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A Second-Order Solution of Saint-Venant’s
Problem for a Piezoelectric Circular Bar Using
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The paper is dedicated with deep respect to Professor Roger Fosdick on his
60th birthday.
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Abstract. We study electromechanical deformations of a homogeneous transversely isotropic piezo-
electric prismatic circular bar loaded only at the end faces. The constitutive relations for the material
of the bar are taken to be quadratic in the displacement gradients and the electric f eld. It is found
that the two end faces of the bar when twisted with no electric charge applied to them will exhibit
a difference in the electric potential. Thus the piezoelectric cylinder could be used to measure the
torque or the angular twist.
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1. Introduction

Poynting [1] discovered in 1909 that a wire when twisted also stretches and the
stretch is proportional to the square of the angular twist. Since then there have been
several attempts made to quantify this effect. Truesdell and Noll [2] and Wang and
Truesdell [3] have reviewed the pertinent literature on the Poynting effect and also
on the Signorini’s method [4] of solving a nonlinear problem by reducing it to a
series of linear problems. Green and Adkins [5] have pointed out that the compat-
ibility conditions to be satisf ed by the loads in the sequence of linear problems
are automatically satisf ed if the centroid of one end face is rigidly clamped in
the sense that the displacements and inf nitesimal rotations there vanish. Rivlin
[6] and Green and Shield [7] have studied the Poynting effect in nonlinear elastic
materials. Recently, dell’Isola et al. [8] used the Signorini expansion method to
f nd a second-order solution of the Saint-Venant problem [9] for a pretwisted bar.
Subsequently, they [10] extended it to a prebent bar and delineated generalized
Poynting effects. Using the general theory of piezoelasticity (see e.g. [11]) we
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76 R.C. BATRA ET AL.

analyze here electromechanical deformations of a circular cylindrical piezoelectric
bar made of a transversely isotropic material. Second order constitutive relations
for a piezoelectric material have been derived by Yang and Batra [12]. It is found
that the second-order Poisson effect is not of the Saint-Venant type, and even when
the bar is deformed by applying pure torques and no electric charges at the end
faces, the potential difference between the end faces is proportional to the square
of the angular twist.

We note that Batra and Yang [13] have proved Toupin’s version [14] of the
Saint-Venant principle for a linear piezoelectric bar. Iesan [15–18] has studied
the Saint-Venant problem for inhomogeneous and anisotropic linear elastic bodies,
elastic dielectrics, and microstretch elastic solids. Dell’Isola and Rosa [19, 20] and
Davi [21] have analyzed the Saint-Venant problem for linear piezoelectric bodies,
and dell’Isola and Batra [22] for linear elastic porous solids.

2. Formulation of the Problem

Equations governing quasistatic deformations of a homogeneous transversely iso-
tropic piezoelectric body � are

Div(T+ TE) = 0, in�, (1.1)

(T+ TE)FT = F(T+ TE)T , in�, (1.2)

Div(D ) = 0, in�, (1.3)

where T is the f rst Piola–Kirchhoff stress tensor, TE the f rst Piola–Kirchhoff–
Maxwell stress tensor, D the referential electric displacement, and Div is the di-
vergence operator with respect to coordinates in the reference conf guration. These
quantities are related to their counterparts in the present conf guration as follows.

T = JσF−1T , TE = JσEF−1T , D = JF−1D. (2)

Here J = detF, F is the deformation gradient, σ the Cauchy stress tensor, σE
the Cauchy–Maxwell stress tensor, and D the electric displacement in the present
conf guration. Equations (1.1), (1.2) and (1.3) express, respectively, the balance
of linear momentum, the balance of moment of momentum, and the Maxwell
law for the electric displacement with the body charge density set equal to zero.
Constitutive relations for T and TE will be chosen so that (1.2) is identically
satisf ed.

For a piezoelectric material, we introduce, in the present conf guration, electric
fi ld Ê and electric polarization P through

D = P+ Ê. (3)
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A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM 77

Following Abraham, Einstein and Laub (see [11] Equation 3.6.22,23) we choose
the following constitutive equation for σE

σE = Sym(P⊗ Ê)+ Ê⊗ Ê− 1
2 Ê

21, (4)

where Sym(a ⊗ b) = (a ⊗ b + b ⊗ a)/2, 1 is the identity tensor, and the tensor
product ⊗ between two vectors a and b is def ned by

(a⊗ b)c = (b · c)a (5)

for every vector c. Quantities P and Ê are related to their counterparts 5 andW in
the reference conf guration as

5 = JF−1P, W = FT Ê. (6)

Let ψ denote an electric potential f eld in the reference conf guration so that

W = −Gradψ, (7)

where Grad is the gradient operator in the reference conf guration. The existence
of ψ is guaranteed by the referential Maxwell equation CurlW = 0.

We consider a prismatic body occupying the domain � = A × [0, `] in the
stress and polarization free reference conf guration with its axis aligned along the
direction e of its transverse isotropy. ThusA is the cross-section and ` the length of
the body. The mantle of the prismatic body is taken to be free of surface tractions
and electric charge, the centroid of the end face A0 := A× {0} is rigidly clamped
in the sense that displacements u = x − X, inf nitesimal rotations (H − HT )/2
and the electric potential ψ there vanish, and surface tractions and electric charge
are prescribed on the end faces A0 and A` := A × {`} such that the body is in
equilibrium. Thus

(T+ TE)N = 0, D · N = 0 on ∂A× [0, `], (8.1)

(T+ TE)e = f, D · e = q onA0 and A`. (8.2)

HereN is an outward unit normal on the mantle ∂A×[0, `], f the prescribed surface
traction, q the specif ed electric charge, H = Grad u, x and X denote, respectively,
the position of a material point in the present and reference conf gurations. With
the origin at the centroid of the cross-section A0, we set

X = r+ ze, u = we+ v, W = −(ψ ′e+ gradψ), (9)

where a prime denotes differentiation with respect to the axial coordinate z. Thus
w and v equal the axial and in-plane components of the displacement u of a point.
Similarly ψ ′ and gradψ equal the axial and in-plane components of W, and grad
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78 R.C. BATRA ET AL.

and div signify respectively the two-dimensional gradient and divergence operators
in the plane A. The integrability conditions for the problem are(∫

A

f dA
)′
= 0,

(∫
A

q dA
)′
= 0,(∫

A

x ∧ f dA
)′
+ x|′r=0 ∧

∫
A

f dA = 0,
(10)

where a∧ b = (a⊗ b− b⊗ a) for arbitrary vectors a and b. Equations (10) imply
that the resultant force and the resultant charge on every cross-section is the same
and every portion of the bar is in equilibrium.

3. Signorini’s Expansion

In Signorini’s method, we assume that the displacement u and the electric potential
ψ have a series expansion

u = ηu̇+ η2ü+ . . . , ψ = ηψ̇ + η2ψ̈ + . . . , (11)

where η is a small, yet to be determined, parameter in the problem. Surface trac-
tions f and the surface charge q are similarly expanded as a power series in η.
For a second-order piezoelectric material with null stresses and polarization in the
reference conf guration,

T = ηṠ+ η2(S̈+ ḢṠ), (12.1)

5 = η5̇+ η25̈. (12.2)

Here S is the second Piola–Kirchhoff stress tensor, Ṡ and 5̇ are homogeneous
linear forms in Ḣ and Ẇ, and S̈ and 5̈ are homogeneous quadratic forms in Ḣ and
Ẇ, and linear forms in Ḧ and Ẅ. Explicit expressions for Ṡ, S̈, 5̇ and 5̈ are given
as equations (16)–(19) in Yang and Batra’s [12] paper and are reproduced in the
Appendix. We will adopt Yang and Batra’s notations for various material parame-
ters with the exception that 2c2 and c5 will be denoted by the Lamé constants λ
and µ respectively. Substituting from (11) into the constitutive relations, the result
into the balance laws and boundary conditions, and equating like powers of η on
both sides of these equations, we arrive at the following equations for the f rst and
second-order problems.

Div Ṫ = 0, in�,

Div(5̇+ Ẇ) = 0, in�,

ṪN = 0, (5̇+ Ẇ) ·N = 0, on ∂A× [0, `],
Ṫe = ḟ, (5̇+ Ẇ) · e = q̇, onA0 andA`,

(13)
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A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM 79

Div(T̈+ T̈E) = 0, in�,

Div(5̈+ Ẅ+ J̇Ẇ− 2(Sym Ḣ)Ẇ) = 0, in�,

(T̈+ T̈E)N = 0, (5̈+ Ẅ+ J̇Ẇ− 2(Sym Ḣ)Ẇ) · N = 0, on ∂A× [0, `],
(T̈+ T̈E)e = f̈, (5̈+ Ẅ+ J̇Ẇ− 2(Sym Ḣ)Ẇ) · e = q̈, onA0 and A`.

(14)

In an attempt to express the left-hand sides of Equations (14) for ü and ψ̈ in the
same form as those of (13) for u̇ and ψ̇ , we decompose additively T̈ and 5̈ as

T̈ = ¨̄T+ T̈s, 5̈ = ¨̄5+ 5̈s. (15)

¨̄T and ¨̄5 are related to ü and ψ̈ in the same way as Ṫ and 5̇ are to u̇ and ψ̇ , the
relation between the former set of variables is given below.

¨̄T = 2µSym grad v̈+ [(c3 + λ)ẅ′ + λ div v̈− e2ψ̈ ′]Î
+Sym{[µ̃(v̈′ + grad ẅ)− e3 grad ψ̈] ⊗ e}
+[2(c1 + 1

2λ+ c3 + c4 + µ)ẅ′ + (c3 + λ) div v̈
− (e1 + e2 + 2e3)ψ̈ ′]e⊗ e, (16.1)

¨̄5 = 2ε2 grad ψ̈ − e3(v̈′ + grad ẅ)

+[2(ε1 + ε2)ψ̈ ′ − (e1 + e2 + 2e3)ẅ′ − e2 div v̈]e. (16.2)

Here c1, c3, c4, e1, e2, e3, ε1 and ε2 are material constants, µ̃ = (c4+2µ)/2, and Î is
the two-dimensional identity operator. Equations (16.1) and (16.2) are constitutive
relations for a linear transversely isotropic piezoelectric material. We presume that
the piezoelastic constants λ, µ, c1, c3, c4, e1, e2, e3, ε1 and ε2 are such that the strain
energy density is positive def nite so that the solution of a traction boundary value
problem for a linear piezoelectric body is unique to within a rigid body motion.
Substitution from (15) into (14) and the integrability conditions (10) yields

Div ¨̄T = bs, in�,

Div( ¨̄5+ Ẅ) = cs, in�,

¨̄TN = fms, ( ¨̄5+ Ẅ) · N = qms, on ∂A× [0, `],∫
A

¨̄Te dA =
∫

A

f̈ dA+ RFs,
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80 R.C. BATRA ET AL.∫
A

X ∧ ( ¨̄Te) dA =
∫

A

X∧ f̈ dA+ RMs, (17)

∫
A

( ¨̄5+ Ẅ) · e dA =
∫

A

q̈ dA+ RQs,∫
A

¨̄T′e dA = hs,
∫

A

(X ∧ ¨̄Te)′ dA+ e ∧
∫

A

¨̄Te dA = gs ,∫
A

( ¨̄5+ Ẅ)′ · e dA = is,

where

bs = −Div(T̈s + T̈E), cs = −Div(5̈s + J̇Ẇ− 2(Sym Ḣ)Ẇ),

fms = −(T̈s + T̈E)N, qms = −(5̈s + J̇Ẇ− 2(Sym Ḣ)Ẇ) ·N,
RFs = −

∫
A

(T̈s + T̈E)e dA,RMs = −
∫

A

X ∧ (T̈s + T̈E)e dA,

RQs = −
∫

A

(5̈s + J̇Ẇ− 2(Sym Ḣ)Ẇ) · e dA,

hs = −
∫

A

(T̈s + T̈E)′e dA,

gs = −
∫

A

[X ∧ (T̈s + T̈E)e+ u̇ ∧ Ṫe]′ dA

−e ∧
∫
(T̈s + T̈E)e dA− u̇′|r=0 ∧

∫
A

Ṫe dA,

is = −
∫

A

(5̈s + J̇Ẇ− 2(Sym Ḣ)Ẇ)′ · e dA.

(18)

We assume that the bar is initially twisted by an inf nitesimal amount τ and
carries a small electric f eld (−ω)e. Its deformations are given by

u̇ = −νaωr+ zτ(∗r)+ zaωe, ψ̇ = zω, (19.1)

where

a = e2

c3
, ν = λ

2(λ+ µ), ∗r = e× r. (19.2)

Note that the Saint-Venant warping function is zero for a circular cross-section. In
order for the deformations caused by the electric f eld and the twist to be of the
same order of magnitude, aω and Rτ should be about the same. Here R is the
radius of the circular bar. Thus the small parameter η in (11) can be identif ed with
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A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM 81

either aω/R or τ . Terms bs , cs, qms , fms , RFs , Rms and RQs in (17) and (18) are
homogeneous quadratic forms in ω and τ and are given below.

bs = χ1τ
2r+ χ2τ 2ze,

cs = χ3τ
2z,

fms = (χ4τ
2r2 + χ5ω2 + χ6τ 2z2)N+ χ7τ 2(r⊗ r)N

+(χ8τ 2zr ·N+ χ9τω(∗r) ·N)e,
qms = χ10τ

2zr · N+ χ11τω(∗r) ·N,
RFs = (χ12τ

2JA + (χ13τ 2z2 + χ14ω2)A)e,

RMs = χ15τωJA(e1 ∧ e2),
RQs = χ16τ

2JA + (χ17τ 2z2 + χ18ω2)A. (20)

Expressions for χ1, χ2 . . . χ18 in terms of the elastic constants used in the consti-
tutive relation are given in the Appendix. A equals the area of cross-section of the
bar, JA is the polar moment of inertia, and e1 and e2 are two orthonormal vectors
in A.

Substitution for ¨̄T and ¨̄5 from (16.1) and (16.2) into (17), and recalling (9), we
arrive at the following f eld equations for the determination of ü and ψ̈ .

F(v̈)+ (c3 + λ+ µ̃)grad ẅ′ − (e2 + e3)grad ψ̈ ′ + µ̃v̈′ = bsA, inA,

1R
¨̃w + (c3 + λ+ µ̃)div v̈′ + 2(c1 + λ

2 + c3 + c4 + µ)ẅ′′
− (e1 + e2 + 2e3)ψ̈ ′′ = bse, inA,

1R
¨̃
ψ − (e2 + e3)div v̈′ + 2(ε1 + ε2 − 1/2)ψ̈ ′′

− (e1 + e2 + 2e3)ẅ′′ = cs, inA,

G(v̈)N+ [(c3 + λ)ẅ′ − e2ψ̈ ′]N = fmsA, on ∂A,

grad ¨̃w · N+ µ̃v̈′ ·N = fmse, on ∂A,

grad ¨̃ψ ·N− e3v̈′ · N = qms, on ∂A,

(21)

where

F(v) = µ1Rv+ (λ+ µ)grad div v,
G(v) = 2µSym grad v+ λ(div v)Î,
¨̃w = µ̃ẅ − e3ψ̈, ¨̃ψ = −e3ẅ + (2ε2 − 1)ψ̈,

bs = bsA + bsee, fms = fmsA + fmsee,

(22)

1R is the Laplacian operator, and F = divG is the Navier operator in the plane A.
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82 R.C. BATRA ET AL.

A Saint-Venant/Almansi Solution
We seek a solution of (21) of the form

ẅ =
m∑
i=0

zi

i! ẅi(r), v̈ =
m∑
i=0

zi

i! v̈i (r), ψ̈ =
m∑
i=0

zi

i! ψ̈i(r). (23)

Substituting from (23) into (21), recalling (20), and equating like powers of zi/i!
on both sides, we obtain partial differential equations, boundary conditions and
integrability conditions to determine ẅ0, ẅ1, . . . , v̈0, v̈1, . . . , ψ̈0, ψ̈1, . . .. For i >
3, these boundary value problems have null solutions. Denoting constants by a
superscript zero, for i = 3, the solution is

v̈3 = v03 + θ03 (∗r), ẅ3 = w0
3, ψ̈3 = ψ0

3 . (24)

The integrability conditions for the torque, axial force and the charge require that

θ03 = 0, w0
3 = 0, ψ0

3 = 0. (25)

Using (24) and (25), equations for the determination of v̈2, ẅ2 and ψ̈2 are

F(v̈2) = 0, 1R
¨̃w2 = 0, 1R

¨̃
ψ2 = 0,

G(v̈2)N = −2(λ+ µ)τ 2N, grad ¨̃w2 ·N = −µ̃v03 ·N,
grad ¨̃ψ2 ·N = e3v03 ·N

(26)

and their solution is

v̈2 = v02 + θ02 (∗r)− τ 2r, ẅ2 = w0
2 − v03 · r, ψ̈2 = ψ0

2 . (27)

The integrability conditions for the torque, axial force and the electric charge re-
quire that

θ02 = 0, w0
2 = 0, ψ0

2 = 0. (28)

Field equations for v̈1, ẅ1 and ψ̈1 are

F(v̈1) = (c3 + λ)v03,1R
¨̃w1 = 0, 1R

¨̃
ψ1 = 0,

G(v̈1)N = (c3 + λ)(v03 · r)N, grad ¨̃w1 ·N = −µ̃v02 · N,
gradψ̈1 · N = e3v02 · N,

(29)

and have the solution

v̈1 = v01 + θ01 (∗r)+
c3 + λ
2(λ+ µ)Sym(r⊗ (∗r))(∗v

0
3),

ẅ1 = w0
1 − v02 · r, ψ̈1 = ψ0

1 .

(30)
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A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM 83

Equations for f nding f elds v̈0, ẅ0 and ψ̈0 can now be written as

F(v̈0) = (c3 + λ)v02 + (µ̃+ χ1)τ 2r,1Rw̃0 = ξ1v03 · r,1Rψ̃0 = ξ3v03 · r,
G(v̈0)N = [(c3 + λ)(v02 · r)+ (e2ψ0

1 − (c3 + λ)w0
1)

+ (χ4τ 2r2 + χ5ω2)]N+ χ7τ 2(r⊗ r)N,

(grad w̃0) · N = −µ̃v01 · N+ ξ2[Sym(r⊗ (∗r))(∗v03)] ·N,
(grad ψ̃0) · N = e3v01 · N++ξ4[Sym(r⊗ (∗r))(∗v03)] ·N,

(31)

where expressions for ξ1, ξ2, ξ3, ξ4 and other ξ ’s introduced below in terms of other
material parameters are given in the Appendix. The solution of (31) is

v̈0 = v00 + θ00 (∗r)+
(c3 + λ)
2(λ+ µ)Sym(r⊗ (∗r))(∗v

0
2)

+ (χ5ω
2 + ξ0R2τ 2 + e2ψ0

1 − (c3 + λ)w0
1)

2(λ+ µ) r+ ξ5τ 2r2r,
ẅ0 = w0

0 − v01 · r+ ξ68+ ξ79,
ψ̈0 = ψ0

0 + ξ88+ ξ99,

(32)

where functions 8 and 9 are given by

8 = 1
8 [(4ξ2 − 3ξ1)R2 + ξ1r2]v03 · r,

9 = 1
8 [(4ξ4 − 3ξ3)R2 + ξ3r2]v03 · r.

(33)

The clamping conditions u = 0, H − HT = 0, ψ = 0 at the centroid of A0
require that

v00 = 0, w0
0 = 0, θ00 = 0, ψ0

0 = 0, v01 = 0. (34)

The second-order solution is characterized by seven constants v03, v
0
2, θ

0
1 , w

0
1 and

ψ0
1 representing second-order f exure, bending, torsion, elongation and electric

potential respectively. However, these effects are coupled in the sense that if a
piezoelectric circular bar is twisted by applying equal and opposite torques at the
end faces, then there is also second-order torsion, elongation and electric f eld.

Let us consider deformations of the bar under the following resultant loads.

RF = 0, RM = T e1 ∧ e2, RQ = Q.
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84 R.C. BATRA ET AL.

Here T is the torque andQ the total charge. The surface tractions f at the end faces
A0 and A` have zero resultant force, and their resultant moment equals T about
the axis e of the bar. The solution of the second-order problem is

v = −νarω + z(∗r)τ + [ξ12ω2 + (ξ13R2 + ξ5r2)τ 2]r+ χ15
µ̃
z(∗r)τω − 1

2z
2rτ 2,

w = zaω + ξ10[(2ξ5(λ+ µ)+ ξ0)R2τ 2 + χ5ω2]z,
ψ = zω+ ξ11[(2ξ5(λ+ µ)+ ξ0)R2τ 2 + χ5ω2]z,
ω = Q/ξ14A, τ = T/µ̃JA

(35)

Thus the angle of twist/length equals τ + (χ15/µ̃)τω implying thereby that an
electric f eld alters the angle of twist/length and this change is proportional to the
charge/area. Also there is a second-order Poisson effect with one part proportional
to r and another one proportional to r3; the part varying as r3 depends upon the
piezoelectric constants.

One part of the axial strain w′ is proportional to τ 2 and ω2 as expected and
is a generalization of the Poynting effect to transversely isotropic piezoelectric
materials. When τ = 0, the term χ5ξ10ω

2 represents the correction to the axial
strain caused by the nonlinear response of the piezoelectric cylinder to the applied
electric f eld.

Equation (35)3 indicates that the difference of the electric potential at the two
end faces of the piezoelectric cylinder depends upon the square of the angular twist.
Even when there is no charge applied at the end faces, twisting of the piezoelectric
cylinder will induce a measurable difference in the electric potential between the
end faces. Hence a piezoelectric cylinder can be used to measure the angular twist.

4. Conclusions

We have studied the electromechanical deformations of a second-order, transversely
isotropic homogeneous circular cylindrical bar with mechanical loads and/or elec-
tric charges applied to its end faces only. The constitutive relations are taken to be
quadratic in the displacement gradients and the electric f eld. The centroid of one
end cross-section is rigidly clamped in the sense that displacements, inf nitesimal
rotations and the electric potential vanish there.

It is found that there is a second-order Poisson’s effect not of the Saint-Venant
type; this is proportional to r3 where r is the distance of a point from the centroidal
axis. Also, when the end faces are subjected to a pure torque and no electric charge,
there may be a potential difference, proportional to the square of the angular twist,
present between the end faces.
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A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM 85

Appendix

Using the notations

Ė = (Ḣ+ Ḣ)T /2, Ë = ḢT Ḣ/2,

İ1 = e · (Ėe), Ï1 = e · (Ëe), İ2 = tr Ḣ, Ï2 = tr Ë,

İ3 = Ẇ · e, 5̈1 = e · (Ė2e), 5̈2 = (tr Ė)2,
5̈3 = Ẇ · Ẇ, 5̈4 = e · (ĖẆ)+ Ẇ · (Ėe), Ï3 = Ẅ · e,

we f nd that the constitutive relations for a second-order transversely isotropic
material with the axis of transverse isotropy along the unit vector e are as follows:

Ṡ = (2c1İ1 + c3İ2 + e1İ3)e⊗ e+ (2c2İ2 + c3İ1 + e2İ3)1
+c4 Sym(e⊗ Ėe)+ 2c5Ė+ e3 Sym(e⊗ Ẇ),

S̈ = [2c1Ï1 + c3Ï2 + 3λ1İ 21 + 2λ3İ1İ2 + λ4İ 22 + λ55̈1

+λ75̈2 + 2ν1İ1İ3 + ν2İ 23 + ν75̈3 + ν95̈4 + ν14İ2İ3]e⊗ e

+[2c2Ï2 + c3Ï1 + 3λ2İ 22 + λ3İ 21 + 2λ4İ1İ2 + λ65̈1 + λ85̈2

+ 2ν3İ2İ3 + ν4İ 23 + ν85̈3 + ν105̈4 + ν14İ1İ3]1
+2c4 Sym(e⊗ Ėe)+ 2(λ5İ1 + λ6İ2 + ν5İ3)Sym(e⊗ Ėe)

+2c5Ë+ 2(λ7İ1 + λ8İ2 + ν6İ3)Ė
+2(ν9İ1 + ν10İ2 + ν11İ3)Sym(e⊗ Ẇ)

+3λ9(Ė)2 + ν12Ẇ⊗ Ẇ+ 2ν13 Sym(e⊗ ĖẆ+ Ẇ⊗ Ėe),

5̇ = −(2ε1İ3 + e1İ1 + e2İ2)e− 2ε2Ẇ− 2e3Ėe,

5̈ = −[e1Ï1 + e2Ï2 + 3µ1İ
2
3 + µ25̈3 + ν1İ 21 + 2ν2İ3İ1 + ν3İ 22 + 2ε1Ï3

+ 2ν4İ3İ2 + ν55̈1 + ν65̈2 + ν115̈4 + ν14İ1İ2]e
−2[µ2İ3 + ν7İ1 + ν8İ2]Ẇ− 2e3Ëe− 2ε2Ẅ

−2(ν9İ1 + ν10İ2 + ν11İ3)Ėe− 2ν12ĖẆ− 2ν13Ë2e.

Here c1, c2, . . . , e1, e2, . . . , λ1, λ2, . . . , ν1, ν2, . . . , ε1, ε2, . . ., and µ1, µ2, . . . are
material parameters. Expressions for other material parameters used in the text are
given below.

χ1 = −c3 + 1
2c4 − λ− 1

2λ6 − λ8 + 1
43λ9 + µ,

χ2 = −2c3 − c4 − 2λ− 2µ,
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χ3 = 2(e2 + e3),
χ4 = − 1

2c3 − 1
2c4 − 1

2λ− 1
4λ6 − 1

2λ8 − 1
43λ9 − µ,

χ5 = − 1
4c32(λ+ µ)2

(e2
2(3λ3 + 4(3λ2 + λ3 + 2λ4 + λ6 + λ8)µ2

+2λµ(4λ3 + 4λ4 + 4λ6 − 2λ7 + 2λ8 + µ)
+λ2(4λ3 + 4λ6 − 4λ7 + 6λ8 + 3λ9 + 5µ))

+2c3e2(λ+ µ)(e2(λ+ µ)
−2(µ(2ν10 + ν14 + 2ν3)+ λ(2ν10 + ν14 − ν6)))
+2c23(λ+ µ)2(−1+ 2ν4 + 2ν8)),

χ6 = −(λ+ µ),
χ7 = 1

2c4 + 1
43λ9 + µ,

χ8 = − 1
2 (c4 + 2µ),

χ9 = 1
4c3(λ+ µ)(c4e2(λ+ 2µ)+ e2(2λλ5 + 4λλ7

+3λλ9 + 2λµ+ 2λ5µ+ 2λ6µ

+4λ7µ+ 4λ8µ+ 6λ9µ+ 4µ2)

+2c3(λ+ µ)(e3 − 2ν13 − ν5 − 2ν‘6)),

χ10 = e3,

χ11 = 1
2c3(λ+ µ)(c3(λ+ µ)(2+ ν11 + 2ν12)

+e2(e3λ− µν10 − λν13 − 2µν13 − λν9 − µν9)),
χ12 = −c1 − c3 − c4 − 1

2λ− 1
4λ5 − 1

4λ6 − 1
2λ7 − 1

2λ8 − 1
43λ9 − µ,

χ13 = −(c3 + λ),

χ14 = 1
4c32(λ+ µ)2

(−e22(12c4λ2 + 3λ3 + 12λ2λ1

+4λ2λ3 + 12λ2λ5 + 4λ2λ6 + 14λ2λ7
+6λ2λ8 + 12λ2λ9 + 24c4λµ+ 20λ2µ

+24λλ1µ+ 16λλ3µ+ 8λλ4µ+ 24λλ5µ

183562.tex; 1/08/1995; 9:16; p.12



A SECOND-ORDER SOLUTION OF SAINT-VENANT’S PROBLEM 87

+16λλ6µ+ 24λλ7µ+ 16λλ8µ

+24λλ9µ+ 12c4µ2 + 30λµ2 + 12λ1µ2 + 12λ2µ2

+12λ3µ2 + 12λ4µ2 + 12λ5µ2 + 12λ6µ2

+12λ7µ2 + 12λ8µ2 + 12λ9µ2 + 12µ3

+12c1(λ+ µ)2)+ 2c32(λ+ µ)2
×(−1+ 4ε1 + 4ε2 − 4ν11 − 2ν12 − 2ν2 − 2ν4 − 2ν7 − 2ν8)

+c3e2(−e2(5λ2 + 16λµ+ 12µ2)

+4(λ+ µ)(2λν1 + 2µν1 + 2λν11 + 4µν10 + 4λν13
+4µν13 + λν14 + 2µν14 + 2µν3 + 2λν5 + 2µν5
+2λν6 + 2µν6 + 4λν9 + 4µν9))),

χ15 = 1
4c3(λ+ µ)(−e2(6c4λ+ 2λλ5 + 4λλ7

+3λλ9 + 8c4µ+ 8λµ+ 2λ5µ+ 2λ6µ

+4λ7µ+ 4λ8µ+ 6λ9µ+ 8µ2 + 8c1(λ+ µ))
+2c3(3e3λ− 2e2µ+ 3e3µ+ 2e1(λ+ µ)
+2λν13 + 2µν13 + λν5 + µν5 + 2λν6 + 2µν6)),

χ16 = 1
2e1 + 1

2e2 + e3 + 1
2ν13 + 1

4ν5 + 1
2ν6,

χ17 = e2,

χ18 = 1
4c23(λ+ µ)2

(12c32(λ+ µ)2(µ1 + µ2)

−4c3e2(λ+ µ)(λ(2+ 3ν11 + 2ν12 + 2ν2 + 2ν7)

+µ(1+ 3ν11 + 2ν12 + 2ν2 + 2ν4 + 2ν7 + 2ν8))

+e22(3e2λ2 + 4e3λ2 + 4e2λµ+ 8e3λµ

+2e2µ2 + 4e3µ2 + 2e1(λ+ µ)2
+4λ2ν1 + 8λµν1 + 4µ2ν1

+4λµν10 + 4µ2ν10 + 8λ2ν13 + 16λµν13 + 8µ2ν13

+4λµν14 + 4µ2ν14 + 4µ2ν3

+4λ2ν5 + 8λµν5 + 4µ2ν5 + 6λ2ν6 + 8λµν6
+4µ2ν6 + 4λ2ν9 + 8λµν9 + 4µ2ν9)),

183562.tex; 1/08/1995; 9:16; p.13



88 R.C. BATRA ET AL.

χ19 = −2(c3 + λ),
χ20 = 2e2,

ξ0 = χ4 + χ7 − 2λ+ 3µ
4(λ+ 2µ)

,

ξ1 = 2c1 + 1
2λ+ c3 + c4 + µ− c3 + λ+ 1

2c4 + µ
(
c3 + λ
λ+ µ

)
,

ξ2 = −( 12c4 + µ)
(c3 + λ)
(2λ+ 2µ)

,

ξ3 = (e2 + e3)(c3 + λ)
(λ+ µ) − (e1 + e2 + 2e3),

ξ4 = e3(c3 + λ)
(2λ+ 2µ)

,

ξ5 = −4c3 + 2c4 − 4λ− 2λ6 − 4λ8 + 3λ9 + 4µ
32(λ+ 2µ)

,

ξ6 = 1− 2ε2
e23 + µ̃− 2ε2µ̃

,

ξ7 = − e3

e23 + µ̃− 2ε2µ̃
,

ξ8 = − e3

e23 + µ̃− 2ε2µ̃
,

ξ9 = − µ̃

e23 + µ̃− 2ε2µ̃
,

ξ10 = (−c3 − e1e2 − e22 − 2e2e3 + 2c3ε1

+2c3ε2 − λ+ 2ε1λ+ 2ε2λ)/(2c4e22

+c32(−1+ 2ε1 + 2ε2)+ 2c4λ

+e12λ+ 4e1e3λ+ 4e32λ− 4c4ε1λ− 4c4ε2λ

+2c4µ+ e12µ+ 2e1e2µ+ 3e22µ

+4e1e3µ+ 4e2e3µ+ 4e32µ− 4c4ε1µ

−4c4ε2µ+ 3λµ− 6ε1λµ− 6ε2λµ+ 2µ2 − 4ε1µ2 − 4ε2µ2

+2c1(e22 + λ− 2ε1λ− 2ε2λ+ µ
−2ε1µ− 2ε2µ)− 2c3(e1e2 + 2e2e3 − µ+ 2ε1µ+ 2ε2µ)),
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ξ11 = (−2c1e2 − 2c4e2 + c3(e1 − e2 + 2e3)+ e1λ+ 2e3λ− 2e2µ)/

×
(
(λ+ µ)

((
(e1 + e2 + 2e3)− e2(c3 + λ)

λ+ µ
)2

−
(
−1+ 2ε1 + 2ε2 − e22

λ+ µ
)

×
(
2(c1 + c3 + c4 + 1

2λ+ µ)−
(c3 + λ)2
λ+ µ

)))
,

ξ12 = χ5(1+ e2ξ11 − (c3 + λ)ξ10)
2(λ+ µ) ,

ξ13 = ξ5(e2ξ11 − (c3 + λ)ξ10)+ e2ξ0ξ10

2(λ+ µ) −
(c3 + λ)ξ0ξ11
2(λ+ µ) ,

ξ14 = (2ε1 + 2ε2 − 1)c3(λ+ µ)− e2(e2µ+ e1(λ+ µ)+ 2e3(λ+ µ))
c3(λ+ µ) .
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