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Abstract.  New geophysical data collected at the Aden-Owen-Carlsberg triple junction 

between the Arabia, India, and Somalia plates are combined with all available magnetic data 

across the Gulf of Aden to determine the detailed Arabia-Somalia plate kinematics over the 

past 20 Myr. We reconstruct the history of opening of the Gulf of Aden, including the 

penetration of the Sheba Ridge into the African continent and the evolution of the triple 

junction since its formation. Magnetic data evidence three stages of ridge propagation from 

east to west. Sea-floor spreading initiated ca. 20 Myr ago along a 200 km-long ridge portion 

located immediately west of the Owen fracture zone. A second 500 km-long ridge portion 

developed westward up to the Alula-Fartak transform fault before Chron 5D (17.5 Ma). 

Before Chron 5C (16.0 Ma), a third 700 km-long ridge portion was emplaced between the 

Alula-Fartak transform fault and the western end of the Gulf of Aden (45°E). Between 20 and 

16 Ma, the Sheba Ridge propagated over a distance of 1400 km at an extremely fast average 

rate of 35 cm yr-1. The ridge propagation resulted from the Arabia-Somalia rigid plate rotation 

about a stationary pole. Since Chron 5C (16.0 Ma), the spreading rate of the Sheba Ridge 

decreased first rapidly until 10 Ma and then more slowly. The evolution of the AOC triple 

junction is marked by a change of configuration around 10 Ma, with the formation of a new 

Arabia-India plate boundary. Part of the Arabian plate was then transferred to the Indian plate.  



 3 

1. Introduction 

The Arabian plate began to separate from Africa in Oligocene times. Plate separation was 

initiated by continental rifting in the Gulf of Aden-Red Sea rift system and coincided with a 

strong magmatic surge in the Afar hotspot region 30 Myr ago (Burke, 1996; Baker et al., 

1996; Hoffmann et al., 1997; Rochette et al., 1997; Ebinger and Sleep, 1998; Ukstins et al., 

2002). The separation occurred in the framework of closure of the Neo-Tethys Ocean 

subducting northeastward beneath Eurasia (Dercourt et al., 1993; Stampfli and Borel, 2002; 

Agard et al., 2005), a subduction still active today in the Makran region (Figure 1; Jacob and 

Quittmeyer, 1979; Vernant et al., 2004). It is generally admitted that the Africa plate 

fragmentation resulted from the interplay between far-field extensional forces originated at 

the Neo-Tethyan subduction zone (slab-pull gravitational forces) and the impingement of the 

Afar mantle plume at the base of the African lithosphere (Bott, 1982; Malkin and Shemenda, 

1991; Zeyen et al., 1997; Courtillot et al., 1999; Jolivet and Faccenna, 2000; Bellahsen et al., 

2003). Arabia was torn off of Africa and driven northeastward by the Tethyan slab subducting 

beneath Eurasia. Following rifting of the African lithosphere, seafloor spreading initiated in 

Early Miocene times in the eastern Gulf of Aden along the nascent Sheba Ridge (Laughton et 

al., 1970; Cochran, 1981). The spreading ridge propagated rapidly westward from the Owen 

fracture zone toward the Afar hotspot (McKenzie et al., 1970; Courtillot et al., 1980; Girdler, 

1991; Manighetti et al., 1997; Huchon and Khanbari, 2003; Hubert-Ferrari et al., 2003). The 

connection of the Sheba Ridge with the Owen fracture zone and the Carlsberg Ridge formed 

the Aden-Owen-Carlsberg (AOC) triple junction between the Arabia, India, and Somalia 

plates (Fournier et al., 2001). 

In this paper, we first analyse marine magnetic data recently collected at the AOC triple 

junction onboard the Hydrographic and Oceanographic Vessel Beautemps-Beaupré of the 

French Navy (Fournier et al., 2008a, 2008b). These data are crucial to decipher the first stages 

of opening of the eastern Gulf of Aden since they allow us to reconstruct the evolution of the 

AOC triple junction since its very early formation about 20 Ma ago. We then use all available 

magnetic profiles across the Gulf of Aden and the NW Arabian Sea to investigate the 

formation of the oceanic floor between the Arabian and Somalian plates. Based on this 

extensive magnetic data set, we establish a firm isochron pattern in the Gulf of Aden and 

calculate finite and stage rotation poles and their associated uncertainties. We further use this 

high-resolution kinematic model of the Arabia-Somalia relative motion to detail the evolution 

of the spreading rate and opening direction during the last 20 Myr. By closing the oceanic 

domain between conjugate magnetic anomalies, we restore the plate boundary configuration 
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at each anomaly time and reconstruct the history of seafloor spreading in the Gulf of Aden 

including the ridge propagation into the African continent and the evolution of its axial 

segmentation. 

 

2.  Regional geodynamic setting 
2.1.  Gulf of Aden 

2.1.1.  Main tectonic features 

Situated between southern Arabia and the Horn of Africa, the Gulf of Aden links the 

Ethiopian rift and the Red Sea with the Carlsberg Ridge in the NW Indian Ocean (Figure 1). 

Significant features of the sea-floor topography of the Gulf of Aden and the NW Indian 

Ocean were delineated following the John Murray expedition in 1933-1934 (Sewell, 1934; 

Farquharson, 1936; Wiseman and Sewell, 1937) and the International Indian Ocean 

Expedition in 1959-1965 (Heezen and Tharp, 1964; Laughton, 1966a, 1966b). They 

encompass a system of ridge segments with an axial valley marked by seismic activity, that 

runs along the median line of the Gulf of Aden and the NW Indian Ocean (Rothé, 1954; 

Ewing and Heezen, 1960; Sykes and Landisman, 1964). Southeast of Socotra Island, the 

Owen transform fault offsets by 330 km the Carlsberg Ridge and connects to the Sheba 

Ridge, which continues westward in the Gulf of Aden (Matthews, 1963, 1966; Laughton, 

1966a; Matthews et al., 1967; Laughton et al., 1970). In the eastern part of the Gulf, the Sheba 

Ridge axis is offset by minor transform faults including Socotra transform (offset < 50 km; 

Figure 1). In the central part, it is offset over 200 km by one major transform fault, the Alula-

Fartak transform fault (Tamsett and Searle, 1990; Radhakrishna and Searle, 2006). In the 

western part, the ridge crest is offset by numerous NNE-SSW-trending structures early 

identified as left-stepping transform faults (Laughton, 1966b; Tamsett and Searle, 1988) with 

right-lateral motion (Sykes, 1968). West of 46°E, the ridge axis becomes a shallow ‘gully’ 

(Farquharson, 1936) running westward into the Gulf of Tadjura (Choukroune et al., 1986, 

1988; Manighetti et al., 1998; Audin et al., 2001, 2004). 

 

2.1.2.  Opening rates and directions, oblique rifting and spreading 

Le Pichon (1968) used transform faults and magnetic isochrons to locate a first Euler pole 

describing the Arabia-Somalia relative motion at 26°N and 21°E, with a rotation angle of 7° 

to close the Gulf of Aden. McKenzie et al. (1970) obtained a similar rotation pole by fitting 

bathymetric contours (500 fathoms, i.e., 914 m) on each side of the Gulf (26.5°N, 21.5°E, 

rotation angle of 7.6°). Since then, several global (Minster and Jordan, 1978; DeMets et al., 
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1990, 1994) and regional (Chase, 1978; Le Pichon and Francheteau, 1978; Joffe and 

Garfunkel, 1987; Gordon and DeMets, 1989; Jestin et al., 1994; Fournier et al., 2001) plate-

motion models provided nearby instantaneous poles for the Arabia-Somalia motion. The 

spreading rate along the Sheba Ridge increases progressively from west to east from 

1.6 cm yr-1 (full rate) at the entrance of the Gulf of Tadjura, to 2.4 cm yr-1 at the AOC triple 

junction. 

The Gulf of Aden is characterized by oblique opening. The present-day spreading 

direction is close to N25°E along the Alula-Fartak transform fault, as indicated by slip vectors 

of earthquake focal mechanisms (Global CMT catalog). The obliquity thus reaches 40° with 

respect to the N75°E mean trend of the Gulf of Aden. In the western part of the Gulf, 

obliquity is accommodated by en échelon faulting within the axial rift, with normal faults 

oblique to the ridge trend (Dauteuil et al., 2001; Fournier and Petit, 2007). Oblique spreading 

was preceded by oblique rifting of the Arabo-African lithosphere (Beydoun, 1970, 1982; 

Platel and Roger, 1989; Roger et al., 1989; Hugues et al., 1991; Bott et al., 1992; Birse et al., 

1997; Watchorn et al., 1998; Fantozzi and Svagetti, 1998) marked by the development of a 

series of N100°-110°E-trending syn-rift grabens with a left-stepping en échelon arrangement 

(Fantozzi, 1996; Brannan et al., 1997; Lepvrier et al., 2002; Bellahsen et al., 2006). The 

along-strike 3D evolution of the structure of the continental margins of the Gulf of Aden 

results from this syn-rift segmentation (Fournier et al., 2004, 2007; d’Acremont et al., 2005; 

Petit et al., 2007; Tibéri et al., 2007; Lucazeau et al., 2008). 

 

2.1.3.  Age of the oceanic crust 

Oceanic crust has been identified from the interpretation of magnetic anomaly sequences 

up to anomaly 5 (11.0 Ma) first in the eastern (Laughton et al., 1970) and then in the western 

(Cochran, 1981) Gulf of Aden. Beyond anomaly 5, Cochran (1982) and Stein and Cochran 

(1985) suggested the existence of a quiet magnetic zone with a crust having an oceanic 

seismic structure. More recently, anomaly sequence has been identified up to anomaly 5D 

(17.5 Ma) on both flanks of the Sheba Ridge east of the Alula-Fartak transform fault 

(d’Acremont et al., 2006), while anomaly 5C (16.0 Ma) has been recognized on the northern 

flank of the ridge immediately west of the Alula-Fartak transform fault (Sahota, 1990; 

Huchon and Khanbari, 2003). These observations suggest a fast propagation of the Sheba 

Ridge and contradict the two-stage model of seafloor spreading proposed by Girdler and 

Styles (1974, 1978) for the western Gulf of Aden and Red Sea. Based on width measurements 

of the Gulf of Aden between escarpments of the conjugate margins (top and base), Manighetti 
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et al. (1997) reconstructed a propagation history of the Aden rift tip starting from the Owen 

fracture zone prior to 30 Ma and reaching the western Gulf of Aden (45°E) about 18 Myr ago, 

with an average propagation rate of ~10 cm yr-1. West of longitude 45°E, Courtillot (1982) 

and Courtillot and Vink (1983) showed, from the V-shape of magnetic anomalies interrupted 

at the continental margin, that since Chron 5 (11.0 Ma) the tip of the rift has propagated at a 

rate of 3 cm yr-1 in a westerly direction into the active Afar region (Ebinger et al., 2008). 

 

2.2.  Aden-Owen-Carlsberg triple junction 
The Carlsberg Ridge, the Sheba Ridge, and the Owen fracture zone meet at the AOC 

triple junction. The Carlsberg Ridge (Schmidt, 1932; Vine and Matthews, 1963) was 

emplaced in the Early Tertiary between the Seychelles and Indian continental blocks (Patriat 

and Segoufin, 1988; Malod et al., 1997; Dyment, 1998; Chaubey et al., 1998, 2002; Miles et 

al., 1998; Royer et al., 2002 Minshull et al., 2008; Collier et al., 2008; Yatheesh et al., 2009). 

It underwent a three-stage evolution with fast spreading stage (full-rate ca. 12 cm yr-1) 

between 61 and 51 Ma (A27-A23; stage 1), followed by very slow divergence (< 1.2 cm yr-1) 

between 39 and 23 Ma (A18-A6b; stage 2) following the India-Eurasia collision, and by a 

slow spreading stage (ca. 2.4 cm yr-1) since 23 Ma (A6b) until present (stage 3; Mercuriev et 

al., 1996). It is presently characterized by a nearly orthogonal accretion at a rate of ca. 

2.2 cm yr-1 in its northwestern part (Merkouriev and DeMets, 2006). The transition from 

stage 2 to stage 3 is coeval with (1) spreading initiation in the eastern Gulf of Aden and 

formation of the AOC triple junction and (2) a sharp decrease of the spreading rate along the 

Southwest Indian Ridge from slow to ultraslow at ca. 24 Ma (Patriat et al., 2008). The 

spreading rate along the eastern Sheba Ridge is currently slightly faster (2.4 cm yr-1) than 

along the western Carlsberg Ridge. Arabia is thus moving northward more rapidly than India 

with respect to Somalia. The Arabia-India relative motion is taken up by the Owen fracture 

zone (Matthews, 1966; Whitmarsh et al., 1974; Whitmarsh, 1979) and the Dalrymple trough 

(McKenzie and Sclater, 1971; Minshull et al., 1992; Edwards et al., 2000, 2008; Gaedicke et 

al., 2002; Ellouz-Zimmermann et al., 2007a, 2007b). Between the Dalrymple Trough and 

latitude 15°N, the OFZ is characterized by a low seismic activity, and south of 15°N it is 

seismically quiet for about 250 km. The right-lateral sense of slip along this ~700 km long 

strike-slip plate boundary is attested by earthquake focal mechanisms (Sykes, 1968; 

Quittmeyer and Kafka, 1984; Gordon and DeMets, 1989) and geomorphologic offsets in the 

sea floor (Fournier et al., 2008b). Recently, we used three independent datasets (multibeam 

bathymetry, earthquakes focal mechanisms, GPS measurements at permanent sites) to show 
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that the OFZ is a pure transform fault that follows a small circle centred on the Arabia-India 

rotation pole with a rate of motion of 2-4 mm yr-1 (Fournier et al., 2008b). 

 

3.  Evolution of the AOC triple junction 

3.1.  Main structural features of the triple junction 
The axial rift of the Sheba Ridge surveyed during the AOC expedition exhibits 

morphologic, tectonic and magmatic features changing from west to east (Figure 2; Fournier 

et al., 2008a). In the western part, the rift is bounded by steeply-dipping conjugate normal 

faults stepping down towards the spreading axis, marked by a continuous neo-volcanic ridge. 

The overall structure is symmetric. East of a right-stepping non-transform discontinuity at 

57°E (Spencer et al., 1997), the rift becomes sinuous and deeper, and displays an asymmetric 

structure bounded alternatively to the north or to the south by flat-lying detachment faults 

associated with oceanic core complexes (e.g., Cann et al., 1997; Tucholke et al., 1998; Cannat 

et al., 2006; Ildefonse et al., 2007). In this area, the rift becomes less volcanic and displays 

only isolated volcanoes. At its eastern end, the axial rift connects to the Owen transform fault 

(OTF) through a deep nodal basin (Wheatley Deep). 

In the northeastern part of the mapped area, the Arabia-India plate boundary is marked by 

a sharp, rectilinear and vertical fault, the Owen fracture zone (Figure 2). This N10°E-trending 

fault crosscuts the Owen topographic ridge and offsets it dextrally over 12 km (Fournier et al., 

2008b). The fault terminates to the south in the 50 km-wide and 120 km-long Beautemps-

Beaupré Basin, bounded to the north and south by ~E-W normal faults. Immediately SW of 

the Beautemps-Beaupré Basin, anomalous fabric orientations in the sea floor indicate that 

E-W faults crosscut NW-SE faults and dykes formed at the Sheba Ridge axis (Fournier et al., 

2008a). These faults idicate that intraplate extensional deformation propagated westward in 

the oceanic crust of northern flank of the Sheba Ridge. However, the extensional deformation 

zone does not reach the axis of the Sheba Ridge and the Arabia-India plate boundary seems to 

terminate into the Beautemps-Beaupré Basin some 250 km north of the Somalia plate 

boundary. 

 

3.2.  Eastern Sheba Ridge segmentation inferred from gravity and magnetics 

The eastern Sheba Ridge is made of two different portions showing respectively negative 

mantle Bouguer anomaly and high amplitude magnetics to the west, and high Bouguer gravity 

and low-amplitude magnetics to the east (Figure 3a and 3b). To first order, mantle Bouguer 

anomaly variations may reflect crustal thickness variations: the relatively low anomaly in the 
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western part of the Sheba Ridge probably indicates thicker oceanic crust there, associated 

with high magma supply and high amplitude magnetics. The eastern part on the other hand, 

which is dominated by core complex exhumation, appears as less magmatic. Thus, magmatic 

segmentation of the ridge revealed by gravity and magnetic data correlates with the tectonic 

style of the axial rift, symmetric to the west and asymmetric to the east, and corresponds to 

two modes of accretion operating along the ridge with or without detachment fault (Escartin 

et al., 2008). 

 

3.3.  Magnetic anomaly identification 

We used the dense network of magnetic profiles of the AOC survey on the northern flank 

of the Sheba Ridge (Figure 4) combined with previous magnetic data on its southern flank 

(see section 4 for detail) to establish the isochron pattern in the eastern Gulf of Aden. Six 

profiles spanning the northern and southern flanks were reconstructed in order to identify 

conjugate anomalies (Figure 5). Each magnetic profile was compared with a two-dimensional 

block model for identification of the anomalies. The model is based on the geomagnetic 

polarity timescale of Cande and Kent (1992, 1995) with astronomically calibrated reversal 

ages from Lourens et al. (2004). Theoretical magnetic profiles were generated for variable 

half-spreading rates and a magnetized layer thickness of 400 m. For each profile, a sequence 

of anomalies starting at the rift axis and including anomalies 2Ay, 2Ao, 3A, 4A, 5, 5C, 5D, 

and 6 was picked (Figure 6). The correlations between adjacent profiles are very good in the 

western part of the AOC survey area, where the magnetic amplitude is high. Moreover, 

analysis of isochronous seafloor fabric generated by sea-floor spreading from the multibeam 

bathymetric map strengthens correlations between magnetic profiles. However, in the eastern 

and northeastern part, the low magnetic amplitude of the anomalies makes recognition of 

some of them questionable or even impossible for several of the easternmost profiles. This is 

particularly true for anomaly 5E that we were unable to identify unambiguously (Figure 4).  

The isochron map reveals two main segments separated by a major right-stepping 

transform fault (Figure 6). This discontinuity offsets the ridge axis by about 25 km at 13.2°N 

and 57.5°E and it is bounded in its eastern inner corner by a large oceanic core complex with 

a southward-dipping low-angle detachment fault. The trend of the corrugations (N26°E ±2°) 

is consistent with that of the transform fault. 

Along the western segment, magnetic anomalies are identifiable from the central anomaly 

to anomaly 5D, and even anomaly 6 in the eastern part (profiles aoc-09 to aoc-22 in Figure 4). 

The isochrons 2Ay, 2Ao, and 3A are linear and parallel to the present-day spreading axis. 
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Older isochrons (chrons 4A to 5D or 6) are offset by fracture zones (inset in Figure 6). A 

major change in the geometry of the axis therefore occurred between chrons 4A and 3A. 

Since Chron 5 (11.0 Ma), the spreading rate along the western segment has remained stable at 

2.4 cm yr-1 (full rate), decreasing to 2.3 cm yr-1 westward towards the rotation pole (Figure 5). 

Spreading is asymmetric with a half-spreading rate higher to the north (1.3-1.4 cm yr-1) than 

to the south (0.9-1.0 cm yr-1; Figure 5). 

The eastern segment is 100 km-long between the Owen transform fault and the 57°30’E 

transform fault. On the southern flank, magnetic anomalies are identified from anomaly 2Ay 

to 6, whereas on the northern flank the anomaly sequence is recognized with confidence up to 

anomaly 5 only (profiles aoc-01 to aoc-07 in Figure 4). Moreover, anomaly 2Ao is missing on 

the northern flank due to a ridge jump towards the north between Chron 2Ao and 2Ay. Since 

Chron 5, the spreading rate along the eastern segment is 2.2 cm yr-1 (full rate). Spreading is 

asymmetric with a half-spreading rate higher to the south (1.3 cm yr-1) than to the north 

(0.9 cm yr-1; Figure 5), i.e., opposite to the western segment. 

 

3.4.  Present-day configuration and past reconstruction of the triple junction 
Since Chron 5, the spreading rate is 2 mm yr–1 slower along the easternmost segment of 

the Sheba Ridge than along the segment immediately west (Figure 5). This rate difference 

between the two segments is accommodated by right-lateral slip along the northward 

extension of the 57°30’E transform fault (Figures 6 and 7). On the bathymetric map, this 

extension corresponds to a ~30 km-wide deformation zone, where seafloor fabric is rotated 

clockwise in agreement with dextral shear (Figure 6). Thus, the Arabia-India plate boundary 

follows the 57°30’E transform zone, then passes through the Beautemps-Beaupré Basin, and 

joins the southern end of the Owen fracture zone. Since Chron 5, the spreading rate of the 

easternmost segment of the Sheba Ridge is similar to the spreading rate of the northwestern 

Carlsberg Ridge (2.2 cm yr–1; Merkouriev and DeMets, 2006). Since then, this segment 

therefore pertains to the Carlsberg Ridge and is part of the India-Somalia plate boundary. 

Consequently, a portion of the Arabian plate has been transferred to the Indian plate 

(Figure 7; DeMets, 2008). 

The transform boundary is however almost seismically quiet (Figures 2 and 7). At its 

northern end, one strike-slip focal mechanism at 14.57°N and 58.09°E (Global CMT catalog, 

December 5, 1981) is consistent with dextral motion along a N10°E-trending vertical fault 

plane (Figure 6). Most earthquakes are however localized in the western prolongation of the 
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Beautemps-Beaupré Basin, as if a new plate boundary was developing there (Figure 7). A 

larger area of the Arabian plate could then be transferred in the future to the Indian plate. 

The evolution of the AOC triple junction can be reconstructed from magnetic data since 

its formation about 20 Myr ago, shortly before Chron 6. A major change of configuration 

occurred when the Beautemps-Beaupré Basin developed. This change occurred at the time of 

the latest kinematic reorganization in the Indian Ocean corresponding to the onset of 

intraplate deformation in the India-Australia plate dated at 7.5-8 Ma by ODP drillings 

(Cochran, 1990; Chamot-Rooke et al., 1993; Delescluse and Chamot-Rooke, 2007), an age 

recently reappraised at 9 Ma (Delescluse et al., 2008), and to a kinematic change along the 

Carlsberg Ridge between 11 and 9 Ma (Merkouriev and DeMets, 2006; Fournier et al., 

2008b). A four-stage evolution of the triple junction at chrons 5C, 5, 3A, and present has been 

reconstructed in Figure 7 using India-Somalia rotation poles for the eastern segment of the 

Sheba Ridge since Chron 5 (Merkouriev and DeMets, 2006) and Arabia-Somalia poles for the 

western segment (this study, next section). The change in the geometry of the Arabia-India 

plate boundary occurred around Chron 5. Before Chron 5, the Owen fracture zone was 

probably connected directly to the Owen transform fault. The triple junction was located at 

the junction between the Owen fracture zone, the Owen transform fault, and the Sheba Ridge 

with a ridge-fault-fault (RFF) geometry. The RFF configuration, with two transform faults 

having the same strike and a flat velocity triangle, was stable (Figure 7; McKenzie and 

Morgan, 1969; Patriat and Courtillot, 1984). Since Chron 5, the new triple junction appears to 

be stable, although a ridge jump occurred along the eastern segment between Chron 2Ao and 

2Ay. The velocity-space diagram of the junction is almost flat because the spreading rates and 

directions along the eastern Sheba and western Carlsberg ridges are very close. Transtension 

is predicted along the transform zone between the two ridge segments (N-S motion along the 

N27°E-trending discontinuity). Seismicity data suggest, however, that a change of 

configuration is presently occurring and that the current triple junction is in a transient state. 

 

4.  Arabia-Somalia plate kinematics 
4.1.  Pattern of magnetic anomalies 

All available ship tracks for magnetic profiles used in this study are located in Figure 8a. 

The main magnetic surveys in the Gulf of Aden are the cruises of RRS Shackleton (Girdler 

and Styles, 1978; Girdler et al., 1980; Tamsett and Girdler, 1982; O’Reilly et al., 1993), RV 

Vema (Cochran, 1981, 1982; Stein and Cochran, 1985), and a Russian research vessel 

(Solov’ev et al., 1984) in the late seventies, and more recently the cruises of RV L’Atalante 



 11 

(Audin et al., 2001; Hébert et al., 2001; Dauteuil et al., 2001), RV Marion Dufresne (Leroy et 

al., 2004; d’Acremont et al., 2005, 2006; Fournier et al., 2007), and RV Beautemps-Beaupré 

(Fournier et al., 2008a, 2008b). These surveys, completed by supplementary profiles in the 

Gulf of Aden (Figure 8a), provide a dense set of profiles in the direction of seafloor 

spreading, i.e., favourably oriented for magnetic anomaly identification.  

The anomaly intensities have been plotted and contoured in Figure 8b, where the profile 

spacing permits it. The pattern of seafloor-spreading anomalies parallel to the ridge axis is 

revealed. The axial rift is characterized by an intense negative anomaly often reaching 

-1,000 nT, with larger amplitude in the western Gulf of Aden than in the east (Tamsett and 

Girdler, 1982). In the eastern part of the Gulf, the anomalies are well developed and a regular 

pattern of alternating linear anomalies trending ~N110°E is observed. 

 

4.2.  Magnetic anomaly identification 
Magnetic anomalies were identified on each profile and the anomaly picks were plotted 

to produce an isochron map (Figure 8c). In the eastern part of the Gulf of Aden, magnetic 

anomalies have been identified from anomaly 2A to 6 on both flanks of the Sheba Ridge 

(Figure 6). Further west, up to the Alula-Fartak transform fault, conjugate sequences of 

anomalies have been identified up to anomaly 5D (17.5 Ma). West of the Alula-Fartak 

transform fault, magnetic anomalies are generally of smaller amplitude and more difficult to 

interpret than in the east. Nevertheless, from the Alula-Fartak transform fault to 45°E, we 

could identify with confidence a continuous anomaly sequence from the axial anomaly to 

anomaly 5C on both flanks of the ridge. Anomaly 5C is consistently located at the foot of the 

escarpment of the continental margin, which coincides with the 1500 m isobath in the western 

Gulf of Aden. Magnetic data thus indicate that, since Chron 5C (16.0 Ma), oceanic floor was 

emplaced in most of the Gulf of Aden and that the opening of the ocean basin was a 

continuous process. 

 

4.3.  Finite rotation pole locations 
The new picking was used to compute reconstruction poles for the Arabia-India plate 

motion. We carried out a systematic search in a 3-dimensional space for the best latitude, 

longitude, and rotation angle. The cost function was taken as the sum of the surfaces 

delineated by non-rotated and rotated neighbours (e.g., McKenzie and Sclater, 1971; Patriat, 

1987). Errors were obtained using a Monte-Carlo scheme. For one given chron, we allow all 

pickings to randomly move away from their original positions using a Gaussian function with 
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standard deviation sigma. A new pole is then re-computed. At the end of the process, we 

obtain a population of poles from which the centroid is taken as the best pole. Errors are 

extracted from the variances-covariances matrix, in terms of length and orientation of the 

error ellipse axes, and error on the rotation angle. In practical way, sigma was set to 1.67 km, 

a value provided by Merkouriev and DeMets (2006) from their analysis of the Carlsberg 

Ridge magnetics, which represents their best estimate of random noise in anomaly picking. 

Merkouriev and DeMets (2006) also mentioned other sources of error including systematic 

outward displacement of magnetic anomalies (DeMets and Wilson, 2008; Merkouriev and 

DeMets, 2008) and segment-specific systematic errors. We could not however take into 

account these errors in our analysis, which is limited by the number of pickings available (less 

than 200 pickings for each isochron; Table 1) and the small number of segments compared to 

their study. We empirically found that the centroid did not change significantly once several 

hundred iterations were performed. For each isochron, we realized more than 1000 iterations 

to determine the uncertainties of the rotation pole. 

We used a different strategy to calculate the reconstruction pole for Chron 6. Due to the 

short length of isochrons 6, we were unable to unambiguously determine both the position 

and the rotation angle. We noticed however that the reconstruction pole of McKenzie et al. 

(1970) was compatible with the closure of isochrons 6 provided a slight increase of the 

rotation angle (7.84 instead of 7.6°, which corresponds to fitting the 500 m bathymetric 

contours instead of 500 fathom, i.e., 914 m). One implication is that the initiation of seafloor 

spreading occurred shortly before Chron 6, unless spreading started at a very slow rate. 

We plotted in Figure 9a the seven poles of reconstruction from Chron 2Ay (2.6 Ma) to 

Chron 5D (17.5 Ma) with their 95% confidence interval (Table 1). Also shown is the 

reconstruction pole of McKenzie et al. (1970) used for Chron 6. Error ellipses are larger for 

the oldest pole (Chron 5D), because only the eastern part of the Gulf of Aden was oceanized 

at that time, and for the youngest pole (Chron 2Ay), because of the small rotation angle. At 

4-sigma level, all poles overlap which could preclude any discussion of migration through 

time. However, the reconstruction poles do not seem to be randomly distributed. Most of 

them are aligned along a great circle and migrate southeastward towards the Gulf of Aden 

from the older to the younger. A noticeable exception is the pole for Chron 2Ay (2.6 Ma), 

which is apart from the other poles. 

 

4.4.  Evolution of the relative plate motion 
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The finite poles were used to calculate a series of stage poles (Table 2) and follow the 

evolution of the opening rate through time at three points of the Sheba Ridge in the western 

(12°N, 45°E), central (14°N, 52°E), and eastern (13°N, 58°E) Gulf of Aden (Figure 10). 

Spreading started about 20 Ma ago and spreading rate increased to a value of about 3 cm yr-1 

between chrons 5D and 5C (17.5-16 Ma). Since then, the spreading rate has decreased 

continuously, first rapidly by as much as 30% in the early stages (17-10 Ma) and then slowly 

(less than 10%) during the last 10 Myr. A slight change in spreading direction is observed 

around 10 Ma with a counterclockwise rotation of the spreading direction (Figure 11b). 

 

5.  Discussion: implications for the opening of the Gulf of Aden 

 5.1.  Three-stage propagation of the Sheba Ridge 
Magnetic data allow us to decipher the progressive penetration of the Sheba Ridge into 

the African continent. The isochron map shows three stages of propagation of the ridge 

(Figure 11). The first stage corresponds to the emplacement ca. 20 Myr ago, shortly before 

Chron 6 (19.7 Ma), of a 200 km-long ridge portion trending N130°E southeast of Socotra 

Island (Figure 12). It was followed by the development before anomaly 5D (17.5 Ma) of a 

500 km-long ridge portion up to the Alula-Fartak transform fault, composed of six segments 

separated by five transform faults (offset < 50 km; Figure 12). Ridge propagation apparently 

stopped for about 1 Myr at the Alula-Fartak transform fault and resumed shortly before 

anomaly 5C (16.0 Ma) with the formation of a third ridge portion in the western Gulf of Aden 

between the Alula-Fartak transform fault and 45°E. This 700 km-long ridge portion was 

segmented by a series of at least eight left-stepping transform faults (magnetic data are 

however not dense enough to reconstruct the detailed geometry of the axis at Chron 5C). 

Propagation of the Sheba Ridge into the Gulf of Aden was completed around 16 Ma 

(Figures 11 and 12). From then on, oceanic floor was emplaced in most of Gulf of Aden. The 

propagation of the ridge over a distance of 1400 km occurred within a short period of time not 

exceeding 4 Myr (between 20 and 16 Ma) at an extremely fast average rate of 35 cm yr-1. The 

western ridge portion formed at an even faster rate, greater than 45 cm yr-1 (700 km in less 

than 1.5 Myr between chrons 5D and 5C). Because of the very fast ridge propagation rate and 

the limited temporal resolution of magnetic anomalies (~1 Ma), we cannot determine whether 

the propagation has been continuous or discontinuous. However, west of the Alula-Fartak 

transform fault, the anomaly 5C is located at the foot of the escarpment of the continental 

margin and there is apparently no space free for additional oceanic crust beyond anomaly 5C. 

The Alula-Fartak transform fault therefore appears as a major structural and probably 



 14 

temporal discontinuity. Ridge propagation rates of the same order are observed in back-arc 

setting in the Woodlark Basin (14 cm yr-1; Taylor et al., 1995; 1999), the Lau-Havre-Taupo 

Basin (11 cm yr-1; Parson and Hawkins, 1994; Parson and Wright, 1996), and the Shikoku 

Basin (27-30 cm yr-1; Chamot-Rooke et al., 1987; Sdrolias et al., 2004). According to our 

results, the pole of opening did not change significantly during the short time span of ridge 

propagation. The propagation thus results of the rotation of two rigid plates, Arabia and 

Somalia, about a relatively stationary pole located to the northwest of the propagating ridge, 

as in the propagating rift model proposed by Martin (1984). This passive process is different 

from the “forced” propagating rift model (Hey, 1977), in which the relative rotation pole 

progressively migrates along with the tip of the propagator (Hey et al., 1980). 

 

5.2.  Transition from continental extension to seafloor spreading 

5.2.1.  Timing and pattern of rifting 
Sea-floor spreading in the Gulf of Aden was preceded by rifting of the African 

continental lithosphere. The timing of rifting is ascertained by the analysis of Tertiary 

sedimentary series trapped in the coastal grabens of the Gulf. These sequences are reliably 

correlated on the conjugate margins on the basis of biostratigraphic and facies analyses 

(Beydoun, 1970; Fantozzi and Svagetti, 1998). Typical syn-rift deposits of late Oligocene to 

early Miocene age are recognized in the coastal grabens, corresponding to the Shihr Group in 

Yemen (Beydoun, 1964; Watchorn et al., 1998) and Socotra (Beydoun and Bichan, 1969; 

Samuel et al., 1997), the Guban Series in Somalia (Abbate et al., 1993; Fantozzi and Ali 

Kassim, 2002), and the Mughsayl Formation in Oman (Roger et al., 1989; Platel et al., 1992). 

They consist in calci-turbidic slope deposits including megabreccia, debris flows, and 

olistolitic material transported from the adjoining shelf, which result from the collapse and 

subsidence of the margins and attest of rapid deepening of depositional environment. The 

upper age limit of the syn-rift succession is well constrained around 20 Ma (between 21.1 and 

17.4 Ma; Watchorn et al., 1998). The onset of rifting is poorly dated around Oligocene based 

on stratigraphic (Platel and Roger, 1989; Bott et al., 1992; Hughes and Beydoun, 1992; 

Fantozzi, 1996; Watchorn et al., 1998) and fission track dating (Menzies et al., 1997; Abbate 

et al., 2001; Gunnell et al., 2007). The timing of rifting in the Red Sea is similar to the Gulf of 

Aden, although it has been suggested that rifting may have started slightly later (see synthesis 

in Bosworth et al., 2005). Recent studies of the northern main Ethiopian rift suggest that 

extension started there after 11 Ma (Wolfenden et al., 2004; Corti, 2008; Keranen and 

Klemperer, 2008). In this case, the kinematics of opening of the Gulf of Aden would also 
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apply to the Red Sea opening for the 20 to 11 Ma period. This cannot be tested further in the 

Red Sea since sea-floor spreading started only 4-5 m.y. ago, and in the southern part only 

(Cochran and Karner, 2007). 

Rifting in the Gulf of Aden was achieved by the formation of multiple left-stepping 

grabens trending N100°E-N110°E and aligned along a direction converging toward the Afar 

hotspot (Figure 12; Fantozzi, 1996; Huchon and Khanbari, 2003; Bellahsen et al., 2006). The 

en échelon arrangement of the grabens attests of an oblique rifting with a dextral shear 

component parallel to the proto-Gulf of Aden. The total width of the shear deformation zone 

encompassing the grabens is ~200 km. The oblique rifting in the Gulf of Aden contrasts with 

the orthogonal rifting in the Red Sea strongly controlled by pre-existing basement faults 

(Hugues et al., 1991). Rifting in the Gulf of Aden ultimately resulted in the breakup of the 

continental lithosphere and the progressive emplacement of the Sheba Ridge. Oceanic 

accretion was initiated in the easternmost Gulf of Aden near the Owen fracture zone and 

propagated rapidly westward within the rift zone. For each ridge portion, spreading centers 

nucleated with a different mechanism. 

 

5.2.2. Three types of spreading center nucleation 

The first (eastern) ridge portion nucleated in an ancient oceanic lithosphere, between the 

eastern edges of Arabia and Africa to the OFZ (Figure 12, stage An6; Stein and Cochran, 

1985). The age of the oceanic lithosphere is poorly constrained and could be Late Jurassic-

Early Cretaceous like the Northern Somali Basin (Bunce et al., 1967; Cochran, 1988) and like 

ophiolites emplaced on the Oman margin (Beurrier, 1987; Smewing et al., 1991; Peters and 

Mercolli, 1998; Fournier et al., 2006), or Late Cretaceous or younger from correlations of 

seismic profiles with the DSDP drillings (Mountain and Prell, 1990; Edwards et al., 2000). 

The western limit of this ridge portion corresponds approximately to the east-African 

continent/ocean boundary. 

The second (central) ridge portion composed of six segments was emplaced westward up 

to the Alula-Fartak transform fault (Figure 12, stage An5D). In this area, as noticed by 

McKenzie et al. (1970), Socotra does not fit against Arabia when the Gulf of Aden is closed. 

More largely, a variable amount of extension is observed along the Gulf of Aden when it is 

closed (i.e., at the onset of seafloor accretion). In the eastern Gulf of Aden, an important gap 

remains between the 500 m isobaths on each side of the Gulf, whereas in the western Gulf of 

Aden the contours are closely superimposed (Figure 12; stage An6). The gap in the eastern 

part of the Gulf corresponds to crust that does not bear any magnetic signal, identified as 
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highly stretched continental crust on seismic profiles (d’Acremont et al., 2005). There, 

spreading segments nucleated in stretched continental crust following approximately the line 

of the syn-rift grabens. East of Socotra transform fault, spreading center nucleation occurred 

in the southern part of the Gulf, close to Socotra, separating two conjugate continental 

margins asymmetric in map view, a ~100 km-wide margin to the north and ~30 km-wide to 

the south (Figure 12, stage An5D). Seismic profiles across these margins show that they are 

asymmetric in cross-section too (Fournier et al., 2007). The northern margin extends over a 

distance of about 100 km from the coastline (Al Hallaniyah islands) and is dominated by 

conjugate normal faults delimitating horsts and grabens, i.e., by pure-shear extension. In 

contrast, the southern margin is steep, narrow (~30 km), marked by one major, northward-

dipping normal fault, and was formed in simple-shear regime. The same type of asymmetry is 

observed along the segment located immediately west of Socotra transform fault (d’Acremont 

et al., 2005). 

The mode of emplacement of the third (western) ridge portion was again different. The 

spreading center propagated very rapidly (> 45 cm yr-1) crosscuting the existing WNW-ESE 

trending horsts and grabens formed by previous continental extension (Figure 12, stage 

An5C). The continental margins in this part of the Gulf are very narrow and attest of a very 

small amount of extension. The westward decrease of continental extension in the Gulf of 

Aden is in contradiction with the propagating rift model for continental breakup proposed by 

Vink (1982), in which the amount of extension in the continental lithosphere increases in the 

direction of rift propagation, as observed for example in the South China Sea (Huchon et al., 

2001). 

 

5.3.  Evolution of the Sheba Ridge segmentation 

The magnetic anomalies mapped on the flanks of the ridge record a succession of events 

which occurred at the spreading axis. The isochrons were reassembled using finite rotation 

poles to restore the former plate boundary configuration and define the changes in axial 

geometry through time (Figure 12). 

In the eastern part of the Gulf of Aden, the number of ridge segments has varied a lot 

during the opening. Between the Owen and Alula-Fartak transform faults, the ridge was 

initially (from Chron 5D to 5C) made up of eight segments separated by seven transform 

faults, two right-stepping transforms to the east and five left-stepping to the west. Between 

chrons 5C and 5, three transform faults were abandoned and two new ones appeared, so that 

at Chron 5, the ridge was made up of seven segments separated by six transform faults. The 
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most important change occurred between Chron 4A (8.8 Ma) and Chron 3A (6.0 Ma) with the 

deactivation of three transform faults out of six and the evolution of a ridge from seven to 

four segments with a 370 km-long central segment. These changes in geometry of the ridge 

were accommodated by ridge jumps. Most of the observed segments do not seem to have 

significantly changed in length through time. 

To the west of the Alula-Fartak transform fault, the geometry of the axis remained stable 

during most of the opening of the Gulf of Aden. The axis geometry in this part of the Gulf is 

mainly inferred from multibeam and satellite-derived bathymetric data, complemented by 

magnetic data. Between 47° and 50°E, the ridge axis is offset by seven left-stepping transform 

faults (offset < 50 km). One transform fault at the latitude of 50°E, which formed at the 

inception of spreading at Chron 5C, was essentially eliminated between chrons 3A and 2Ao. 

These reconstructions reveal several reorganisations of the segmentation of the spreading 

axis, including a major change of the axial configuration of the eastern Sheba Ridge between 

chrons 4A and 3A. 

 

 5.4.  Asymmetry of seafloor spreading 
To first order, spreading along the Sheba Ridge is asymmetric and the sense of 

asymmetry changes along-strike along each ridge portion, as often observed along mid-ocean 

ridges (e.g., Müller et al., 1998). Along the western (west of the Alula-Fartak transform fault) 

and eastern ridge portions, spreading is faster on average on the southern flank than on the 

northern one. Along the central ridge portion, the spreading rate is higher to the north than to 

the south. There is however a great variability depending on the segments and the time period. 

For instance, between chrons 5C and 5 (16.0-11.0 Ma), the spreading rate along the central 

ridge portion (between the Alula-Fartak and Socotra transform faults) is more than twice 

higher on the northern flank than on the southern one. Further east, spreading is symmetric 

and asymmetry is opposite along the two easternmost segments. 

 

 5.5.  Comparison with geodetic poles 
Recent geodetic models predict full rates on the Sheba Ridge ranging from 1.7 cm yr-1 

(Vigny et al., 2006) to 2.1 cm yr-1 (Reilinger et al., 2006) close to the Alula-Fartak transform 

fault, where our model predicts a rate of 2.0 cm yr-1 (Figure 10). Several geodetic studies 

suggest that the present-day spreading rates in the Gulf of Aden and the Red Sea may be 15-

20% lower than those measured from magnetic anomalies, and spreading directions rotated 6-



 18 

7° counterclockwise with respect to other models (Vigny et al., 2006; Nocquet et al., 2006; Le 

Beon et al., 2008). 

We compared “geologic” rotation poles obtained from magnetic data and “geodetic” 

poles obtained from GPS data for the prediction of rates and directions. For the rates, the slow 

and gradual decrease from 10 to 2.6 Ma (Chron 2Ay) evidenced by magnetic data (Figure 10) 

is not in line with the 15-20% slowing down of the Arabia-Somalia plate motion suggested 

from the comparison of GPS velocities (Calais et al., 2003; Vigny et al., 2006; Le Beon et al., 

2008) with the 3.1 Ma - average velocities of NUVEl-1A geological model (DeMets et al., 

1990, 1994; Chu and Gordon, 1998). Our data show that deceleration, if any, should have 

occurred during the last 2.6 Ma. A crucial issue is the potential effect of outward 

displacement of magnetic anomalies as described and modelled in DeMets and Wilson 

(2008). In their analysis, they quote total outward displacement of 3-4.5 km (1.5-2.25 km for 

each flank) for the Carlsberg Ridge, with an average of 3.3 km. No such estimate is available 

for the Sheba Ridge, but using the same 3.3 km value would slightly change our spreading 

rate estimation for the youngest chron (relative distance between older chrons would not be 

affected if the outward displacement is constant through time). Correcting for the outward 

displacement would actually lower the full opening rate by about 1 mm yr-1 for Chron 

C2An.1y. If the outward displacement for the Sheba Ridge is closer to the global average 

(2.2 ± 0.3 km; DeMets and Wilson, 2008), then the bias in spreading rate would be less than 

1 mm yr-1, which is clearly within the errors of our model (see 95% error bars in Figure 10). 

On the other hand, the GPS estimates are not consistent with each other, which suggests that 

their uncertainties are still greater than ± 1 or ± 2 mm yr-1. The geologic and GPS data are 

therefore compatible with constant seafloor spreading rates in the Gulf of Aden for the past 

5 Myr, although a limited slow down can not be ruled out. 

In terms of directions, geodetic poles obtained from GPS regional surveys based on 

numerous geodetic sites (Vigny et al., 2006; Reilinger et al., 2006) and geologic poles 

(NUVEL-1A and Chron 2Ay from this study) are tested with the azimuths of transform faults 

and slip vectors of strike-slip earthquakes along the Sheba Ridge (Figure 9b and Table 3). 

Theoretically, great circles perpendicular to transform faults and earthquake slip vectors 

should intersect near the rotation pole (Morgan, 1968). The geologic poles correctly predict 

the direction of motion along the plate boundary, whereas the geodetic poles predict a more 

northward direction (Figure 9b). 

 

6.  Conclusion 
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Comprehensive examination of marine magnetic data in the Gulf of Aden reveals the 

detailed history of seafloor spreading between the Arabia and Somalia plates from the AOC 

triple junction to the Afar triple junction for the past 20 Myr. The main results of this study 

are as follow: 

(1) Seafloor spreading in the Gulf of Aden started shortly before Chron 6 (19.7 Ma), 

after a phase of extension of the continental lithosphere between 30-35 Ma and 20 Ma. 

According to the reconstruction of the Gulf at the onset of seafloor accretion, rifting 

proceeded at a very slow rate and was accommodated by a series of grabens arranged en 

échelon within a 200 km-wide dextral shear zone. 

(2) Initiation of seafloor spreading was a sudden event associated with a relatively high 

spreading rate (about 3 cm yr-1) and a rapid propagation of the spreading ridge across the rift 

system. 

(3) The seafloor-spreading axis propagated westward in the Gulf of Aden and three 

stages of propagation are identified from magnetic data. The Sheba Ridge started from the 

Owen fracture zone about 20 Ma, crossed the East-African continent-ocean boundary at about 

18 Ma, and stepped across the Alula-Fartak transform fault at approximately 17 Ma to reach 

the western end of the Gulf (45°E) by 16 Ma. The ridge propagation proceeded at an 

extremely fast average rate of 35 cm yr-1 in response to the Arabia-Somalia plate rotation 

about an almost stationary pole. The three stages of propagation correspond to three types of 

spreading center nucleation, including nucleation in ancient oceanic lithosphere, nucleation in 

a highly stretched continental lithosphere, and nucleation crosscutting pre-existing horsts and 

grabens formed during the rifting phase. 

(4) The high-resolution model for Arabia-Somalia plate kinematics indicates that 

seafloor spreading rates slowed down rapidly by 30% from 17 Ma to 10 Ma and then slowly 

by 10% during the last 10 Myr. Similar decelerations of seafloor spreading rates between 20 

and 10 Ma with a change around 10 Ma are reported along the Carlsberg Ridge (India-

Somalia motion) and the southern Central Indian Ridge (Capricorn-Somalia motion; DeMets 

et al., 2005; Merkouriev and DeMets, 2006), suggesting that the motions of the Arabian, 

Indian and Capricorn plates are strongly coupled. A reappraisal of the Arabia-India plate 

kinematics with the new Arabia-Somalia plate motion model is necessary. 

(5) The evolution of the AOC triple junction was marked by a change of geometry of the 

Arabia-India plate boundary around 10 Ma and the formation of the Beautemps-Beaupré 

Basin. A small part of the Arabian plate was then transferred to the Indian plate. This change 

of geometry was coeval with a regional kinematic reorganization corresponding to the onset 
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of intraplate deformation in the India-Australia plate and a change of kinematics along the 

Sheba, Carlsberg, and southern Central Indian ridges. 

(6) The reconstructions of the spreading axis at each anomaly time reveal the complex 

history of the ridge segmentation. It involves several reorganisations of the axial geometry, 

including a major change of configuration of the eastern Sheba Ridge between chrons 4A and 

3A. Moreover, seafloor spreading is asymmetric and the sense of asymmetry changes along-

strike. 

(7) Long-term (averaged over the last 2.6 Ma) and short-term (obtained from geodetic 

solutions) opening rates agree within 2 mm yr-1. Taking into account uncertainties in both 

techniques, and in particular the unresolved outward displacement of the magnetic chrons for 

the Sheba Ridge, we cannot rule out a slightly lower opening rate for the recent period, as 

suggested by geodesy. 
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Figure captions 

 

Figure 1.  Geodynamic framework of the Gulf of Aden between the Afar hotspot and the 

Aden-Owen-Carlsberg (AOC) triple junction. Satellite altimetry data from Sandwell and 

Smith (1997) and shallow seismicity since 1973 from USGS/NEIC database (focal 

depth < 50 km; magnitude > 2). Inset shows the plate tectonics setting. AFT, Alula-Fartak 

transform fault; CaR, Carlsberg Ridge; OFZ, Owen fracture zone; OTF, Owen transform 

fault; R, ridge; ShR, Sheba Ridge; ST, Socotra transform fault. 

 

Figure 2.  Multibeam bathymetric data of the AOC triple junction (location in Figure 1) 

superimposed on the world bathymetric map of Sandwell and Smith (1997) with shallow 

seismicity and earthquake focal mechanisms (Global CMT catalogue). The map shows the 

northern flank of the Sheba Ridge and its axial rift, and the southern termination of the Owen 

fracture zone in the Beautemps-Beaupré Basin. NTD, non-transform discontinuity; TF, 

transform fault. 

 

Figure 3.  a. Mantle Bouguer gravity map of the AOC triple junction computed using a mean 

density contrast of 1840 kg m-3 between the oceanic crust and water, and of 300 kg m-3 

between the crust and mantle. b. Magnetic anomaly profiles plotted along ship tracks for AOC 

survey. High amplitude magnetic anomalies coincide with a broad negative mantle Bouguer 

anomaly. Both gravity and magnetic data were acquired along the ship tracks with an original 

data spacing of 30 m along track and ~17 km (~9 nautical miles) between tracks. 

 

Figure 4.  AOC survey magnetic anomaly profiles projected along N27°E and aligned along 

the Sheba Ridge axis. Location of profiles is shown in Figure 3b. Theoretical anomaly 

profiles were generated using the magnetic inversion time scale of Cande and Kent (1995; see 

also Sloan and Patriat, 1992) with a magnetized layer of 400 m which follows the seafloor 

topography and a contamination factor of 0.7. The ‘y’ or ‘o’ suffixes of magnetic anomalies 

indicate the young or old edge of the chron, respectively. 

 

Figure 5.  Six full magnetic anomaly profiles across the eastern Gulf of Aden reconstituted 

from V3502 and V3617 (R/V Vema), WI330381 (R/V Wilkes), DD671 (Russian ship), and 

AOC (R/V Beautemps-Beaupré) surveys. The profiles are projected along N27°E and aligned 

along the Sheba Ridge axis. Location of profiles is shown in Figure 6. Since Chron 5 
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(11.0 Ma), oceanic floor was generated at a full spreading rate of 2.4 cm yr-1 along the 

western segment (in blue = “Sheba rate”) and of 2.2 cm yr-1 along the eastern segment (in 

green = “Carlsberg rate”). The relative motion of 2 mm yr–1 is accommodated by right-lateral 

slip along the transform zone between the two segments. Same legend as Figure 4. HFS, half-

spreading rate for theoretical profiles; FSR, full spreading rate. 

 

Figure 6.  Magnetic anomaly picks plotted on the structural map of the AOC triple junction. 

Two segments separated by a major transform fault are recognized. Along the western 

segment, magnetic anomalies are identified from anomaly 2Ay to 6 on both flanks of the 

ridge. Along the eastern segment, magnetic anomalies are identified from anomaly 2Ay to 6 

on the southern flank and from anomaly 2Ay to 5 on the northern one. In the central part of 

the western segment, the anomaly 5, which is an important marker usually recognized with 

certainty, is not clearly identified (profiles aoc-11 to aoc-14 in Figure 4). To the west of the 

Beautemps-Beaupré Basin, NW-SE-trending faults and dykes formed at the Sheba Ridge are 

crosscut by E-W faults, suggesting that the extensional deformation has propagated westward. 

Inset shows the isochron map with the present-day geometry of plate boundaries. AR, 

Arabian plate; FZ, fracture zone; IN, Indian plate; SO, Somalia plate; TF, transform fault. 

 

Figure 7.  Four-stage evolution of the AOC triple junction at chrons 5C, 5, 3A, and present. 

The configuration of the junction before and after the change of geometry of the Arabia-India 

plate boundary is shown with the corresponding velocity-space diagrams. The change in 

configuration was induced by a regional kinematic reorganization about 10 Ma ago (Chron 5), 

which initiated the formation of the Beautemps-Beaupré Basin (B3). Seismicity data suggest 

that, presently, a new plate boundary is developing to the west of the Beautemps-Beaupré 

Basin. In the near future, a larger area of the Arabian plate could be transferred to the Indian 

plate. AR, Arabian plate; IN, Indian plate; SO, Somalia plate. 

 

Figure 8.  (a) Location of ship tracks for magnetic profiles used in this study. (b) Contoured 

magnetic anomaly amplitude map of the Gulf of Aden. Contour interval, 200 nT. (c) 

Magnetic anomaly picks including the central anomaly and anomalies 2Ay, 2Ao, 3A, 4A, 5, 

5C, 5D, and 6. Anomaly 5C (16.0 Ma) can be traced in most of the Gulf of Aden. 
 

Figure 9. (a) Kinematics of the Gulf of Aden calculated from seafloor spreading magnetic 

anomalies: Arabia-Somalia finite rotation poles with their 2-sigma error ellipse (Table 1) and 
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finite rotation pole to close the Gulf of Aden (star; McKenzie et al., 1970). Since Chron 5D, 

the rotation poles migrated southeastward towards the Gulf of Aden. (b) Arabia-Somalia 

instantaneous kinematics: comparison between “geodetic” and “geologic” kinematics with an 

independent data set (azimuths of transform faults and earthquake slip vectors). Rotation 

poles calculated from GPS data (R, Reilinger et al., 2006; V, Vigny et al., 2006) and from 

magnetic data (NUVEL-1A and Chron 2Ay) are plotted with their 2-sigma error ellipses, 

together with rates predicted along the Sheba Ridge (arrows). Great circles perpendicular to 

transform faults and earthquake slip vectors (Table 3) should intersect near the rotation pole 

(Morgan, 1968). 

 

Figure 10.  Variation of the opening rate and direction (with respect to Arabia) through time 

for three different portions of the accreting boundary: western (12°N, 45°E), central (14°N, 

52°E; Alula-Fartak transform fault), and eastern (13°N, 58°E; AOC triple junction area) Gulf 

of Aden. Stage poles every 2.5 Myr are derived from the original stage poles (Table 2). The 

slow and gradual decrease of the spreading rate during the last 10 Myr is not in line with a 15-

20% decrease during the last 3 Myr, as inferred from GPS data (Vigny et al., 2006). 

 

Figure 11.  (a) Age of the oceanic crust in the Gulf of Aden inferred from magnetic isochrons. 

The present-day axis of the Sheba Ridge accurately mapped from bathymetric data is 

superimposed on magnetic data. Inset shows the three main portions of the Sheba Ridge 

emplaced at chrons 6 (19.7 Ma), 5D (17.5 Ma), and 5C (16.0 Ma). (b) Reconstruction of the 

Arabia coastline with respect to Somalia at each anomaly time and trajectories of three points 

through time. 

 

Figure 12.  Reconstruction of the opening of the Gulf of Aden at each anomaly time 

illustrating the westward propagation of the Sheba Ridge towards the Afar mantle plume and 

the evolution of the axial segmentation. Sea-floor spreading between the Arabia and Somalia 

plates started ca. 20 Myr ago, shortly before anomaly 6 (19.7 Ma), the oldest magnetic 

anomaly recognized in the Gulf of Aden. The syn-rift structures are shown for the three stages 

of ridge propagation (chrons 6, 5D, and 5C). The ridge propagation in most of Gulf of Aden 

was completed at Chron 5C (16.0 Ma). The ridge propagated extremely fast at a mean rate of 

350 km Myr-1. The number of ridge segments has varied with time, with a major change in 

geometry of the eastern Sheba Ridge between chrons 4A and 3A.  
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Table 1.  Arabia-Somalia Finite Rotations, Covariances, and Error Ellipsesa,b       
                ,b                             

Chron Age 
Number 

of Latitude Longitude ω Covariances Error Ellipse 
 Ma Pickingsb °N °E deg a b c d e f σmax σmin ζmax 
                                             C2An.1y 2.581 183 23.67 22.21 0.939 22.2 25.3 2.2 29.3 2.7 4.3 1.98 0.77 -51 
C2An.3o 3.596 173 21.28 28.50 1.619 27.7 32.1 0.9 37.8 1.6 9.5 1.26 0.57 -33 
C3An.1y 6.033 167 25.46 25.41 2.398 22.0 26.0 6.2 31.5 7.6 6.6 0.70 0.34 -54 
C4Ay 8.769 137 22.56 27.71 3.985 25.5 29.7 6.5 35.7 7.3 4.9 0.41 0.16 -55 
C5n.2o 11.040 153 23.88 26.66 4.740 34.8 41.4 9.8 50.7 11.9 5.7 0.42 0.14 -60 
C5Cn.1y 15.974 102 25.85 25.40 6.853 84.0 100.9 20.8 123.0 25.5 11.0 0.49 0.13 -57 
C5Do 17.533 55 26.10 22.98 7.283 2615 3612 1357 4995 1878 714 2.93 0.18 -79 
C6no 19.722 15 26.46 21.66 7.830 — — — — — — — — — 
                                             a Rotations reconstruct the Somalia plate relative to the Arabia plate. a, b, c, d, e, and f are the Cartesian elements of the covariance matrix in units 
of 10-8 radians2, where a, d, and f are the diagonal elements with the three axes of the Cartesian frame defined as (0°N, 0°E), (0°N, 90°E), and 
90°N. One-sigma, two-dimensional, error ellipses calculated in the plane tangent to Earth's surface are given by their great (σmax) and small 
(σmin) semi-axis length (in degrees) and by the azimuth (ζmax) of the great axis (in degrees clockwise from north). 
b Pickings are provided as supplementary material (supplementary Table 1)         
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Table 2.  Stages Poles Attached to the Somalia Plate  
               Anomaly Time Interval Latitude Longitude ω 

Numbers Ma °N °E deg 
                    0 - 2Ay      0 - 2.58 23.67 22.21 0.939 

 2Ay - 2Ao 2.58 - 3.60 17.58 36.63 0.694 
2Ao - 3A  3.60 - 6.03 33.88 18.57 0.797 
 3A - 4A 6.03 - 8.77 18.05 30.82 1.599 
4A - 5  8.77 - 11.04 30.88 21.10 0.764 

   5 - 5C 11.04 - 15.97 30.36 22.73 2.125 
   5C - 5D 15.97 - 17.53 27.05 -11.80 0.508 
   5D - 6 17.53 - 19.72 30.96 4.11 0.571 
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Table 3.  Azimuths of Transform Faults and Slip Vectors along the Sheba Ridge 
               Latitude Longitude Azimutha Typeb Source 

°N °E deg   
               12.58 48.00 30.5 TF This study 

13.33 49.63 27 TF This study 
13.52 51.32 26 SV CMT, June 24, 2000 
13.66 51.06 27 SV CMT, September 14, 1990 
13.67 51.44 27 SV CMT, December 30, 2006 
13.80 51.58 25 SV CMT, March 4, 2004 
13.94 51.53 22 SV CMT, December 15, 2006 
13.96 51.52 29 SV CMT, July 16, 1988 
14.00 51.58 23 SV CMT, April 26, 2008 
14.00 51.83 24.5 TF This study 
14.03 51.59 23 SV CMT, June 15, 2001 
14.07 51.64 23 SV CMT, December 22, 1979 
14.27 51.82 28 SV CMT, January 28, 1984 
14.38 51.74 22 SV CMT, August 26, 2001 
14.42 51.81 23 SV CMT, October 11, 2003 
14.43 51.72 24 SV CMT, June 7, 1997 
14.45 51.83 24 SV CMT, September 1, 2002 
14.50 53.83 23 TF This study 
14.57 51.96 24 SV CMT, August 26, 2005 
14.57 53.70 22 SV CMT, April 8, 2007 
14.58 51.84 25 SV CMT, September 2, 2002 
14.69 53.65 20 SV CMT, October 1, 1998 
14.76 53.76 23 SV CMT, May 24, 2003 
14.81 53.77 23 SV CMT, July 8, 1979 
14.94 53.58 24 SV CMT, November 9, 1993 

               a In degrees clockwise from north   
b TF is transform fault, SV is slip vector   
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