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EXPLICIT ASSOCIATOR RELATIONS FOR MULTIPLE ZETA

VALUES

ISMAEL SOUDÈRES

Abstract. Associators were introduced by Drinfel’d in [Dri91] as a mon-
odromy representation of a Knizhnik-Zamolodchikov equation. Associators
can be briefly described as formal series in two non-commutative variables
satisfying three equations. These three equations yield a large number of al-
gebraic relations between the coefficients of the series, a situation which is
particularly interesting in the case of the original Drinfel’d associator, whose
coefficients are multiple zetas values. In the first part of this paper, we work
out these algebraic relations among multiple zeta values by direct use of the
defining relations of associators. While well-known for the first two relations,
the algebraic relations we obtain for the third (pentagonal) relation, which are
algorithmically explicit although we do not have a closed formula, do not seem
to have been previously written down. The second part of the paper shows
that if one has an explicit basis for the bar-construction of the moduli space
M0,5 of genus zero Riemann surfaces with 5 marked points at one’s disposal,
then the task of writing down the algebraic relations corresponding to the pen-
tagon relation becomes significantly easier and more economical compared to
the direct calculation above. We discuss the explicit basis described by Brown
and Gangl, which is dual to the basis of the enveloping algebra of the braids
Lie algebra, UB5.

In order to write down the relation between multiple zeta values, we then
remark that it is enough to write down the relations associated to elements
that generate the bar construction as an algebra. This corresponds to looking
at the bar construction modulo shuffle, which is dual to the Lie algebra of
5-strand braids. We write down, in the appendix, the associated algebraic
relations between multiple zeta values in weights 2 and 3.
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1. Introduction

In the first part of this introduction we recall the necessary definitions concern-
ing associators, and in the second part, we recall the definitions and main result
concerning multiple zeta values. In the third part, we give the outline of the paper
and state the main results.

1.1. Associators. Let k be a field of characteristic 0. Let UF2 = k〈〈X0, X1〉〉 be
the ring of formal series over k in two non-commutative variables. The coproduct
∆ on UF2 is defined by

∆(X0) = X0 ⊗ 1 + 1⊗X0 ∆(X1) = X1 ⊗ 1 + 1⊗X1.

An element Φ = Φ(X0, X1) ∈ UF2 is group-like if it satisfies ∆(Φ) = Φ⊗̂Φ where
⊗̂ denotes the complete tensor product.

Remark 1.1. We remark that the constant term of a group-like element is 1.

Definition 1.2. If S is a finite set, let S∗ denote the set of words with letters in
S, that is the dictionary over S. If S = {s1, . . . , sn} we may write, {s1, . . . , sn}∗.

Let W0,1 be the dictionary over {X0, X1}.

We remark that the monomial in UF2 are words in W0,1; the empty word ∅ in
W0,1 will be 1 by convention when considered in UF2. The following definition
allows us to define a filtration on UF2.

Definition 1.3. The depth dp(W ) of a monomial W ∈ UF2, that is an element of
W0,1, is the number of X1, and its weight (or length) wt(W ) = |W | is the number
of letters.

The algebra UF2 is filtered by the weight, and its graded pieces of weight d are
the subspaces generated by the monomial of length d; UF2 is thus a graded algebra.

Let UB5 be the enveloping algebra of B5, the completion (with respect to the
natural grading) of the pure sphere braid Lie algebra; that is, UB5 is the quotient
of C〈〈Xij〉〉 with 1 6 i 6 5 and 1 6 j 6 5 by the relations

• Xii = 0 for 1 6 i 6 5,
• Xij = Xji for 1 6 i, j 6 5,

•
5∑

j=1

Xij = 0 for 1 6 i 6 5,

• [Xij , Xkl] = 0 if {i, j} ∩ {k, l} = ∅.

Definition 1.4 (Drinfel’d [Dri91]). A group-like element Φ in UF2, with zero
coefficient in degree 1, together with a µ ∈ k∗ is an associator if it satisfies the
following equations

Φ(X0, X1)Φ(X1, X0) = 1(I)

e
µ
2 X0Φ(X∞, X0)e

µ
2 X∞Φ(X1, X∞)e

µ
2 X1Φ(X0, X1) = 1 with X0 +X1 +X∞ = 0

(II)

Φ(X12, X23)Φ(X34, X45)Φ(X51, X12)Φ(X23, X34)Φ(X45, X51) = 1 in UB5

(III)
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We will write an associator as

Φ(X0, X1) =
∑

W∈W0,1

ZWW = 1 +
∑

W∈W0,1

W 6=∅

ZWW,

as Z∅ = 1 because Φ is group-like.

In [Dri91], Drinfel’d gives an explicit associator ΦKZ over C, known as the Drin-
fel’d associator and associated to a Knizhnik-Zamolodchikov equation (KZ equa-
tion). More precisely, consider the KZ equation (see also [Fur03][§3]).

∂g

∂u
=

(
X0

u
+

X1

1− u

)

· g(u)(KZ)

where g is an analytic function in one complex variable u with values in C〈〈X0, X1〉〉
(analytic means that each coefficient is an analytic function). This equation has
singularities only at 0, 1 and ∞. The equation (KZ) has a unique solution on
C = C\ (]−∞, 0]∪ [1,∞[) having a specified value at a given point in C, because C
is simply connected. Moreover, at 0 (resp. 1), there exists a unique solution g0(u)
(resp. g1(u)) such that

g0(u) ∼ uX0 (u → 0)
(
resp. g1(u) ∼ (1− u)X1 (u → 1)

)
.

As g0 and g1 are invertible with specified asymptotic behavior, they must coincide
up to multiplication on the right by an invertible element in C〈〈X0, X1〉〉.

Definition 1.5. The Drinfel’d associator 1 , ΦKZ , is the element in C〈〈X0, X1〉〉
defined by

g0(u) = g1(u)ΦKZ(X0, X1).

In [Dri91], Drinfel’d proved the following result.

Proposition 1.6. The element ΦKZ is a group-like element and it satisfies (I),
(II) with µ = 2iπ, and (III) of definition 1.4. That is,

ΦKZ(X0, X1)ΦKZ(X1, X0) = 1(IKZ)

(IIKZ) eiπX0ΦKZ(X∞, X0)e
iπX∞ΦKZ(X1, X∞)eiπX1ΦKZ(X0, X1) = 1

with X0 +X1 +X∞ = 0

(IIIKZ) ΦKZ(X12, X23)ΦKZ(X34, X45)ΦKZ(X51, X12)ΦKZ(X23, X34)

ΦKZ(X45, X51) = 1 in UB5

1.2. Multiple zeta values. For a p-tuple k = (k1, . . . , kp) of strictly positive
integers with k1 > 2, the multiple zeta value ζ(k) is defined as

ζ(k) =
∑

n1>...>np>0

1

nk1
1 · · ·n

kp
p

.

Definition 1.7. The depth of a p-tuple of integers k = (k1, . . . , kp) is dp(k) = p,
and its weight wt(k) is wt(k) = k1 + · · ·+ kp.

To the tuple k, with n = wt(k), we associate the n-tuple:

k = ( 0, . . . , 0
︸ ︷︷ ︸

k1−1 times

, 1, . . . , 0, . . . , 0
︸ ︷︷ ︸

kp−1 times

, 1) = (εn, . . . , ε1)

1In [Dri91], Drinfel’d actually defined φKZ rather than ΦKZ , where φKZ (X0,X1) =

ΦKZ ( 1

2iπ
X0,

1

2iπ
X1) and is defined via the KZ equation ∂g

∂u
= 1

2iπ

(

X0
u

+ x1
1−u

)

· g(u)
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and the word in {X0, X1}∗

Xεn · · ·Xε1 .

This makes it possible to associate a multiple zeta value ζ(W ) to each word W in
X0{X0, X1}X1 (where W begins with X0 and ends with X1).

Following Kontsevich and Drinfel’d, one can write the multiple zeta values as a
Chen iterated integral [Che73]

ζ(k) =

∫ 1

0

(−1)p
du

u− εn
◦ · · · ◦

du

u− ε1
.

Note that, as k1 > 2, we have εn = 0. This expression as an iterated integral leads
directly to an expression of the multiple zeta values as an integral over a simplex

ζ(k) =

∫

∆n

(−1)p
dt1

t1 − ε1
∧ · · · ∧

dtn
tn − εn

where ∆n = {0 < t1 < . . . < tn < 1}.
Thanks to the work of Ecalle, Zagier, Ihara, Kaneko or Furusho we can extend the

definition of multiple zeta values to tuples without the condition k1 > 2 (see [Rac02],
[IKZ06] or [Fur03]). These extended multiple zeta values are called regularized
multiple zeta values and we speak of regularizations. We will be interested in a
specific regularization, the shuffle regularization.

Definition 1.8 (Shuffle product). A shuffle of {1, 2, . . . , n} and {1, . . . ,m} is a
permutation σ of {1, 2, . . . , n+m} such that :

σ(1) < σ(2) < · · · < σ(n) and σ(n+ 1) < σ(n+ 2) < · · · < σ(n+m).

The set of all the shuffles of {1, 2, . . . , n} and {1, . . . ,m} is denoted by sh(n,m)
Let V = Xi1 · · ·Xin and W = Xin+1 · · ·Xin+m

be two words in W0,1. The shuffle
of V and W is the collection of words

sh(V,W ) = (Xi
σ−1(1)

Xi
σ−1(2)

· · ·Xi
σ−1(n+m)

)σ∈sh(n,m).

Working in C〈〈X0, X1〉〉, we will also consider the sum

V xW =
∑

U∈sh(V,W )

U =
∑

σ∈sh(n,m)

Xi
σ−1(1)

Xi
σ−1(2)

· · ·Xi
σ−1(n+m)

and extend the shuffle product x by linearity.

Definition 1.9. The shuffle regularization of the multiple zeta values is the col-
lection of real numbers

(
ζx(W )

)

W∈W0,1
such that:

(1) ζx(X0) = ζx(X1) = 0,
(2) ζx(W ) = ζ(W ) for all W ∈ X0W0,1X1,

(3) ζx(V )ζx(W ) =
∑

U∈sh(V,W )

ζx(U) for all V,W ∈ W0,1

These regularized multiple zeta values for words not in X0W0,1X1 are in fact
linear combinations of the usual multiple zeta values, as has been shown explicitly
by Furusho in [Fur03].

The coefficients of the Drinfel’d associator can be written in an explicit way using
convergent multiple zeta values [Fur03].

Proposition 1.10. Using the shuffle regularization we can write ([LM96], [Fur03])

ΦKZ(X0, X1) =
∑

W∈W0,1

(−1)wt(W )ζx(W )W.
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1.3. Main results. In Theorem 2.2 and Theorem 2.8 we will give explicit relations
between the coefficients of the series defining an associator Φ equivalent to the
relation (I) and (II) satisfied by Φ. Both were well-known as it is easy to expand
the product of the associators in UF2 even if the author do not known whether
the relations of Theorem 2.8 have been written in the literature. In the case of
the pentagon relation (III), writing down relations between the coefficients implies
fixing a basis B of UB5. Even if fixing such a basis breaks the natural symmetry
of the pentagon relation (III), it is then possible to write a new family of relations
between the coefficients of Φ equivalent to (IIIKZ). More precisely, decomposing a
word W in the letters X3,4, X4,5, X2,4, X1,2, X2,3 in the basis B we have

W =
∑

b∈B

lb,W b,

and we have the following theorem.

Theorem (Theorem 2.12). The relation (III) is equivalent to the family of relations

∀b ∈ B (b 6= 1)
∑

W∈{X3,4,X4,5,X2,4,X1,2,X2,3}∗

lb,WC5,W = 0

where the C5,W are explicitly given by :

C5,W =
∑

U1,...,U5∈W
U1···U5=W

Zρ1(U1)Zρ2(U2)Zρ3(U3)Zρ4(U4)Zρ5(U5).

Applying this theorem to the particular basis B4 coming from the identification

UB5 ≃ k〈〈X3,4, X4,5, X2,4〉〉⋊ k〈〈X1,2, X2,3〉〉,

one can compute the coefficients lb,W using the equation defining UB5. In particular
it is easy to see that lb,W is in Z in that case.

After each family of relations between the coefficients, we apply our results to
the particular case of the Drinfel’d associator and give the corresponding family
between multiple zeta values ((3), (8) and(11)).

In Section 3 of the article, we explain how these families of relations between
multiple zeta values are induced by iterated integrals on M0,4 and M0,5 using the
bar construction studied by Brown in [Bro09]. The geometry of M0,5 allows us in
Proposition 3.15 to interpret the coefficients C5,W using iterated integrals.

Proposition (Proposition 3.15). For any bar symbol ωW dual to a word W in the
letters X34, X45, X24, X12, X23, we have

C5,W =

∫

γ

Reg(ωW , γ)

where Reg(ω,D) is the regularisation of a bar symbol in ⊕H1(M0,5)
⊗n along bound-

ary components D ⊂ ∂M0,5.

This is a consequence of Theorem 3.13 which links the family of relations (11)
to the bar construction.

Theorem (Theorem 3.13). The relation (IIIKZ) is equivalent to the family of re-
lations

∀b4 ∈ B4

∫

γ

Reg(b∗4, γ) = 0

which is exactly the family of relations (11). Here (b∗4)b4∈B4 denotes the basis in
V (M0,5), the bar construction on M0,5, dual to the basis B4 of UB5 described
earlier.
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More generally, we then have that, for any basis F = (f)f∈F on V (M0,5), the
pentagon relation (IIIKZ) is equivalent to

∀f ∈ F

∫

γ

Reg(f, γ) = 0.

Brown, Gangl and Levin in [BGL10] obtain, using different methods and for
another purpose, the same basis B∗

4 of V (M0,5) which is described there using
combinatorial objects, that is the maximal triangulations of root decorated poly-
gons.

Instead of looking all the elements of a basis F of V (M0,5), it is enough to
consider only a subbasis that generates V (M0,5) as a shuffle algebra. Indeed, if
ω in V (M0,5) is equal to f1 x f2, the iterated integral

∫

γ
ω is equal to

∫

γ
f1
∫

γ
f2.

Thus it does not give a new relation between multiple zeta values. Considering
a set of generators of the shuffle algebra leads to computing many less relations.
In degree 2 and 3 we have respectively 4 and 10 generators instead of 19 and 65
elements in the vector space basis. In the appendix, we will give these relations in
degree 2 and 3 using the basis B4.

The multiplicative generators that we have found dont have a particularly simple
expression in terms of symbols ωW dual to words W in the letters X34, X45, X24,
X12, X23. But it seems to be linked with our particular choise of indentification.
The identification

UB5 ≃ k〈〈X3,4, X1,4, X2,4〉〉⋊ k〈〈X1,2, X2,3〉〉

leads to another basis B̃4 of UB55. Then, multiplicative generators can be found
with a particularly simple expression in terms of symbols ωW dual to words W in
the letters X34, X14, X24, X12, X23. More precisely, writing such a word W as

W =
∑

b̃4∈B̃4

lb̃4,W b̃4,

we can write b̃∗4 =
∑

W lb̃4,WωW . The generators are elements b̃∗4 such that the
number of lb̃4,W is as minimal as possible. This seems to be a general fact.

2. Combinatorial description of associators relations

The goal of this section is, for any associator and for the particular case of ΦKZ ,
to give an explicit expression for the relations between the coefficients derived from
the associator relations (I), (II) and (III). For each of these relations, we will first
study the case of a general associator and then deduce, for the Drinfel’d associator,
relations between the regularized multiple zeta values. Let

Φ =
∑

W∈W0,1

ZWW

be an associator. The idea will be to expand the product in the right hand side of
the equations (I), (II) and (III) in a suitable basis of the space UF2 or UB5.

2.1. The symmetry, (I) and (IKZ). Let P2 be the product Φ(X0, X1)Φ(X1, X0).
As the monomials in UF2, that is words in W0,1, form a basis of UF2, we can write
P2 as

P2 =
∑

W∈W0,1

C2,WW = 1 +
∑

W∈W0,1,W 6=∅

C2,WW.

The relation (I) tells us that for each W ∈ W0,1, W nonempty, we have

(1) C2,W = 0.

Example 2.1. In low degree we have the following relations:
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• In degree one, there are just 2 words : X0 and X1 and (1) gives:

C2,X0 = ZX0 + ZX1 = 0

C2,X1 = ZX1 + ZX0 = 0

• In degree two there are 4 words X0X0, X0X1, X1X0 and X1X1 and (1)
gives:

C2,X0X0 = ZX0X0 + ZX0ZX1 + ZX1X1 = 0

C2,X0X1 = ZX0X1 + ZX0ZX0 + ZX1X0 = 0

C2,X1X0 = ZX1X0 + ZX1ZX1 + ZX0X1 = 0

C2,X0X0 = ZX1X1 + ZX1ZX0 + ZX0X0 = 0

• In degree three there are 8 words. Looking at the coefficients of the words
X0X0X1 in P2, equation (1) gives:

ZX0X0X1 + ZX0X0ZX0 + ZX0ZX1X0 + ZX1X1X0 = 0

Let θ be the automorphism of UF2 that sends X0 to X1 and X1 to X0. Then
we have:

Theorem 2.2. The relation (I) is equivalent to the family of relations

(2) ∀W ∈ W0,1 \ {∅},
∑

U1,U2∈W0,1

U1U2=W

ZU1Zθ(U2) = 0.

Proof. As Φ(X1, X0) = θ(Φ(X0, X1)), we have

Φ(X1, X0) = θ






1 +

∑

W∈W0,1

W 6=∅

ZWW







= 1 +
∑

W∈W0,1

W 6=∅

ZW θ(W )

= 1 +
∑

W∈W0,1

W 6=∅

Zθ(W )W.

Then, expanding the product P2 and reorganizing, we have

Φ(X0, X1)Φ(X1, X0) =






1 +

∑

U1∈W0,1

U1 6=∅

ZU1U1












1 +

∑

U2∈W0,1

U2 6=∅

Zθ(U2)U2







=
∑

W∈W0,1

W 6=∅







∑

U1,U2∈W0,1

U1U2=W

ZU1Zθ(U2)







W.

�

Corollary 2.3. The relation (IKZ) is equivalent to the family of relations

∀W ∈ W0,1,
∑

U1,U2∈W0,1

U1U2=W

(−1)dp(U1)ζx(U1)(−1)dp(θ(U2))ζx(θ(U2)) = 0,(3)

that family being equivalent to the following

∀W ∈ W0,1,
∑

U1,U2∈W0,1

U1U2=W

(−1)|U2|ζx(U1)ζ
x(θ(U2)) = 0.(4)
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2.2. The 3-cycle or the hexagon relation, (II) and (IIKZ). For any element
P =

∑

W∈W0,1
aWW in UF2, let C0,1(P |W ) be the coefficient aW of the monomial

W .
Let P3 be the product

P3 = e
µ
2 X0Φ(X∞, X0)e

µ
2 X∞Φ(X1, X∞)e

µ
2 X1Φ(X0, X1).

We can write P3 as

P3 =
∑

W∈W0,1

C0,1(P3|W )W =
∑

W∈W0,1

C3,WW.

The relation (II) tells us that for each W ∈ W0,1, W 6= ∅, we have

(5) C3,W = 0.

In order to make these coefficients explicit, we will need some definitions.

Definition 2.4. Let α0 (resp. α1 and α∞) be the endomorphism of UF2 defined
on X0 and X1 by :

α0(X0) = X0 and α0(X1) = 0,

respectively

α1(X0) = 0 and α1(X1) = X1

and

α∞ = −(α0 + α1).

Let α̃i be the composition of αi with X0, X1 7→ 1.

The following proposition is a consequence of the expression of the exponential

∀P ∈ UF2 exp(P ) =
∑

n>0

Pn

n!

and of the equality

(6) (−X0 −X1)
n =

∑

W∈W0,1

|W |=n

(−1)|W |W.

Proposition 2.5. Let W be a word in W0,1, we have

C0,1(e
µ
2 X0 |W ) =

µ|W |

2W |W |!
α̃0(W ),

C0,1(e
µ
2 X1 |W ) =

µ|W |

2W |W |!
α̃1(W ) and

C0,1(e
µ
2 X∞ |W ) = (−1)|W | µ|W |

2W |W |!
.

In order to describe the coefficient of Φ(Xi, Xj), with either one of the variables
being X∞, we introduce a set of different decompositions of W into sub-words.

Definition 2.6. Let W be a word in W0,1. For i ∈ {0, 1}, let dec0,1(W,Xi) be

the set of tuples (V1, X
k1

i , V2, X
k2

i , . . . , Vp, X
kp

i ) with 1 6 p < ∞, Vj ∈ W0,1 and
V2, . . . , Vp 6= ∅ such that

W = V1X
k1

i V2X
k2

i · · ·VpX
kp

i .

We will write (V,k) ∈ dec0,1(W,Xi) instead of (V1, X
k1

i , V2, X
k2

i , . . . , Vp, X
kp

i ) ∈
dec0,1(W,Xi) and |V| (resp. |k||) will denote |V1|+ · · ·+ |Vp| (resp. k1 + · · ·+ kp).
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The following proposition describes the coefficient of W in the series Φ(X0, X1),
Φ(X∞, X0) and Φ(X1, X∞).

Proposition 2.7. Let W be a word in W0,1. We have

C0,1(Φ(X0, X1)|W ) = ZW .

The coefficients C0,1(Φ(X∞, X0)|W ) and C0,1(Φ(X1, X∞)|W ) can be written as

C0,1(Φ(X∞, X0)|W ) =
∑

(V,k)∈dec0,1(W,X0)

(−1)|V|Z
X

|V1|
0 X

k1
1 X

|V2|
0 X

k2
1 ···X

|Vp|

0 X
kp
1

and

C0,1(Φ(X1, X∞)|W ) =
∑

(V,k)∈dec0,1(W,X1)

(−1)|V|Z
X

|V1|
1 X

k1
0 X

|V2|
1 X

k2
0 ···X

|Vp|

1 X
kp
0

.

Proof. The first statement is immediate. Let L2,c(N) denote the set of double p-
tuples ( 0 6 p < ∞) of integers ((l1, . . . , lp), (k1, . . . kp)) with ki, li ∈ N and let (l,k)
denote an element of L2,c(N). We can write Φ(X∞, X0) as

Φ(X∞, X0) =
∑

(l,k)∈L2,c(N)

Z
X

l1
0 X

k1
1 ···X

lp
0 X

kp
1

X l1
∞Xk1

0 · · ·X lp
∞X

kp

0

which equals
∑

(l,k)∈L2,c(N)

Z
X

l1
0 X

k1
1 ···X

lp
0 X

kp
1

(−1)|l|(X0 +X1)
l1Xk1

0 · · · (X0 +X1)
lpX

kp

0 .

Reorganizing, we see that the expression of C0,1(Φ(X∞, X0)|W ) follows from (6);
the case of C0,1(Φ(X1, X∞)|W ) is identical. �

Theorem 2.8. The relation (II) is equivalent to the family of relations

(7) ∀W ∈ W0,1 \ {∅},

∑

W1,...,W6∈W0,1

W1···W6=W

µ|W1|

2|W1||W1|!
α̃0(W1)×







∑

(U,k)∈
dec0,1(W2,X0)

(−1)|U|Z
X

|U1|
0 X

k1
1 ···X

|Up|

0 X
kp
1







(−1)|W3|
µ|W3|

2|W3||W3|!
×







∑

(V,l)∈
dec0,1(W4,X1)

(−1)|V|Z
X

|V1|
1 X

l1
0 ···X

|Vp|

1 X
lp
0







µ|W5|

2|W5||W5|!
α̃1(W5)ZW6 = 0.

Proof. The relation (II) is equivalent to the family of relations

∀W ∈ W0,1 \ {∅} C0,1(P3,W ) = 0.

As P3 is a product of six factors, this is equivalent to

∀W ∈ W0,1 \ {∅}

C0,1(e
µ
2 X0 ,W )C0,1(Φ(X∞, X0),W )·

C0,1(e
µ
2 X∞ ,W )C0,1(Φ(X1, X∞),W )·

C0,1(e
µ
2 X1 ,W )C0,1(Φ(X0, X1),W ) = 0.

The proposition follows, then, from Proposition 2.5 and 2.7. �
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Corollary 2.9. The relation (IIKZ) is equivalent to the family of relations

(8) ∀W ∈ W0,1 \ {∅},

∑

W1,...,W6∈W0,1

W1···W6=W

(iπ)|W1|

|W1|!
α̃0(W1)×







∑

(U,k)
∈dec0,1(W2,X0)

(−1)|W2|ζx(X
|U1|
0 Xk1

1 · · ·X
|Up|
0 X

kp

1 )







(−1)|W3|
(iπ)|W3|

|W3|!
×







∑

(V,l)
∈dec0,1(W4,X1)

ζx(X
|V1|
1 X l1

0 · · ·X
|Vp|
1 X

lp
0 )







(iπ)|W5|

|W5|!
α̃1(W5)(−1)dp(W6)ζx(W6) = 0.

2.3. The 5-cycle or the pentagon relation, (III) and (IIIKZ). In order to
find families of relations between the coefficient equivalent to (I) and (II) we have
decomposed the product P2 and P3 on a basis of UF2, the words in X0 and X1.
We will do the same thing here but the monomial in the variable Xij are not a
linear basis of UB5 because there are relations between the Xij . Using the relation
defining UB5 we can see that X51 = −X12 −X13 −X14 and that

X51 = −X54 −X53 −X52

= 2X23 + 2X24 + 2X34 +X12 +X13 +X14.

Then, as the characteristic of k is zero, we have X51 = X23 +X24 +X34. In this
section, we will expand the product in the R.H.S of III using this relation and then
decompose this product on a linear basis of UB5. Let B denote a linear basis of
UB5 (with 1 being an element of B) and B4 the basis of UB5 coming from the
identification

UB5 ≃ k〈〈X24, X34, X45〉〉⋊ k〈〈X12,X23〉〉.

This identification is induced by the morphism UB5 −→ UF2 that maps Xi4 to
0 (1 6 i 6 5), X12 to X0, X23 to X1, the images of the other generators being
easily deduce from those. The basis B4 is formed by 1 and the monomials, that
is words, U245V123 where U245 is a word in 24W34,45 = {X24, X34, X45}∗ and V123

is in W12,23 = {X12, X23}∗. Speaking of the empty word ∅ in B4, we will mean 1
when seen in UB5 and ∅ when seen as the word.

Let W be the dictionary {X24, X34, X45, X12, X23}
∗, and let 24W

23
34 and 24W

12,23
34

be respectively the sub-dictionary {X23, X24, X34}∗ and {X12, X23, X24, X34}∗.
Let P5 be the product in UB5.

Φ(X12, X23)Φ(X34, X45)Φ(X51, X12)Φ(X23, X34)Φ(X45, X51).

As X51 = X23 +X24 +X34, we can write P5 without using X51

P5 = Φ(X12, X23)Φ(X34, X45)Φ(X23 +X24 +X34, X12)Φ(X23, X34)

Φ(X45, X23 +X24 +X34).

Expanding the terms (X23 +X24 +X34)
n as

∑

W∈24W
23
34

|W |=n

W,
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we have

(9) P5 =
∑

W∈W

C5,WW.

Despite that this writing is not unique as a decomposition of P5 in W ; those C5,W

are the coefficients of a word W just after expanding the product P5 without X51

and as such are unique and well defined.

Lemma 2.10. Let ρ1, ρ2, ρ3, ρ4, ρ5 be the morphisms from UB5 to UF2 defined
respectively on the monomial X24 by, X34, X45, X12, X23 as :

ρ1(X12) = X0, ρ1(X23) = X1, ρ1(X34) = 0, ρ1(X45) = 0, ρ1(X24) = 0,
ρ2(X12) = 0, ρ2(X23) = 0, ρ2(X34) = X0, ρ2(X45) = X1, ρ2(X24) = 0,
ρ3(X12) = X1, ρ3(X23) = X0, ρ3(X34) = X0, ρ3(X45) = 0, ρ3(X24) = X0,
ρ4(X12) = 0, ρ4(X23) = X0, ρ4(X34) = X1, ρ4(X45) = 0, ρ4(X24) = 0,
ρ5(X12) = 0, ρ5(X23) = X1, ρ5(X34) = X1, ρ5(X45) = X0, ρ5(X24) = X1.

Proposition 2.11. For all words W ∈ W (W 6= ∅), the coefficient C5,W is given
by

(10) C5,W =
∑

U1,...,U5∈W
U1···U5=W

Zρ1(U1)Zρ2(U2)Zρ3(U3)Zρ4(U4)Zρ5(U5),

where by convention Z0 = 0.

Proof. It is enough to show that the i-th factor of P5 without using X51 can be
written as

∑

Ui∈W

Zρi(Ui)Ui.

The first, second and forth factor being similar, we will discuss only the first one.
It is clear in the case of Φ(X12, X23) that either U1 is in W12,23 and its coefficient is
then Zρ1(U1) ; or U1 is not in W12,23 and it does not appear in Φ(X12, X23) which
means that its coefficient is 0.

The third and fifth factor are similar and thus we will treat only the former. We
can write Φ(X23 +X24 +X34, X12) as

∑

(l,k)∈L2,c(N)

Z
X

l1
0 X

k1
1 ···X

lp
0 X

kp
1

(X23 +X24 +X34)
l1Xk1

12 · · · (X23 +X24 +X34)
lpX

kp

12 .

We can rewrite the previous sum as running through all the words in the letters
X12, X23, X24 and X34 because (X23 +X24 +X34)

l is equal to
∑

W∈24W
23
34

|W |=l

W.

Using the unique decomposition (as word) of U4 ∈ 24W
12,23
34 as

U4 = V1X
k1
12 · · ·VpX

kp

12 with Vi ∈ 24W
23
34 ,

we see that each word U4 in 24W
12,23
34 appears one and only one time in Φ(X23 +

X24 +X34, X12) with the coefficient Z
X

|V1|
0 X

k1
1 ···X

|Vp|

0 X1
. We finally have

Φ(X23 +X24 +X34, X12) =
∑

U3∈W

Zρ3(U3)U3.

�



12 ISMAEL SOUDÈRES

Fixing a linear basis B of UB5 (1 being an element of the basis) we have for
every W in W a decomposition (in UB5)

W =
∑

b∈B

lb,WB lb,W ∈ k

and then a family of relations equivalent to (III).

Theorem 2.12. The relation (III) is equivalent to the family of relations

∀b ∈ B (b 6= 1)
∑

W∈W

lb,WC5,W = 0

where the C5,W are given by Proposition 2.11.

Proof. As B is a basis, for a given W in W there are only finitely many lb,W that
are non zero. Moreover, as UB5 is a graduated vector space (the grading is given by
the weight, that is the length, of the monomial) with finite dimensional graduated
part, for any b in B there are only finitely many lb,W that are non zero. The product
P5 is equal to

P5 =
∑

W∈W

C5,WW

=
∑

W∈W

C5,W

(
∑

b∈B

lb,WB

)

=
∑

b∈B

(
∑

W∈W

lb,WC5,W

)

B.

The relation (III) tells us that
P5 = 1

which, because 1 is in B, means that C5,∅ = 1 and

∀b ∈ B (b 6= 1)
∑

W∈W

lb,WC5,W = 0.

�

Using the more common basis B4 we have:

Corollary 2.13. The relation (III) is equivalent to the family of relations

∀b4 ∈ B4 (b4 6= 1)
∑

W∈W

lb4,WC5,W = 0

where the C5,W are given by Proposition 2.11.

Remark 2.14. In the case of the basis B4 one can check that the coefficients lb4,W
are in Z.

The previous corollary, applied to the particular case of the Drinfel’d associator
and making explicit the C5,W in terms of multiple zeta values, gives:

Theorem 2.15. With the convention that ζx(0) = 0, the relation (IIIKZ) is equiv-
alent to the family of relations

(11) ∀b4 ∈ B4 (b4 6= 1)

∑

W

lb4,W

(
∑

U1···U5=W

(−1)dp1(U1)+dp2(U2)+dp3(U3)+dp4(U4)+dp5(U5)

ζx(ρ1(U1))ζ
x(ρ2(U2))ζ

x(ρ3(U3)ζ
x(ρ4(U4))ζ

x (ρ5(U5))

)

= 0
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where dpi(U) is the depth of ρi(U) and the words W , Ui are in W.

3. Bar Construction and associator relations

In this section, we suppose that k is C. We review the notion of bar construction
and its links with multiple zeta values. Those results have been shown in greater
generality in [Che73] and [Bro09]. We will recall the Brown variant of Chen’s
reduced bar construction in the case of the moduli spaces of curves of genus 0 with
4 and 5 marked points, M0,4 and M0,5.

3.1. Bar Construction. The moduli space of curves of genus 0 with 4 marked
points, M0,4, is

M0,4 = {(z1, . . . , z4) ∈ (P1)4 | zi 6= zj if i 6= j}/PGL2(k)

and is identified as

M0,4 ≃ {t ∈ (P1) | t 6= 0, 1,∞}

by sending the point [(0, t, 1,∞)] ∈ M0,4 to t.
The moduli space of curves of genus 0 with 5 marked points, M0,5, is

M0,5 = {(z1, . . . , z5) ∈ (P1)5 | zi 6= zj if i 6= j}/PGL2(k)

and is identified as

M0,5 ≃ {(x, y) ∈ (P1)2 |x, y 6= 0, 1,∞ and x 6= y}

by sending the point [(0, xy, y, 1,∞)] ∈ M0,5 to (x, y). This identification can be
interpreted as the composition of

M0,5 // M0,4 ×M0,4

[(z1, . . . , z5)]
�

// [(z1, z2, z3, z5)]× [(z1, z3, z4, z5)]

with the previous identification of M0,4 using the fact that [(0, xy, y,∞)] = [(0, x, 1,∞)].
For M = M0,4 or M = M0,5, Brown has defined in [Bro09] a graded Hopf

k-algebra

(12) V (M) = ⊕∞
m=0Vm(M) ⊂ ⊕∞

m=0 H
1
DR(M)⊗n.

Here V0(M) = k, V1(M) = HDR(M) and Vm(M) is the intersection of the kernel
∧i for 1 6 i 6 m− 1 :

∧i : H
1
DR(M)⊗m // H1

DR(M)⊗m−i−1 ⊗H2
DR(M)⊗H1

DR(M)⊗i−1

νm ⊗ · · · ⊗ ν1
�

// νm ⊗ · · · ⊗ (νi+1 ∧ νi)⊗ · · · ⊗ ν1.

Suppose that ω1, . . . , ωk form a basis of H1
DR(M), then the elements of Vm(M) can

be written as linear combinations of symbols
∑

I=(i1,...,im)

cI [ωim | . . . |ωi1 ],

with cI ∈ k, which satisfies the integrability condition

(13)
∑

I=(i1,...,im)

cIωim ⊗ · · · ⊗ ωij+2 ⊗ (ωij+1 ∧ ωij )⊗ ωij−1 ⊗ · · · ⊗ ωim = 0

for all 1 6 j 6 m− 1.

Definition 3.1. The Brown’s bar construction over M is the tensor product

B(M) = OM ⊗ V (M).
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Theorem 3.2 ([Bro09]). The bar construction B(M) is a commutative graded Hopf
algebra isomorphic to the zeroth cohomology group of Chen’s reduced bar complex
on OM :

B(M) ≃ H0(B(Ω•OM))

Let νm, . . . , ν1 be m holomorphic 1-forms in Ω1(M) the iterate integral of the
word νm · · · ν1,

∫
νm ◦ · · · ◦ ν1, is the application that sends any path γ : [0, 1] → M

to ∫

γ

νm ◦ · · · ◦ ν1 =

∫

0<t1<...<tm

γ∗ν1(t1) ∧ · · · ∧ γ∗νm(tm),

The value is called the iterated integral of νm · · · ν1 along γ. We extend these
definitions by linearity to linear combinations of forms

∑

I cIνim . . . νi1 .
When the iterated integral

∫

γ

∑

I cIνm ◦ · · · ◦ ν1 depends only of the homotopy

class of γ, we say it is an homotopy invariant iterate integral and note it
∫ ∑

cIνm◦
· · · ◦ ν1. Let L(M) denote the set of all the homotopy invariant iterated integral.

Proposition 3.3 ([Bro09]). The morphism ρb,γ defined as

ρ : B(M) // L(M)

∑

I

cI [ωim | · · · |ωi1 ] �

//

∫
∑

I

cIωim ◦ · · · ◦ ωi1

is an isomorphism.

Remark 3.4. In particular for any such γ homotopically equivalent to zero we have
for all

∑

I cI [ωim | · · · |ωi1 ] in V (M) :

∑

I

cI

∫

γ

ωim ◦ · · · ◦ ωi1 = 0

3.2. Bar Construction on M0,4, symmetry and hexagon relations. Here,
we will show how the symmetry relations (IKZ) and the hexagon (IIKZ) relations
are related to the bar construction on M0,4.

First of all we should remark that B(M0,4) is extremely simple.

Proposition 3.5. Let ω0 and ω1 denote respectively the differential 1-form, in
Ω1(M0,4),

dt
t

and dt
t−1 .

Then, any element [ωεn | · · · |ωε1 ] with εi in {0, 1} is an element of V (M0,4).
Moreover, the family of these elements is a basis of V (M0,4).

Sending X0 on w0 and X1 on ω1 gives a one to one correspondence between
words W in W0,1 and the elements of the previous basis of V (M0,4) which is
the dual of UF2. By this correspondence, W = Xεn · · ·Xε1 is send to its dual
W ∗ = ωW = [ωεn | · · · |ωε1 ]

Proof. As ω0 ∧ ω1 = 0 the integrability condition is automatically satisfied and
because (ω0, ω1)the proposition follows. �

Following [Bro09] and considering the three dihedral structure on M0,4, one can

define 6 tangential based points : ~01, ~10, ~1∞, ~∞1, ~∞0 and ~0∞. Let p denote the
path beginning at the tangential based point ~01 and ending at ~10 defined by t 7→ t
and let p−1 denote its inverse t 7→ 1− t. If α and β are two paths in a variety with
α(1) = β(0), β ◦ α will be the composed path beginning with a and ending with b.
Then the iterated integral of ω = ωn · · ·ω1 along β ◦ α is equal to

n∑

k=0

(∫

b

ωn ◦ · · ·ωn−k+1

)(∫

a

ωn−k ◦ · · · ◦ ω1

)
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If γ is a path, starting at a tangential based point ~P (and/or ending at a tangen-

tial based point ~P ′) an iterated integral
∫
ω may be divergent. However, one can

define (as in [Bro09]) a value to that divergent integral ; we speak of regularised
iterated integral. If W is in X0W0,1X1, the iterated integral

∫

p
ωW is convergent

and is equal to (−1)dp(W )ζ(W ). If W is in W0,1 \X0W0,1X1 then the regularised

iterated integral
∫

p
ωW is equal to (−1)dp(W )ζx(W ). We may, thereafter, omit the

term regularised in the expressions “regularised iterated integral ” or “regularised
homotopy invariant iterated integral”.

Theorem 3.6. The relation (IKZ) is equivalent to the family of relation

∀W ∈ W0,1

∫

p◦p−1

ωW = 0

which is exactly the family (3).

Proof. Considering the KZ equation (KZ)

∂g

∂u
=

(
X0

u
+

X1

1− u

)

· g(u)

and the two normalized solutions at 0 and 1, g0 and g1, ΦKZ(X0, X1) is the unique
element in UF2 such that

g0(u) = g1(u)ΦKZ(X0, X1).

Using the symmetry of the situation we also have

g1(u) = g0(u)ΦKZ(X1, X0).

The equation (IKZ) comes from the unicity of such a solution normalized at 1

g1(u) = g1(u)ΦKZ(X0, X1)ΦKZ(X1, X0).

The elements ΦKZ(X0, X1) and ΦKZ(X1, X0) can be expressed using regularised
iterated integrals as

ΦKZ(X0, X1) =
∑

W∈W0,1

(∫

p

ωW

)

W

and

ΦKZ(X1, X0) =
∑

W∈W0,1

(∫

p−1

ωW

)

W.

The product ΦKZ(X0, X1)ΦKZ(X1, X0) is the series

∑

W∈W0,1

(∫

p−1◦p

ωW

)

W.

As the path p−1 ◦ p is homotopically equivalent to 0, all the previous iterated
integrals are 0 and (IKZ) is equivalent to

∀W ∈ W0,1

∫

p◦p−1

ωW = 0.

Lets, now, fix any W = Xεn · · ·Xε1 in W0,1 and compute the regularised iterated
integral

∫

p◦p−1 ωW = 0. We have

∫

p◦p−1

ωW =

n∑

k=0

(∫

p

ωεn ◦ · · · ◦ ωεn−k+1

)(∫

p−1

ωεn−k
◦ · · · ◦ ωε1

)

.

Setting U1 = Xεn · · ·Xεn−k+1
and U2 = Xεn−k

· · ·Xε1 , we have
∫

p

ωεn ◦ · · · ◦ ωεn−k+1
= (−1)dp(U1)ζx(U1).
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As p−1 is given by t 7→ 1 − t we have (p−1)∗(ωε) = ω1−ε for ε = 0, 1 and because
p∗(ωε) = ωε we have
∫

p−1

ωεn−k
◦ · · · ◦ ωε1 =

∫

0<t1<...<tn−k

(p−1)∗(ωε1(t1) ∧ · · · ∧ (p−1)∗(ωεn−k
(tn−k)

=

∫

0<t1<...<tn−k

(ω1−ε1(t1) ∧ · · · ∧ (ω1−εn−k
(tn−k)

=

∫

p

ω1−εn−k
◦ · · · ◦ ω1−ε1 =

∫

p

ωθ(U2),

where θ exchange X0 and X1. Finally we have
∫

p−1

ωU2 =

∫

p

ωθ(U2) = (−1)dp(θ(U2))ζx(U2)

and

0 =

∫

p◦p−1

ωW

∑

U1U2=W

(−1)dp(U1)ζx(U1)(−1)dp(θ(U2))ζx(U2)

which is exactly the relation (3) for the word W . �

Now, let c be the infinitesimal half circle around 0 in the lower half plan, con-
necting the tangential based point ~0∞ and ~01. The path c can be seen as the limit
when ε tends to 0 of cε : t 7→ εei(π+tπ). We have a natural 3 cycle on M0,4 given
by τ : t 7→ 1

1−t
and let γ be the path c ◦ τ2(p) ◦ τ2(c) ◦ τ(p) ◦ τ(c) ◦ p.

Theorem 3.7. The relation (IIKZ) is equivalent to the family of relation

∀W ∈ W0,1

∫

γ

ωW = 0

which is exactly the family (8).

Proof. Comparing the six different normalized solutions of (KZ) at the six different
based points leads to (IIKZ) via the relation

g0(u) = g0(u)e
iπX0ΦKZ(X∞, X0)e

iπX∞ΦKZ(X1, X∞)eiπX1ΦKZ(X0, X1)

where the exponentials are coming from the monodromy around 0, 1 and ∞. The
product in UF2 in the R.H.S of the previous equation can be expressed using ho-
motopy invariant iterated integrals

eiπX0ΦKZ(X∞, X0)e
iπX∞ΦKZ(X1, X∞)eiπX1ΦKZ(X0, X1) =

∑

W∈W0,1

(∫

γ

ωW

)

W

because one compare the different solutions using analytic continuation along paths.
So the comparison of the six different solutions correspond exactly to an analytic
continuation along any path starting at ~01, joining the other tangential based points
~10, ~1∞, ~∞1, ~∞0, ~0∞ in that order and ending at ~01 ; staying all the time in the
lower half plan.

As γ is homotopically equivalent to 0, the first part of theorem follows because
for any word W in W0,1, ωW give rise to an homotopy invariant iterated integral.

Using the decomposition of iterated integral on a composed path we have

∀W ∈ W0,1

∫

γ

ωW =
∑

U1,...,U6

U1···U6=W

∫

c

ωU1

∫

τ2(p)

ωU2

∫

τ2(c)

ωU3

∫

τ(p)

ωU4

∫

τ(c)

ωU5

∫

p

ωU6 .



EXPLICIT ASSOCIATOR RELATIONS FOR MULTIPLE ZETA VALUES 17

Thus, in order to show that it gives exactly the family of relations (8), it is
enough, to show that for any U in W0,1

∫

c

ωU = C0,1(e
iπX0 |U),

∫

τ2(p)

ωU = C0,1(ΦKZ(X∞, X0)|U),

∫

τ2(c)

ωU = C0,1(e
iπX∞ |U),

∫

τ(p)

ωU = C0,1(ΦKZ(X1, X∞)|U),

∫

τ(c)

ωU = C0,1(e
iπX1 |U),

∫

p

ωU = C0,1(ΦKZ(X0, X1)|U).

In order to compute the iterated integral along c, τ(c) and τ2(c), it is enough to
compute the limit when ε tends to 0 of the iterate integral along cε, τ(cε) and
τ2(cε). As

c∗ε(ω0) = iπdt and c∗ε(ω1) = ε
−iπei(π+πt)dt

1− εei(π+πt)
,

the iterate integral
∫

cε
ωU tends to 0 except if U = Xn

0 and then
∫

cε
ωXn

0
= (iπ)n

n!

for all ε. Thus, we have
∫

c

ωU = C0,1(e
iπX0 |U).

Similarly we have

τ(cε)
∗(ω1) = iπ

dt

1− εei(π+πt)
and τ(cε)

∗(ω0) =
εiπei(π+πt)dt

1− εei(π+πt)

and the iterate integral
∫

τ(cε)
ωU tends to 0 except if U = Xn

1 and then
∫

cε
ωXn

0

tends to (iπ)n

n! when ε tends to 0. Thus, we have
∫

τ(c)

ωU = C0,1(e
iπX1 |U).

Computing τ2(cε)
∗, we have

τ2(cε)
∗(ω0) = −iπ

dt

1− εei(π+πt)
and τ2(cε)

∗(ω1) = −iπdt

and we find that the limit when ε tends to 0 of
∫

τ2(cε)
ωU is (−iπ)|U|

|U|! which gives
∫

τ2(c)

ωU = C0,1(e
iπX∞ |U).

The equality
∫

p
ωU = C0,1(ΦKZ(X0, X1)|U) is obvious and the case of

∫

τ(p) ωU

and
∫

τ2(p)
ωU are extremely similar so we will discuss only the last one. First, we

should remark that

τ2(c)∗(ω0) = −ω0 + ω1 and τ2(c)∗(ω0) = −ω0.

As, for U = Xεn · · ·Xε1 (εi = 0, 1) we can rewrite the iterate integral
∫

τ2(c)
ωU as

∫

p

τ2(p)∗(ωεn) ◦ · · · ◦ τ
2(p)∗(ωε1).

We will now prove by induction on n = |U | that in V (M0,4)

(14) [τ2(p)∗(ωεn)| · · · |τ
2(p)∗(ωε1)] =

∑

(V,k)∈dec0,1(U,X0)

(−1)|V|ω
X

|V1|
0 X

k1
1 X

|V2|
0 X

k2
1 ···X

|Vp|

0 X
kp
1
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which will give using Proposition 2.7 the equality
∫

p

ωU = C0,1(ΦKZ(X0, X1)|U).

If U = X0, dec0,1(U,X0) have 2 elements, ((X0), (0)) and ((∅), (1)) ; if U = X1

then dec0,1(U,X0) have only one element ((X1), (0)). In both cases (14) is satisfied.
For the simplicity of notation, if W = Xjn · · ·Xj1 (ji = 0, 1)is in W0,1, we shall

write [ωW |ωε] for [ωjn | · · · |ωj1 |ωε]. We suppose now that U = U1X0 with |U1| > 1.
We have a map from dec0,1(U,X0) to dec0,1(U1, X0) that sends a decomposition
(V,k) with V = (V1, . . . , Vp) and k = (k1, . . . , kp) to

{
(V, (k1, . . . , kp − 1)) if kr 6= 0
((V1, . . . , V

′
p),k) if kp = 0 and Vp = V ′

pX0.

Any decomposition (V′),k′ in dec0,1(U1, X0) has exactly two preimages by this

map. If one write U ′
1 = V ′

1X
k′
1

0 · · ·V ′
1X

k′
p

0 then it leads to two decompositions of U

((V ′
1 , . . . , V

′
p), (k

′
1, . . . , k

′
p + 1)) and ((V ′

1 , . . . , V
′
p , X0), (k

′
1, . . . , k

′
p, 0)).

By induction we have in Vn−1(M0,4)

[τ2(p)∗(ωεn)| · · · |τ
2(p)∗(ωε2)] =

∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|ω

X
|V ′

1
|

0 X
k′
1

1 ···X
|V ′

p|

0 X
k′
p

1

.

We deduce from the previous equality and using the linearity of the tensor product
that [τ2(p)∗(ωεn)| · · · |τ

2(p)∗(ωε1)] is equal to
∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|[ω

X
|V ′

1 |

0 X
k′
1

1 ···X
|V ′

p|

0 X
k′
p

1

| − ω0 + ω1],

which can be decomposed as
∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|+1[ω

X
|V ′

1
|

0 X
k′
1

1 ···X
|V ′

p|

0 X
k′
p

1

|ω0]+

∑

(V′,k′)∈
dec0,1(U1,X0)

(−1)|V
′|[ω

X
|V ′

1
|

0 X
k′
1

1 ···X
|V ′

p|

0 X
k′
p

1

|ω1].

The first term of the sum is equal to
∑

(V′,k′)(−1)|V
′|+1ω

X
|V ′

1 |

0 X
k′
1

1 ···X
|V ′

p|

0 X
k′
p

1 X0

and

the second term is equal to
∑

(V′,k′)(−1)|V
′|ω

X
|V ′

1
|

0 X
k′
1

1 ···X
|V ′

p|

0 X
k′
p+1

1

. This gives (14)

when U = U ′
1X0.

If U = U1X1 with |U1| > 1, we have a one to one correspondence between
dec0,1(U1, X0) and dec0,1(U,X0) defined by

((V ′
1 , . . . , V

′
p), (k

′
1, . . . , k

′
p)) 7−→

{
((V ′

1 , . . . , V
′
p , X1), (k

′
1, . . . , k

′
p, 0)) if k′p = 0

((V ′
1 , . . . , V

′
pX1), (k

′
1, . . . , k

′
p)) otherwise.

Then, (14) follows by induction using the linearity of the tensor product. �

3.3. Bar Construction on M0,5 and the pentagon relations. Here, we will
show how the pentagon relations (IIKZ) are related to the bar construction on M0,5.

The shuffle algebra B(M0,4) being much more complicated than B(M0,4) we
will first review some facts explained in [Bro09]. We now fix a dihedral structure
δ, as described in [Bro09], on M0,5 given by z1 < z2 < z3 < z4 < z5, or with
our normalization 0 < xy < y < 1 < ∞. This corresponds to choosing the good
coordinates to study the connected component of M0,5(R) such that the marked
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points are in the order given by δ. We will refer to that component as the standard
cell. Let ω12, ω23, ω34, ω45, ω24 be respectively the differential forms d log(u25) =
dx
x

, d log(u31u41) = dx
x−1 , d log(u24u41) = dy

y−1 , d log(u35) = dy
y

and d log(u41) =
d(xy)
xy−1 .

If W is a word in W = {X34, X45, X24, X12, X23}∗ with |W | = n, we will write
ωW ∈ HDR(M0,5)

⊗n the bar symbol [ωinjn | · · · |ωi1j1 ]. Note that the elements ωW

for W in W are not all in V (M0,5) usually, only linear combination of such symbols
are in V (M0,5).

Example 3.8. The elements [ω12], [ω23] and [ω12|ω23] are in V (M0,5) even if
[ω12|ω45] is not. However [ω12|ω45] + [ω45|ω12] is in V (M0,5).

Example 3.43 (vie the Theorem 3.38 and Corollary 3.41 )in [Bro09] tells us that
the exact sequence

0 −→ C〈〈X24, X34, X45〉〉 −→ UB5 −→ C〈〈X12,X23〉〉 −→ 0

is dual to

0 −→ V (M0,4) −→ V (M0,5) −→ C〈
dy

y
,

dy

y − 1
,

xdy

xy − 1
〉 −→ 0

which comes from the expression in cubical coordinates of M0,5 −→ M0,4 forgetting
the 4th point. Thus the identification

UB5 ≃ C〈〈X24, X34, X45〉〉⋊C〈〈X12,X23〉〉

is dual to

V (M0,5) ≃ V (M0,4)⊗ C〈
dy

y
,

dy

y − 1
,

xdy

xy − 1
〉

and V (M0,5) is the dual of UB5.
The graded dual of the free algebra of formal series

R = k〈〈X34, X45, X24, X12, X23〉〉

is the shuffle algebra

T :=
⊕

n

(kω34 ⊕ kω45 ⊕ kω24 ⊕ kω12 ⊕ kω23)
⊗n

.

Let Ω be the element in R⊗H1
DR(M0,5) defined by

Ω = X12 ⊗ ω12 +X23 ⊗ ω23 +X34 ⊗ ω34 +X45 ⊗ ω45 +X24 ⊗ ω24.

and
Exp(Ω) :=

∑

W∈W

W ⊗ ωW ∈ R⊗ T.

The element Exp(Ω) corresponds to the identity of R and encodes the fact that the
dual of a word W is ωW . Using the projection R → UB5 one can see Exp(Ω) in
UB5 ⊗ T . A word W (seen in UB5) is written in the basis B4 as

W =
∑

b4∈B4

lb4,W b4.

Duality between R and T and between UB5 and V (M0,5) tells us that the dual
basis B∗

4 = (b∗4) of B4 is given by

∀b4 ∈ B4 b∗4 =
∑

W∈W

lb4,WωW .

So, writing each W in the expression Exp(Ω) in the basis B4 leads to

Exp(Ω) =
∑

b4∈B4

b4 ⊗ b∗4 ∈ UB∗
5 ≃ V (M0,5)
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and Exp(Ω) realized the identification between the graded dual of UB5 and V (M0,5)
as it was remarked by Furusho in [Fur08]. This discussion can be resumed by the
following proposition.

Proposition 3.9. We have a natural identification

UB∗
5 ≃ V (M0,5)

where UB∗
5 is the graded dual of UB5.

This identification gives us a basis B∗
4 of V (M0,5) dual to the basis B4 of UB5

which comes from the identification

UB5 ≃ k〈〈X24, X34, X45〉〉⋊ k〈〈X12,X23〉〉

and is explicitly given for all b4 in the basis B4 by

b∗4 =
∑

W∈W

lb4,W ωW .

Let M̂0,5 be the universal covering of M0,5. A multi-valued function on M0,5

is an analytic function on M̂0,5. Consider the formal differential equation on M̂0;5

dL = ΩL

where L takes values in UB5, its coefficients being multi-valued functions on M0,5.
As in the case of the equation (KZ), if we fix the value of L at some point of M0,5

or its asymptotic behavior at a tangential based points, the solution is unique.
The irreducible components of M0,5 are in one to one correspondence with the

2-partitions of {z1, z2, z3, z4, z5} and will be denoted as zi1zi2 |zi3zi4zi5 . We will
here only consider the following components D52 = z1z2|z3z4z5, D13 = z2z3|z4z5z1,
D24 = z3z4|z5z1z2, D35 = z4z5|z1z2z3, D41 = z5z1|z2z3z4 (we may use the con-
vention Dij = Dji). Remarks that those components are given by a partition
that respect the dihedral structure δ and the numbering Dij is coherent with the
notation of [Bro09]. The divisors Dij are given in the dihedral coordinates by
uij = 0. Following Brown, we have 5 tangential based points (corresponding to the
intersection of 2 irreducible components) given by the triangulation of the polygon
corresponding to δ ; as we are working in M0,5 the polygon is a pentagon and
a triangulation is given by two chords going out from a single vertex so one can
number the triangulation by the number of its vertex, precisely one have

P3 = D35 ∩D13, P1 = D13 ∩D41, P4 = D41 ∩D24, and

P2 = D24 ∩D52, P5 = D52 ∩D35.

Let Li be the normalized solution at Pi (see [Bro09] Theorem 6.12). The description
of the situation in dimension 1 and section 5.2 in [Bro09] show that Theorem 6.27
of the Brown’s paper that can been rewritten as

Proposition 3.10. For any tangential based point and any basis B of UB5 , Pi

one can write Li(z) as

Li(z) =
∑

b∈B

(

∫

γ

b∗)b

where γ is (up to homotopy) a path from Pi to z, b∗ is the dual element in V (M0,5)
to b and where the iterated integral is a regularised iterated integral.

Comparison of two different normalized solutions at two different based points
Pi and Pj is then given by

∀z ∈ M̂0,5 Li(z) = Lj(z)

(
∑

b∈B

(∫

γ

b∗
)

b

)
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where γ is any path going from Pi to Pj homotopically equivalent to a path γ′ going
from Pi to Pj in the standard cell of M0,5(R).

Brown shows how to restrict any element ω in B(M0,5) to any boundary com-

ponents D introducing a regularisation map Reg(ω,D) that send each
duij

uij
to 0 if

uij = 0 or if uij = 1 on D.

Proposition 3.11. For any two consecutive tangential based points Pi and Pj with
j ∼= i− 2 mod 5, one have

∀z ∈ M̂0,5 Li(z) = Lj(z)

(
∑

b∈B

(
∫

pji

Reg(b∗, Dji)

)

b

)

Where pji is the real segment going in Dji from Pi to Pj.

Proof. The symmetry of the situation allows us to prove it only in the case where
i = 5, j = 3 and B is the basis B4. Let p35 be the path in D35 going from P5 to
P3, we need to show that

L5(z)
−1L3(z) = Z53 =

∑

b4∈B4

(∫

p35

Reg(b∗4, D35)

)

b.

Using the proof of Theorem 6.20, we have

L3(z)
−1L5(z) = Z35 =

∑

W̃=[Xin,jn |···|Xi1j1

∈{X12,X23}

(∫

p

dt

t− εn
∧ · · · ∧

dt

t− ε1

)

W

with εk = 0 if ik = 1 (and jk = 2)) and εk = 1 otherwise.
As

Reg(u25, D35) = t, Reg(u31, D35) = 1− t

Reg(ωij , D35) = 0 or 1 otherwise. Thus, we have

Reg(ω12, D35) =
dt

t
and Reg(ω23, D35) =

dt

t− 1

and Reg(uij , D35) = 0 otherwise. We need to show that if b4 ∈ B4 and b4 is a word
in {X12, X23} then

b∗4 = (Xinjn · · ·Xi1j1)
∗ = [ωinjn | · · · |ωi1j1 ]

and we need to show that if b4 contains some Xij with i = 4 or j = 4 then
b∗4 is a linear combination of ωW with W containing at least one of the letters
X34, X45, X24. Using the description of b∗4, it follows directly from the relation
defining UB5 and the proposition is proved. �

From the previous proposition we have immediately that

Corollary 3.12. For any path γ in the standard cell homotopically equivalent to
pji j = i − 2 mod 5 we have

∀ω ∈ V (M0,5)

∫

γ

ω =

∫

pji

Reg(ω,Dji)

Let γ = p35◦p52◦p24◦p41◦p13 denotes the composed path beginning and ending
at P3 and extending the map Reg(ω, γ) to paths that are piecewise in some on the
divisor Dij

Theorem 3.13. The relation (IIIKZ) is equivalent to the family of relations

∀b4 ∈ B4

∫

γ

Reg(b∗4, γ) = 0

which is exactly the family (11).
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Proof. Comparison between the normalized solution at P3 and at P3 going through
the normalized solution at P1, P4, P2 and P5 one find that

∀z ∈ M̂0,5 L3(z) = L3(z)Z
53Z25Z42Z14Z31.

In one hand the product of the Zij is equal to 1 which is equation (IIIKZ) as it is
shown in the proof of Theorem 6.20 [Bro09] and in the example which follows. In
the other hand, the product of the Zij is given by analytic continuation along any
path γ′ in the standard cell going trough the tangential based points Pi.

Z53Z25Z42Z14Z31 =
∑

b4∈B4

(∫

γ′

b∗4

)

b4.

Any such path being homotopically equivalent to γ we have
∫

γ′

b∗4 =

∫

γ

Reg(b∗4, γ).

As γ (and any previous γ′) are homotopically equivalent to 0 each of the homotopy
invariant regularised iterated integrals above are 0 (except for b4 = 1) which gives
that the product of the Zij is equal to 1 and so relation (IIIKZ).

Using the expression of b∗4 in terms of ωW , the end of the theorem follows from
Proposition 3.15. �

An immediate corollary is

Corollary 3.14. For any basis B of UB5, the pentagon relation (IIIKZ) is equiv-
alent to

∀b ∈ B

∫

γ

Reg(b∗, γ) = 0

where γ, as previously, is the path = p35 ◦ p52 ◦ p24 ◦ p41 ◦ p13.

Following the proof of 3.11 one can check that

Proposition 3.15. For all bar symbol ωW dual to a word W in the letters X34,
X45, X24, X12, X23, we have

C5,W =

∫

γ

Reg(ωW , γ)

where C5,W is the coefficient defined in (9) in the case of the Drinfel’d associator
ΦKZ .

Proof. To show the proposition, it is enough, using the decomposition of γ = p35 ◦
p52 ◦ p24 ◦ p41 ◦ p13, to show that, for any U in {X34, X45, X24, X12, X23}∗ and any
i, one have

Zρi(U) =

∫

Ii

Reg(ωW , Ii)

where I5 = p13, I4 = p41, I3 = p24, I21 = p52 and I1 = p35. As we have that
Reg(ωkl, Ii) = ωρi(Xkl), the corollary follows. �

4. Appendix

Here one can find the explicit relation given by the pentagon equation IIIKZ in
low degree. Writing the product

ΦKZ(X12, X23)ΦKZ(X34, X45)ΦKZ(X51, X12)ΦKZ(X23, X34)

ΦKZ(X45, X51) =
∑

b4

Cb4b4

in the basis B4 the following tables give the relation Cb4 = 0 in terms of regularised
multiple zeta values.
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4.1. Degree 1, 2 and 3. In degree 1 the basis is given by the letters X34, X45,
X24, X12 and X23. The relation (IIIKZ) in degree 1 gives.

Monomial Dual bar
symbol

Relations

X1,2 [ω1,2] ζx (X0)− ζx (X1) = 0

X2,3 [ω2,3] 2 (ζx (X0)− ζx (X1)) = 0

X2,4 [ω2,4] ζx (X0)− ζx (X1) = 0

X3,4 [ω3,4] 2 (ζx (X0)− ζx (X1)) = 0

X4,5 [ω4,5] ζx (X0)− ζx (X1) = 0

Table 1. Explicit set of relation equivalent to IIIKZ in degree 1

In degree 2 the basis B4 is given by 19 monomials but we have only 4 multiplica-
tive generators and the corresponding relations are given in Table 4.1 ; in degree 3
there are 10 multiplicative generators and the corresponding relations are given in
Table 4.1. There, we have write in bold the particular monomial whose dual are
multiplicative generator of V (M0,5)).

In degree 4 and 5 the family of relation equivalent to IIIKZ can be found on the
web page of the author together with the sources of the Mathematica code.

Monomial Dual bar symbol Relations

X2,4X4,5 −[ω1,2|ω2,4] + [ω2,4|ω4,5] ζx (X0) ζ
x (X1)− ζx (X1)

2 = 0

X2,4X3,4 −[ω1,2|ω2,4] + [ω2,3|ω2,4] −ζx (X0)
2 + ζx (X1) ζ

x (X0)−
− [ω2,3|ω3,4] + [ω2,4|ω3,4] 2ζx (X1)

2 + ζx (X0X0)+
ζx (X0X1) + ζx (X1X0)+

ζx (X1X1) = 0

X3,4X4,5 [ω3,4|ω4,5] 2ζx (X0)
2 − ζx (X1) ζ

x (X0)−
ζx (X0X1)− ζx (X1X0) = 0

X1,2X2,3 [ω1,2|ω2,3] 2ζx (X0)
2 − 2ζx (X1) ζ

x (X0)+
ζx (X1)

2 − ζx (X0X1)−
ζx (X1X0) = 0

Table 2. Explicit set of relation equivalent to IIIKZ in degree 2
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Monomial Relations

X2,4X2,3X1,2 −2ζx (X0X0X1)− ζx (X0X1X0) = 0

X3,4X2,3X1,2 −2ζx (X0X0X1)− ζx (X0X1X0) = 0

X2,4X3,4X2,4 2ζx (X0X0X1) + ζx (X0X1X0) = 0

X3,4X2,4X2,3 −2ζx (X0X0X1)− 2ζx (X0X1X0)− 2ζx (X1X0X0) = 0

X2,4X1,2X2,3 −ζx (X0X1X0)− 2ζx (X1X0X0) = 0

X3,4X1,2X2,3 −ζx (X0X1X0)− 2ζx (X1X0X0) = 0

X2,4X2,4X1,2 −ζx (X0X0X1)− ζx (X0X1X0)− ζx (X1X0X0) = 0

X3,4X2,3X2,3 −ζx (X0X0X1)− ζx (X0X1X0)− ζx (X1X0X0) = 0

X3,4X2,4X2,4 −ζx (X0X0X1)− ζx (X0X1X0)− ζx (X1X0X0) = 0

X3,4X3,4X1,2 −ζx (X0X0X1)− ζx (X0X1X0)− ζx (X1X0X0) = 0

X4,5X4,5X2,3 −ζx (X0X0X1)− ζx (X0X1X0)− ζx (X1X0X0) = 0

X1,2X2,3X2,3 ζx (X0X1X1)− ζx (X1X0X0) = 0

X2,3X1,2X1,2 ζx (X0X1X1)− ζx (X1X0X0) = 0

X3,4X4,5X4,5 ζx (X0X1X1)− ζx (X1X0X0) = 0

X4,5X2,4X2,4 ζx (X0X1X1)− ζx (X1X0X0) = 0

X4,5X3,4X3,4 ζx (X0X1X1)− ζx (X1X0X0) = 0

X2,4X2,4X3,4 ζx (X1X0X0)− ζx (X0X0X1) = 0

X2,4X3,4X2,3 2ζx (X0X0X1) + 2ζx (X0X1X0) + 2ζx (X1X0X0) = 0

X1,2X2,3X1,2 ζx (X1X0X1)− ζx (X0X1X0) = 0

X2,3X1,2X2,3 ζx (X1X0X1)− ζx (X0X1X0) = 0

X2,4X4,5X2,4 ζx (X1X0X1)− ζx (X0X1X0) = 0

X3,4X4,5X3,4 ζx (X1X0X1)− ζx (X0X1X0) = 0

X4,5X3,4X4,5 ζx (X1X0X1)− ζx (X0X1X0) = 0

X4,5X3,4X2,3 2ζx (X0X1X1) + ζx (X1X0X1) = 0

X4,5X2,4X2,3 −ζx (X0X1X0) + 2ζx (X0X1X1)− 2ζx (X1X0X0)
+ζx (X1X0X1) = 0

X4,5X2,4X4,5 −ζx (X0X1X0)− 2ζx (X1X1X0) = 0

X4,5X2,4X3,4 −ζx (X0X1X0) + ζx (X0X1X1)− ζx (X1X0X0)
−2ζx (X1X1X0) = 0

X2,4X4,5X1,2 −ζx (X1X0X1)− 2ζx (X1X1X0) = 0

X3,4X2,4X3,4 −2ζx (X0X0X1)− ζx (X0X1X0)− ζx (X1X0X1)
−2ζx (X1X1X0) = 0

Table 3. Explicit set of relation equivalent to IIIKZ in degree 3
where we already have used the relations ζx(Xk

0 ) = ζx(Xk
1 ) = 0.
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Monomial Relations

X2,4X3,4X1,2 −ζx (X0X0X1)− ζx (X0X1X0)− ζx (X1X0X0)
−ζx (X1X0X1)− 2ζx (X1X1X0) = 0

X3,4X2,4X4,5 ζx (X1X0X0)− ζx (X1X1X0) = 0

X1,2X1,2X2,3 ζx (X1X1X0)− ζx (X0X0X1) = 0

X2,3X2,3X1,2 ζx (X1X1X0)− ζx (X0X0X1) = 0

X3,4X3,4X4,5 ζx (X1X1X0)− ζx (X0X0X1) = 0

X4,5X4,5X2,4 ζx (X1X1X0)− ζx (X0X0X1) = 0

X4,5X4,5X3,4 ζx (X1X1X0)− ζx (X0X0X1) = 0

X4,5X3,4X2,4 ζx (X0X1X0) + ζx (X0X1X1) + ζx (X1X1X0) = 0

X2,4X4,5X4,5 ζx (X1X1X0)− ζx (X1X0X0) = 0

X2,4X2,4X4,5 ζx (X0X1X0) + ζx (X1X0X0) + ζx (X1X1X0) = 0

X2,4X3,4X3,4 ζx (X0X0X1) + ζx (X0X1X0)− ζx (X0X1X1)
+ζx (X1X0X0) + ζx (X1X1X0) = 0

X2,4X1,2X1,2 ζx (X0X1X1) + ζx (X1X0X1) + ζx (X1X1X0) = 0

X3,4X1,2X1,2 ζx (X0X1X1) + ζx (X1X0X1) + ζx (X1X1X0) = 0

X3,4X3,4X2,3 ζx (X0X1X1) + ζx (X1X0X1) + ζx (X1X1X0) = 0

X4,5X2,3X2,3 ζx (X0X1X1) + ζx (X1X0X1) + ζx (X1X1X0) = 0

X3,4X4,5X2,4 −ζx (X0X1X0)− ζx (X1X0X0) + ζx (X1X0X1)
+ζx (X1X1X0) = 0

X3,4X3,4X2,4 ζx (X0X0X1) + ζx (X0X1X1)− ζx (X1X0X0)
+ζx (X1X0X1) + ζx (X1X1X0) = 0

X2,4X4,5X3,4 ζx (X1X0X0) + ζx (X1X0X1) + ζx (X1X1X0) = 0

X2,4X3,4X4,5 ζx (X0X1X0) + 2ζx (X1X1X0) = 0

X3,4X4,5X2,3 ζx (X1X0X1) + 2ζx (X1X1X0) = 0

X4,5X2,4X1,2 ζx (X1X0X1) + 2ζx (X1X1X0) = 0

X3,4X2,4X1,2 −ζx (X0X0X1)− ζx (X0X1X0)− ζx (X1X0X0)
+ζx (X1X0X1) + 2ζx (X1X1X0) = 0

X2,4X4,5X2,3 ζx (X0X1X0) + 2ζx (X1X0X0) + ζx (X1X0X1)
+2ζx (X1X1X0) = 0

Table 4. Explicit set of relation equivalent to IIIKZ in degree 3
where we already have used the relations ζx(Xk

0 ) = ζx(Xk
1 ) = 0.
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