;. Finally, we obtain

/ w, = / Wouay = (—1)POUD (1))
p~1 P

and
0= [ aw= 3 (0PI ) -1 e o)
pop~* ULUz=W
which is exactly the relation ([B]) for the word W. O

Now, let ¢ be the infinitesimal half circle around 0 in the lower half plan, con-
necting the tangential based point 0co and 01. The path ¢ can be seen as the limit
when e tends to 0 of ¢, : ¢t — gei(THt™)

We have a natural 3 cycle on Mg 4 given by 7 : ¢t — L Let v be the path

-t
co7%(p)oT2(c) o7(p) o7(c) op.
Theorem 3.8. The relation ([Ixz)) is equivalent to the family of relations

VWEWOJ /wW:()
v

which is exactly the family (8).

Proof. Comparing the six different normalized solutions of (KZ)) at the six different
based points leads to six equations. Combining theses equations, one obtains ([Ikz))
via the relation

(16)  go(u) = go(u)e™ Pk 7 (Xoo, X0)e ™ > @ 7(X1, Xoo)e ™ @ z(Xo, X1)
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where exponentials are coming from the relation between the solutions at the based
points 0co and 01 (resp. 10 and 150, 01 and 050) ; that is from the monodromy
around 0, 1 and oo.

Putting the six different relations in order to get the previous equation is the
same as comparmg the solution gy with the analytic continuation of 90 along any
path starting at 01, joining the other tangential based points 10 1oo ool oo() 0co
in that order and ending at 01 ; staying all the time in the lower half plan. Such a
path is homotopically equivalent to ~.

So, equation (I6]) gives a relation between gy and the solution obtained from g
by analytic continuation along . Then, the product in Ugs in the R.H.S of (1)
can be expressed using homotopy invariant iterated integrals

e X0P g7 (Xoo, X0)e ™ > gz (X1, Xoo)e ™ 1 P z(Xo, X1) = Z </ wW> W
WeWo 1 K

As ~y is homotopically equivalent to 0, for any word W in W, 1, one has

/wWZO.
ki

The first part of the theorem is proved.
Using the decomposition of iterated integrals on a composed path (Equation

(@), we have

YW € Wo 1 /ww = Z /wUl/ wU2/ w
v Ui,...Us “°€ 72(p) 72(c)
Ui Ug=W

/ Wy, / Wus / Wug -
7(p) 7(c) p
Thus, in order to show that the family of relation

VWEWOJ /WW:O
vy

gives exactly the family of relations (8)), it is enough, to show that for any U in
Wo,1

/wU = Co,1(e™°|U), / wy = Co1(Prz(Xoo, X0)|U),
72(p)

C

/ wy = Co(e™=|U), / wy = Co1(Prz(X1, X0)|U),
2(c) 7(p)

/ Wy :CO71(€“—X1|U), /wU :Co,l((I)Kz(Xo,XlﬂU).
(e) p
In order to compute the iterated integral along ¢, 7(c) and 72(c), it is enough to
compute the limit when ¢ tends to 0 of the iterate integral along c., 7(c.) and
2
72(ce). As
. , —imetTtT dt
C. (WO) = ¢mwdt and c:(wl) = Em,

(im)™
n!

the iterate integral [ wy tends to 0 except if U = X and then [, wxp =
for all e. Thus, we have
/wU = Co,l(eiﬂ'XolU).
(&
Similarly we have

dt . cimet (Tt ¢

T(CE) (wl) = ZWW and T(CE) (WO) = W
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The iterate integral fT(C ywu tends to 0 except if U = X' and then J. wxp tends
to (”7:# when ¢ tends to 0. Thus, we have
/ Wy = Co7l(€iﬂ—xl |U)
7(c)

Computing 72(c.)*, we have

« . dt « .
72(co)*(wo) = S g e and 72(co)*(w1) = —indt.

—_imul
Then, we find that the limit when € tends to 0 of fT2(C€) wy s ¢ ‘Z[}r?!U which gives

/ wy = Coyl(eiﬂ—XOﬂU).
72(c)

The equality
/WU = COJ(‘I)KZ(XOaXl)lU)

p

/ wy and / wy
7(p) 72(p)

are extremely similar and we will discuss only the last one. First, we should remark
that

is obvious.
Cases of

72(0)" (wo) = —wo+wi and  72(¢)*(wo) = —wo.

For U = X,, -+ X, (g, =0,1) we can rewrite the iterate integral f'rZ(c) wy as

/r%p)*(wgn)o---o72<p>*<w€1>.

P
We will now prove by induction on n = |U| that in V(M 4)

A7) [P () (e )l [T (0)" (we,)] =
_1Vvl
v k)edz (U.X )( ! v )
) eco,1(U,Xo
which will give using Proposition 2.7 the equality

/ wy = Co1(Pxz(Xo, X1)|U).
P

If U = Xy, the set decg 1(U, Xo) has 2 elements, ((Xo), (0)) and ((0), (1)). Sim-
ilarly, if U = X; then decg 1 (U, Xo) has only one element which is ((X1), (0)). In
both cases (7)) is satisfied.

Let W = X, ---X;, beawordin Wy, and let € be in {0, 1}. For the simplicity
of notation, we shall write [w;, | - - |wj, |we] as

[ww lwe] := [wj,, [ -+ - Jwjy |we]
We suppose now that
U=U:Xy with |U1| > 1.
We have a map from decg 1 (U, Xo) to deco1(U1, Xo) that sends a decomposition
(V.k) = ((Vi,.... V), (ks Kep))

to
(V,(kl,...,kp—l)) ifk, #0
((V4,.. .,Vp’),k) if k,=0and V, = VIjXO.
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Any decomposition (V' k') in decg1(U1, Xo) has exactly two preimages by this
map. If one writes

’ k,
= VX Vi
then it leads to two decompositions of U

(Vi Vo) (R ky + 1)) and (V-0 V), Xo), (K- Ky, 0)).

p 3 p7
By induction we have in V,,_1 (Mo 4)
P2 e )l 120 wel = Y DYV e vy e v
(V,7k,)€ 0 1 0 1
deco,1(U1,Xo0)

We deduce from the previous equality and using the linearity of the tensor product
that [7%(p)*(we,, )| -+ [7%(p)* (we, )] is equal to

’
VY o v ok | —wo + wrl.
(V’Ek/)e (1) [X(\)vlwxflmx(\’p\xlp| 0 + wi]
deco,1(U1,X0)

This sum can be decomposed as

> )V

X, 1'x
(V' k")e
dng,l(Ul,Xo)

K, vl K [wol+
11"'Xo P le

V/
) A N e

(V' k)€ ’
deco,1(U1,X0)

The first term of the sum is equal to

’
-1 v |+1w ’ . A
>, D M

(V' k)€ 0
dng,l(Ul,Xo)

and the second term is equal to

’
(—1)‘V ‘w ’ ’ ’ ’
E VI Sk VI kD41
y / X[) 1 Xllu‘X[) P le
(V' ke

deco,1(U1,Xo0)

The previous discussion on decg 1 (U, Xo) tells us that adding the two sums above,
gives

(71)‘V|WX[LV1\X51 X(\JVQ\Xf;HX(\JVP\XfP .
(V.,k)€edeco,1 (U, Xo)
This gives (IT7) when U = Uy Xo.
If U = U1 X; with |Uy| > 1, we have a one to one correspondence between
deco 1 (U1, Xo) and deco 1 (U, Xo) defined by

y P / (VY. Vp, Xa), (K, .. K, 0) i Ky =0
(Vi Vi), ( 17"'7kp))'—>{ (VAo VX)), (R, k) otherwise.

Then, ({IT) follows by induction using the linearity of the tensor product. O
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3.3. Bar Construction on M s and the pentagon relations. Here, we will
show how the pentagon relations ([lIgy)) are related to the bar construction on
Mo s.

The shuffle algebra B(Mj 4) being much more complicated than B(Mg 4) we
will first review some facts explained in [Bro09]. We now fix a dihedral structure ¢,
as described in [Bro09], on Mg 5. We will used the “standard” dihedral structure
given by “cyclic” order on the marked points

21 < 29 < 2z3< 24 <Z5(< Zl)

or with our normalization
O<ay<y<1<oo.

This corresponds to a good choice of coordinates to study the connected component
of My 5(R) such that the marked points are in the order given by 6. We will refer
to that component as the standard cell.

More precisely, let i, j, k, I denote distinct elements of {1,2,3,4,5}. The cross-
ratio [ j|k ] is defined by the formula:

ijll] = = L

Zi TRl 25 — Rk
Brown, in [BroQ9, Sections 2.1 and 2.2|, has defined coordinates on Mg 5 (and
more generally on My ,,) that respect the natural dihedral symmetry of the moduli
spaces of curves. Following his work, for ¢ and j in {1,2,3,4,5} such that 4, i + 1,
7 and j + 1 are distinct, we set

Let wya, wag, w34, was, wayg be the differential forms
dz dx
W12 = leg(UQE,) = —, Wo3 = leg(U31U41) = -,
T x—1
d

wsq = dlog(ugqugr) = —yl, wys = dlog(ugs) = ?y

d(zy)

xy—1
If Wis a word in W = { X34, X45, Xo4, X12, Xo3}* with |W| = n, we will write

ww € Hpr(Mp5)®" the bar symbol [w;, |-+ |wij,]. Note that the elements wy

for W in W are not all in V(M 5) usually, only linear combination of such symbols
are in V(Mo ).

and  waq = dlog(ugy) =

Example 3.9. The elements [wia], [wes] and [wiz|wes] are in V(Mo ) even if
[wi2|was] is not. However [wia|was] + [was|wiz] is in V(Mg 5).

Example 3.43 in [Bro09] (using [Bro09, Thm. 3.38 and Coro. 3.41]) tells us that
the exact sequence

0 — C{(X24, X34, X45)) —> UB5 — C{(X12,X23)) — 0
is dual to the exact sequence
dy dy _xdy
y y—1"2y—1
which comes from the expression, in cubical coordinates, of the map Mg s — My 4
which forgets the 4Th point. Thus, the identification

UBs ~ C((X24, X34, Xu5)) ¥ C((X12,X03))

0— V(Mopa) — V(M) — C( y—0
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is dual (as graded algebra) to
dy dy xdy
v ~V C{(—=,——
(Mo,s) (Mo,1) ® <y’y—1’xy—1
and V(M 5) is the graded dual UB; of UBs.
The graded dual of the free algebra of formal series

R = C{(X34, Xu5, Xo4, X12, X23))

)

is the shuffle algebra
T = @ (CCLJ34 @ (CW45 @ (CWQ4 @ Cwlg @ CCUQg)@n .

n

Let Q be the element in R ® Hfyg (Mo 5) defined by
Q= X112 Q@wig + Xo3 ® wag + X34 ® w3 + Xys @ was + Xog @ wag.

and
Exp(Q) := Z Weww e ROT.
wew
The element Exp(£2) corresponds to the identity of R and encodes the fact that the
dual of a word W is wy. A word W (seen in U*Bj) is written in the basis By as

W= >l whi
bi€By

Duality between R and T and between UB5 and V(Mo 5) tells us that, the basis
B} = (b})p,eB, of V(Mg 5) dual to By is given by

Vby € By bz = Z lb4ﬁwww.
wew

Using the projection R — U5 one can see Exp(Q) in UB5 @ T. Actually, by
duality Exp(Q) lies in UB5 @ V(Mo 5). So, writing each W in the basis By leads
to the following expression of Exp(Q2) in UB5 @ V(Mo 5)

Exp(Q) = > bi®@b; €UB50V(Mogs).
by€By

Thus, Exp(Q) realized the identification between the graded dual of U5 and
V(Moy5) as it was remarked by Furusho in [Fur08]. This discussion can be re-
sumed by the following proposition.

Proposition 3.10. We have a natural identification
U%; =~ V(M075),

U'B: being the graded dual of UBs.
This identification gives a basis Bj of V(My;5) dual to By the basis of UB5
which comes from the identification

UBs5 =~ C((X24, X34, X45)) @ C((X12,X23)).
The basis B = (b})v,en, is explicitly given for all by in the basis By by

(18) bz = Z lb47www.
wew

Let ./\//1-0\5 be the universal covering of My 5. A multi-valued function on My 5

is an analytic function on ./\//lo\,5. Consider the formal differential equation on /\//10\;5

dL = QL
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where L takes values in UBs, its coeflicients being multi-valued functions on My 5.
As in the case of the equation (KZ)), if we fix the value of L at some point of Mg 5
or its asymptotic behavior at a tangential based points, the solution is unique.

The irreducible components of Mg 5 are in one to one correspondence with the
2-partitions of {z1, 22, 23, 24, 25} and will be denoted as z;, zi,|2i,2i, 75 We will
here only consider the following components Dso = 2122|232425, D13 = 2223|242521,
Doy = 2324252122, D35 = z425|212223, Da1 = 2521|222324 (we may use the con-
vention D;; = Dj;). One remarks that those components are given by a partition
that respect the dihedral structure § and the numbering D;; is coherent with the
notation of [Bro09]. The divisors D;; are given in the dihedral coordinates by
u;; = 0. Following Brown, we have 5 tangential based points (corresponding to the
intersection of 2 irreducible components) given by the triangulation of the polygon
corresponding to J ; as we are working in Mg s the polygon is a pentagon and
a triangulation is given by two chords going out from a single vertex so one can
number the triangulation by the number of its vertex, precisely one has

P3 = D35 N Das, Py = D3N Dy, Py = Dy N Doy,
P2:D24ﬂD52, and P5:D52ﬂD35.
Let L; be the normalized solution at P; (see [Bro09] Theorem 6.12).
Now, let’s fix a basis B = (b)yep of UB5 and its dual basis B* = (b*)pep
in V(Mpn,,5). The description of the situation in dimension 1 and section 5.2 in

[Bro09] shows that Theorem 6.27 of Brown’s article that [Bro09| can been rewritten
as follow.

Proposition 3.11. For any tangential based point, P;, one can write L;(z) as

Vee Mos Li(z) = Z(/ b*)b
beB 7
where v is a path from P; to z and where iterated integrals are reqularised iterated
integrals.

Comparison of two different normalized solutions at two different based points
P; and P; is then given by

Vze Mos  Li(z) = L(2) (Z (L b*) b)

beB
where 7 is any path going from P; to P; homotopically equivalent to a path 4" going
from P; to P; in the standard cell of M, 5(R).

Brown shows how to restrict any element w in B(Mg ) to any boundary com-
ponents D introducing a regularisation map Reg(w, D) that send each duu—;] to 0 if
Uij =0or lf’u” =1lonD.

Proposition 3.12. For any two consecutive tangential based points P; and P; with
j =2 i—2 mod 5, one has

Vze Mos  Li(z) = Li(2) (Z (/ Reg(b*,Dji)> b)

beB
where pj; s the real segment going in Dj; from P; to P;.
Proof. The symmetry of the situation allows us to prove it only in the case where
i =25, 7 =3 and B is the basis By.
Let p35 be the path in D35 going from P; to P3, we need to show that

(19) L) L) = X ( /| Reg(t3. Das) ) .

bi€By
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Brown, in [Bro09, Definition 6.18], defined Z35 to be the quotient Lg(z)~Ls(2).
Using the proof of Theorem 6.20 in [Bro09], we have

dt dt
Z35 L 71L E / Ce W
3(2) 5(2) ( pt—En/\ /\t—€1

W=Xi jn - Xiyi
€{X12,X23}

with e, = 0if 4y = 1 (and jr = 2)) and e, = 1 otherwise (that is, i, = 2 and
jr = 3). Using the morphism py : UB5 — UF2 that send X4 to 0, X712 to Xg and
Xo3 to X7, we have:

R C D SR P L

W=Xip jn = Xigjy
€{X12,X23}

We recall that an element b; of the basis By is either 1 or a monomial of the
form

(20) by = Uz45V123 Uaas € { X4, X34, Xa5}",  Vigg € { X2, Xos}".
So, in order to prove (I9), it is enough to prove that:

e All the iterated integrals fp35 Reg(b}, Dss5) for by = UaysVi23 with Uags not
empty vanish :

/ Reg(by, D3s) =0 & by = UaysVi23

P35

with Usss € {Xo4, X34, Xus5}*,  Usas # 0.
e All the iterated integrals fpsr Reg(b}, D35) for by = Va3 are equals to

/wm(Vle) :/wp4(b4)'
p p
That is:

/ Reg(by, D3s) = /wp4(b4) & by = Vigz € {X12, Xo3}”

P35 p
One computes that
Reg(ugs, D3s) =t,  Reg(us,D3s) =1—1
and Reg(u;j, D3s) = 0 or 1 otherwise.
Thus, we have
dt dt
Reg(wi2, D35) = - Reg (w3, D35) = =1
and Reg(w;;, Dss) = 0 otherwise.
It is now enough to show that for by in By
e by is a word in the letter X312 and Xos (that is by € {X12, Xo3}*) if and
only if
bz = Wp, with b, € {Xlg,X23}*
(= [Winjnllwinj ] with X, 5, € {X12, X23})

e b, contains some X;; with ¢ = 4 or j = 4 if and only if
by = Awwwr  (Aws #0)
such that VW’ W/ ¢ {X12, ng}*.

That is, if and only if b} is a linear combination of bar symbol > Apwy
(Aw+ # 0) with W' containing at least one of the letters Xsq, X45, Xo4.
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Using equations (20) and (I8) that describe respectively by and b}, one sees that
Equation ([[9) (and thus the proposition) follows directly from the relation defining
U'Bs. O

From the previous proposition we deduce immediately the following corollary.
Corollary 3.13. For any path -y in the standard cell homotopically equivalent to
pji j=1—2 mod 5 (1<14,j<5)we have

Yw € V(Mo,s) /w :/ Reg(w, Dj;).
v Pji

Let v = p35 0 p52 0 p2g 0 pg1 0 P13 denote the composed path beginning and ending
at P5 and extending the map Reg(w, ) to paths that are piecewise in some on the
divisor D;.

Theorem 3.14. The relation (Ulgyz) s equivalent to the family of relations
Vby € By, by # 1 /Reg(bz,v) =0
v

which is exactly the family (II)).
Proof. For i in {1,2,3,4,5} and j =i — 2 mod 5, we define Z’¢ by the formula

7 = Re (b*,Dﬁ)> b )
<b4€ZB4 </p” o )

By Proposition B.I2] one has
Ve Mos  Li(z) = Lj(2)Z7".

Comparison between the 5 normalized solutions L; at the 5 tangential based
points P; gives

(21) Ve Mos  Ls(z) = Ls(2) 23525274 741 213,

In the proof of Theorem 6.20 [Bro09] and in the example which follows it, Brown
proves that the product of the Z7¢ is equal to the L.H.S (that is the product of the

D) of (Igz). So, Equation ([IIxz)) can be written as
235Z52224Z41213 =1.
It can also be proved directly using Proposition [3.12]
Equation (2] is given by the analytic continuation of the solution Ls along any
path in the standard cell beginning and ending at P3 and going through P;, Py,

P, and Ps (in that order). Such a path is homotopically equivalent to v (and to 0)
and the product of the Z7* can be written as

235Z52224Z41213 _ Z (/ bz) b4.
Y

bi€By

As 7y is homotopically equivalent to 0, each of the homotopy invariant regularised
iterated integrals above are 0 (except for by = 1). Thus, the product

Z35Z52Z24Z41Z13

is equal to 1. We deduce from the previous discussion that the family of relation
Vby € By, by 7é 1 /Reg(bj,’y) =0
¥

implies relation ([ITxz). Moreover, one deduces from the equation

Z35Z52Z24Z41Z13 — Z </ bZ) b4.
Y

bi€By
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that relation ([TIxz)) (which says that the product of the Z7¢ is 1) implies

Vby € By, by # 1 /Reg(bz,v) =0.
v

The first part of the theorem is then proved.
Using the expression of b} in terms of wyy, the end of the theorem follows from
Proposition [3.16] ([l

From the previous theorem, one deduces the following corollary.

Corollary 3.15. For any basis B of UBs, the pentagon relation (Ilgz)) is equiv-
alent to

Vb e B /Reg(b*,v) =0
gl
where v, as previously, is the path = pss © ps2 © P24 © P41 © P13.

Following the proof of B.12, one proves Proposition B.16 that end the proof of
Theorem B.14

Proposition 3.16. For any bar symbol wy dual to a word W in the letters Xsq,
X45, X24, X12, X23, we have

Cswkz :/Reg(ww,v)
Y

where Cs w, Kk z s the coefficient Cs w defined in @) in the particular case of the
Drinfel’d associator @k 7.

Proof. To show the proposition, it is enough, using the decomposition of v = p35 o
P52 © P24 © Pa1 © P13, to show that, for any U in {X34, X45, X24, X12, X23}* and any
i, one has

(-6 (1)) = [ Reglen )

where Is = p13, Iy = pa1, Is = pag, Io = pss and 11 = p3s.
As Reg(wii, Ii) = wp,(x,,), the corollary follows. O

4. APPENDIX

Here one can find the explicit relations given by the pentagon equation [[IIxz] in
low degree. Writing the product

D7 (X2, Xo3)Pr 7 (X34, Xa5)Pr 2 (X51, X12) P 7(X23, X34)
Dz (Xas, X51) = Z Ch, by
by

in the basis By the following tables give the relation Cp, = 0 in terms of regularised
multiple zeta values.

4.1. Degree 1, 2 and 3. In degree 1 the basis is given by the letters X34, Xys,
X4, X12 and Xa23. The corresponding relations (equivalent to ([IIxz))) are given
in Table [l below.

In degree 2 the basis By is given by 19 monomials but we have only 4 multiplica-
tive generators and the corresponding relations are given in Table In degree 3
there are 10 multiplicative generators and the corresponding relations are given in
Table Bl and Table @ We have written in bold the particular monomial whose dual
are multiplicative generator of V(M 5)).

In degree 4 and 5 the family of relation equivalent to [[IIxz] can be found on the
web page of the author together with the sources of the Mathematica code.



2 ISMAEL SOUDERES
Monomial Dual bar Relations
symbol
Xi,2 [w1,2] " (Xo) = ¢"(X1) =0
Xo3 [w2,3] 2(¢™ (Xo) —¢" (X1)) =0
X24 [w2,4] ¢" (Xo) —¢" (X1) =0
X34 [w3,4] 2(¢"(Xo) = ¢" (X1)) =0
Xas [wa,5] " (Xo) = ¢"(X1) =0
TABLE 1. Explicit set of relations equivalent to in degree 1
Monomial Dual bar symbol Relations
Xo4Xus —[w1,2|wa,4] + [w2,4|wa 5] " (Xo) ¢" (X1) — ¢ (X1)2=0
X24X34 —[w1,2|w2,4] + [w2,3]w2,4] —("™ (X0) 2+ ¢"™ (X1) ¢™ (Xo) —
— [w2,3|ws 4] + [w2,4]ws 4] 2¢™ (X1) % + ("™ (X0 Xo) +
¢ (XoX1) +¢" (X1 Xo) +
™ (X1X1) =0
X3.4X45 [ws,4]wa,5] 20™ (Xo)* — (™ (Xl) ¢" (Xo) —
" (XoX1) — (" (X1 X0) =0
X1,2X23 [w1,2|wa,3] ¢"™ (Xo0)? = 2¢™ (X1) ¢™ (Xo) +

¢"(X1)? = " (XoX1) —
" (X1X0)=0

TABLE 2. Explicit set of relations equivalent to in degree 2
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Monomial Relations
X24X23X1 2 —2¢" (X0 X0X1) — (" (X0X1X0) =0
X3,4X23X1 2 —2¢" (X0 X0X1) — (" (XoX1X0) =0
X04X34X04 2¢" (XoXoX1) + (" (XoX1X0) =0
X34X24X23 —2¢" (X0 XoX1) — 2¢™ (X0 X1 Xo) — 2¢™ (X1 X0X0) =0
X24X12X23 —(" (X0 X1 X0) — 2¢" (X1 X0X0) =0
X3,4X12X03 —(" (XoX1X0) — 2¢" (X1X0X0) =0
X24X24X1 2 =" (X0 XoX1) — (" (XoX1Xo) — (" (X1 X0Xo) =0
X34X23X23 =" (XoXoX1) — (" (XoX1X0) — (" (X1X0X0) =0
X3,4X24X24 —(" (XoXpX1) — (" (X0X1Xp) — (" (X1X0Xp) =0
X34X34X1 2 =" (XoXoX1) — (" (XoX1Xo) — (" (X1 X0X0) =0
Xu5X45X23 —(" (X0X0X1) — ™ (XoX1X0) — ¢™ (X1 X0X0) =0
X1,2X23X2 3 " (XoX1Xy1) — (" (X1XeXp) =0
X903 X12X12 " (XoX1X71) — " (X1 X0X0) =0
X3,4X45X45 " (XoX1X1) — (" (X1X0Xp) =0
Xa5X24X2 4 " (XoX1Xy) — (" (X1XeXp) =0
X45X34X34 " (XoX1X71) — " (X1 X0X0) =0
X24X24X34 " (X1 X0X0) — (" (X0X0X1) =0
X24X34X23 2¢" (X0 X0X1) 4+ 2¢" (X0 X1X0) + 2¢™ (X1 X0Xo) =0
X12X23X1 2 " (X1 X0X1) — ™ (XoX1X0) =0
X23X1,2X23 " (X1 XoX1) — (" (XoX1X0)=0
X0 4X45X04 " (X1 XoX1) — (" (X0X1X0) =0
X3.4X45X34 " (X1 X0X7) — ¢™ (XoX1X0) =0
Xa5X34X45 " (X1 XoX1) — (" (XoX1X0) =0
Xa5X34X23 2¢C" (Xo X1 X1) + (" (X1 X0X1) =0
Xu5X24X23 —(" (X0 X1X0) +2¢™ (X0 X1 X1) — 2¢" (X1 X0X0)
+¢" (X1 XoX1) =0
X45X94Xy5 —(" (X0 X1X0) —2¢" (X1 X1 X0) =0
Xa5X24X34 —(" (X0 X1X0) + ™ (XoX1X1) — ¢™ (X1 X0X0)
20" (X1 X1 X0) = 0
XouXy5X12 —(" (X1 X0X1) —2¢" (X1 X1 X0) =0
X3,4X24X34 —2¢" (XoX0X1) — (" (XoX1X0) — (" (X1 X0X1)

—2(™ (X1 X1X0) =0

TABLE 3. Explicit set of relations equivalent to in degree 3
where we already have used the relations ¢(™(X%) = ¢(™(XF) = 0.
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Monomial Relations
X24X34X12 =" (XoXoX1) — (" (XoX1X0) — (" (X1 X0X0)
—(" (X1 X0X1) —2¢" (X1 X1X0) =0
X3.4X04Xu5 " (X1 X0X0) — (" (X1 X1X0) =0
X1,2X1,2X2 3 " (X1X1Xg) — (" (XoXeX1) =0
X23X23X12 ¢ (X1 X1 X0) — (" (XoX0X1) =0
X3,4X3.4X4.5 " (X1X1Xp) — (" (XoX0X1) =0
Xa5X45X24 " (X1 X1 Xp) — (" (XoXoX1) =0
Xu5X45X34 ¢ (X1 X1 X0) — (" (XoX0X1) =0
X45X34X24 " (XoX1X0) +¢" (XoX1X1) +¢" (X1 X1X0) =0
X24X45Xy5 " (X1X1Xp) — (" (X1XeXp) =0
Xo4X24X45 ¢ (XoX1X0) + ¢" (X1 X0X0) + ¢ (X1 X1 X0)=0
X2,4X34X34 " (XoXoX1) + ¢" (XoX1Xg) — (" (XoX1X1)
+¢" (X1X0Xo) + (" (X1 X1Xo) =0
X04X12X1 2 " (XoX1X7) +¢™ (X1 X0X1) +¢™ (X1 X1X0) =0
X34X12X12 ¢ (XoX1X7) +¢" (X1 X0X1) +¢" (X1 X1X0) =0
X34X34X23 ¢ (XoX1X1) + " (X1 XoXq) + (" (X1 X1 X0) =0
X45X23X23 ¢ (XoX1X1) + (" (X1 XoX1) + (" (X1 X1 X0) =0
X3,4X45X24 —(" (X0X1X0) — (" (X1 X0X0) + (" (X1X0X1)
+¢" (X1 X1Xo) =0
X3.4X34X24 " (XoX0X1) +¢™ (X0 X1X1) — ¢™ (X1 X0X0)
+C™ (X1 X0 X1) + (" (X1 X1 X) =0
X24X45X34 ™ (X1X0Xo) + ¢ (X1X0X1) + ¢ (X1X1Xp) =0
X24X34X4 5 " (XoX1Xp) +2¢" (X1X1X) =0
X3.4X45X23 ¢ (X1 XoX1) +2¢" (X1 X1X0) =0
X4 5X94X1 2 ¢ (X1 XoX1) +2¢" (X1 X1 Xp) =0
X3.4X24X12 —(" (X0X0X1) — " (X0 X1Xo) — (" (X1 X0X0)
+C™ (X1 X0X1) +2¢" (X1 X1 X0) =0
X24X45X23 " (XoX1X0) +2¢™ (X1 X0X0) + ¢ (X1 X0X1)

+2¢™ (X1 X1X0) =0

TABLE 4. Explicit set of relations equivalent to [[IIkz] in degree 3
where we already have used the relations (™ (X%) = (™ (XF) = 0.
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