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We study electromechanical deformations of a homogeneous transversely isotropic piezoelectric prismatic circular bar loaded only at the end faces. The constitutive relations for the material of the bar are taken to be quadratic in the displacement gradients and the electric f eld. It is found that the two end faces of the bar when twisted with no electric charge applied to them will exhibit a difference in the electric potential. Thus the piezoelectric cylinder could be used to measure the torque or the angular twist.

A Second-Order Solution of Saint-Venant's Problem for a Piezoelectric Circular Bar Using Signorini's Perturbation Method

The paper is dedicated with deep respect to Professor Roger Fosdick on his 60th birthday.

Introduction

Poynting [START_REF] Poynting | On pressure perpendicular to the shear-planes in f nite pure shears, and on the lengthening of loaded wires when twisted[END_REF] discovered in 1909 that a wire when twisted also stretches and the stretch is proportional to the square of the angular twist. Since then there have been several attempts made to quantify this effect. Truesdell and Noll [START_REF] Truesdell | The Nonlinear Field Theories of Mechanics[END_REF] and Wang and Truesdell [START_REF] Wang | Introduction to Rational Elasticity[END_REF] have reviewed the pertinent literature on the Poynting effect and also on the Signorini's method [START_REF] Signorini | Sulle deformazioni termoelastiche f nite[END_REF] of solving a nonlinear problem by reducing it to a series of linear problems. Green and Adkins [START_REF] Green | Large Elastic Deformations and Nonlinear Continuum Mechanics[END_REF] have pointed out that the compatibility conditions to be satisf ed by the loads in the sequence of linear problems are automatically satisf ed if the centroid of one end face is rigidly clamped in the sense that the displacements and inf nitesimal rotations there vanish. Rivlin [START_REF] Rivlin | The solution of problems in second order elasticity theory[END_REF] and Green and Shield [START_REF] Green | Finite extension and torsion of cylinder[END_REF] have studied the Poynting effect in nonlinear elastic materials. Recently, dell'Isola et al. [START_REF] Dell'isola | A second-order solution of Saint-Venant's problem for an elastic pretwisted bar using Signorini's Perturbation Method[END_REF] used the Signorini expansion method to f nd a second-order solution of the Saint-Venant problem [START_REF] Saint-Venant | Mémoire sur la torsion des prismes[END_REF] for a pretwisted bar. Subsequently, they [START_REF] Dell'isola | Generalized Poynting effects in predeformed-prismatic bars[END_REF] extended it to a prebent bar and delineated generalized Poynting effects. Using the general theory of piezoelasticity (see e.g. [START_REF] Eringen | Electrodynamics of Continua[END_REF]) we analyze here electromechanical deformations of a circular cylindrical piezoelectric bar made of a transversely isotropic material. Second order constitutive relations for a piezoelectric material have been derived by Yang and Batra [START_REF] Yang | A second-order theory of piezoelectric materials[END_REF]. It is found that the second-order Poisson effect is not of the Saint-Venant type, and even when the bar is deformed by applying pure torques and no electric charges at the end faces, the potential difference between the end faces is proportional to the square of the angular twist.

We note that Batra and Yang [START_REF] Batra | Saint-Venant's principle in linear piezoelectricity[END_REF] have proved Toupin's version [START_REF] Toupin | Saint-Venant's principle[END_REF] of the Saint-Venant principle for a linear piezoelectric bar. Iesan [START_REF] Iesan | Saint-Venant's problem for inhomogeneous and anisotropic elastic bodies[END_REF][START_REF] Iesan | On Saint-Venant's problem for elastic dielectrics[END_REF][START_REF] Iesan | Saint-Venant's Problem[END_REF][START_REF] Iesan | Saint-Venant's problem for microstretch elastic solids[END_REF] has studied the Saint-Venant problem for inhomogeneous and anisotropic linear elastic bodies, elastic dielectrics, and microstretch elastic solids. Dell'Isola and Rosa [START_REF] Dell'isola | Saint-Venant problem in linear piezoelectricity in Mathematics and Control in Smart Structures[END_REF][START_REF] Dell'isola | Almansi-type boundary conditions for electric potential inducing f exure in linear piezoelectric beams[END_REF] and Davi [START_REF] Daví | Saint Venant's problem for linear piezoelectric bodies[END_REF] have analyzed the Saint-Venant problem for linear piezoelectric bodies, and dell'Isola and Batra [START_REF] Dell'isola | Saint-Venant's problem for porous linear elastic materials[END_REF] for linear elastic porous solids.

Formulation of the Problem

Equations governing quasistatic deformations of a homogeneous transversely isotropic piezoelectric body are Div(T + T E ) = 0, in , (

(T + T E )F T = F(T + T E ) T , in , (1.2) Div(D ) = 0, in , (1.3) 1.1) 
where T is the f rst Piola-Kirchhoff stress tensor, T E the f rst Piola-Kirchhoff-Maxwell stress tensor, D the referential electric displacement, and Div is the divergence operator with respect to coordinates in the reference conf guration. These quantities are related to their counterparts in the present conf guration as follows.

T = J σ F -1 T , T E = J σ E F -1 T , D = J F -1 D. (2) 
Here J = det F, F is the deformation gradient, σ the Cauchy stress tensor, σ E the Cauchy-Maxwell stress tensor, and D the electric displacement in the present conf guration. Equations (1.1), (1.2) and (1.3) express, respectively, the balance of linear momentum, the balance of moment of momentum, and the Maxwell law for the electric displacement with the body charge density set equal to zero. Constitutive relations for T and T E will be chosen so that (1.2) is identically satisf ed. For a piezoelectric material, we introduce, in the present conf guration, electric fi ld Ê and electric polarization P through

D = P + Ê. (3) 
Following Abraham, Einstein and Laub (see [START_REF] Eringen | Electrodynamics of Continua[END_REF] Equation 3.6.22,23) we choose the following constitutive equation for σ

E σ E = Sym(P ⊗ Ê) + Ê ⊗ Ê -1 2 Ê2 1, (4) 
where Sym(a ⊗ b) = (a ⊗ b + b ⊗ a)/2, 1 is the identity tensor, and the tensor product ⊗ between two vectors a and b is def ned by

(a ⊗ b)c = (b • c)a (5) 
for every vector c. Quantities P and Ê are related to their counterparts and W in the reference conf guration as

= J F -1 P, W = F T Ê. (6) 
Let ψ denote an electric potential f eld in the reference conf guration so that

W = -Grad ψ, ( 7 
)
where Grad is the gradient operator in the reference conf guration. The existence of ψ is guaranteed by the referential Maxwell equation Curl W = 0. We consider a prismatic body occupying the domain = A × [0, ] in the stress and polarization free reference conf guration with its axis aligned along the direction e of its transverse isotropy. Thus A is the cross-section and the length of the body. The mantle of the prismatic body is taken to be free of surface tractions and electric charge, the centroid of the end face A 0 := A × {0} is rigidly clamped in the sense that displacements u = x -X, inf nitesimal rotations (H -H T )/2 and the electric potential ψ there vanish, and surface tractions and electric charge are prescribed on the end faces A 0 and A := A × { } such that the body is in equilibrium. Thus

(T + T E )N = 0, D • N = 0 on∂A × [0, ], (8.1 
)

(T + T E )e = f, D • e = q on A 0 and A . (8.2)
Here N is an outward unit normal on the mantle ∂A×[0, ], f the prescribed surface traction, q the specif ed electric charge, H = Grad u, x and X denote, respectively, the position of a material point in the present and reference conf gurations. With the origin at the centroid of the cross-section A 0 , we set

X = r + ze, u = we + v, W = -(ψ e + grad ψ), ( 9 
)
where a prime denotes differentiation with respect to the axial coordinate z. Thus w and v equal the axial and in-plane components of the displacement u of a point. Similarly ψ and grad ψ equal the axial and in-plane components of W, and grad and div signify respectively the two-dimensional gradient and divergence operators in the plane A. The integrability conditions for the problem are

A f dA = 0, A q dA = 0, A x ∧ f dA + x| r=0 ∧ A f dA = 0, (10) 
where

a ∧ b = (a ⊗ b -b ⊗ a)
for arbitrary vectors a and b. Equations [START_REF] Dell'isola | Generalized Poynting effects in predeformed-prismatic bars[END_REF] imply that the resultant force and the resultant charge on every cross-section is the same and every portion of the bar is in equilibrium.

Signorini's Expansion

In Signorini's method, we assume that the displacement u and the electric potential ψ have a series expansion

u = η u + η 2 ü + . . . , ψ = η ψ + η 2 ψ + . . . , (11) 
where η is a small, yet to be determined, parameter in the problem. Surface tractions f and the surface charge q are similarly expanded as a power series in η.

For a second-order piezoelectric material with null stresses and polarization in the reference conf guration,

T = η Ṡ + η 2 ( S + Ḣ Ṡ), (12.1) 
= η ˙ + η 2 ¨ . (12.2)
Here S is the second Piola-Kirchhoff stress tensor, Ṡ and ˙ are homogeneous linear forms in Ḣ and Ẇ, and S and ¨ are homogeneous quadratic forms in Ḣ and Ẇ, and linear forms in Ḧ and Ẅ. Explicit expressions for Ṡ, S, ˙ and ¨ are given as equations ( 16)-( 19) in Yang and Batra's [START_REF] Yang | A second-order theory of piezoelectric materials[END_REF] paper and are reproduced in the Appendix. We will adopt Yang and Batra's notations for various material parameters with the exception that 2c 2 and c 5 will be denoted by the Lamé constants λ and µ respectively. Substituting from [START_REF] Eringen | Electrodynamics of Continua[END_REF] into the constitutive relations, the result into the balance laws and boundary conditions, and equating like powers of η on both sides of these equations, we arrive at the following equations for the f rst and second-order problems.

Div Ṫ = 0, in ,

Div( ˙ + Ẇ) = 0, in , ṪN = 0, ( ˙ + Ẇ) • N = 0, on ∂A × [0, ],
Ṫe = ḟ, ( ˙ + Ẇ) • e = q, on A 0 and A , (

Div( T + TE ) = 0, in ,

Div( ¨ + Ẅ + J Ẇ -2(Sym Ḣ) Ẇ) = 0, in , ( T + TE )N = 0, ( ¨ + Ẅ + J Ẇ -2(Sym Ḣ) Ẇ) • N = 0, on ∂A × [0, ],
( T + TE )e = f, ( ¨ + Ẅ + J Ẇ -2(Sym Ḣ) Ẇ) • e = q, on A 0 and A .

(

) 14 
In an attempt to express the left-hand sides of Equations ( 14) for ü and ψ in the same form as those of ( 13) for u and ψ, we decompose additively T and ¨ as

T = T + Ts , ¨ = ¨ + ¨ s . ( 15 
)
T and ¨ are related to ü and ψ in the same way as Ṫ and ˙ are to u and ψ, the relation between the former set of variables is given below.

T = 2µ Sym grad v + [(c 3 + λ) ẅ + λ div v -e 2 ψ ] Î +Sym{[ μ(v + grad ẅ) -e 3 grad ψ] ⊗ e} +[2(c 1 + 1 2 λ + c 3 + c 4 + µ) ẅ + (c 3 + λ) div v -(e 1 + e 2 + 2e 3 ) ψ ]e ⊗ e, (16.1) 
¨ = 2ε 2 grad ψ -e 3 (v + grad ẅ) +[2(ε 1 + ε 2 ) ψ -(e 1 + e 2 + 2e 3 ) ẅ -e 2 div v]e. (16.2) 
Here c 1 , c 3 , c 4 , e 1 , e 2 , e 3 , ε 1 and ε 2 are material constants, μ = (c 4 +2µ)/2, and Î is the two-dimensional identity operator. Equations (16.1) and (16.2) are constitutive relations for a linear transversely isotropic piezoelectric material. We presume that the piezoelastic constants λ, µ, c 1 , c 3 , c 4 , e 1 , e 2 , e 3 , ε 1 and ε 2 are such that the strain energy density is positive def nite so that the solution of a traction boundary value problem for a linear piezoelectric body is unique to within a rigid body motion. Substitution from ( 15) into ( 14) and the integrability conditions (10) yields Div T = b s , in ,

Div( ¨ + Ẅ) = c s , in , TN = f ms , ( ¨ + Ẅ) • N = q ms , on ∂A × [0, ], A Te dA = A f dA + R F s , A X ∧ ( Te) dA = A X ∧ f dA + R Ms , (17) 
A ( ¨ + Ẅ) • e dA = A q dA + R Qs , A T e dA = h s , A (X ∧ Te) dA + e ∧ A Te dA = g s , A ( ¨ + Ẅ) • e dA = i s ,
where b s = -Div( Ts + TE ), c s = -Div( ¨ s + J Ẇ -2(Sym Ḣ) Ẇ), 

f ms = -( Ts + TE )N, q ms = -( ¨ s + J Ẇ -2(Sym Ḣ) Ẇ) • N, R F s = - A ( Ts + TE )e dA, R Ms = - A X ∧ ( Ts + TE )e dA, R Qs = - A ( ¨ s + J Ẇ -2(Sym Ḣ) Ẇ) • e dA,
i s = - A ( ¨ s + J Ẇ -2(Sym Ḣ) Ẇ) • e dA. ( 18 
)
We assume that the bar is initially twisted by an inf nitesimal amount τ and carries a small electric f eld (-ω)e. Its deformations are given by u = -νaωr + zτ ( * r) + zaωe, ψ = zω, (

where

a = e 2 c 3 , ν = λ 2(λ + µ) , * r = e × r. (19.2) 
Note that the Saint-Venant warping function is zero for a circular cross-section. In order for the deformations caused by the electric f eld and the twist to be of the same order of magnitude, aω and Rτ should be about the same. Here R is the radius of the circular bar. Thus the small parameter η in ( 11) can be identif ed with either aω/R or τ . Terms b s , c s , q ms , f ms , R F s , R ms and R Qs in ( 17) and ( 18) are homogeneous quadratic forms in ω and τ and are given below.

b s = χ 1 τ 2 r + χ 2 τ 2 ze, c s = χ 3 τ 2 z, f ms = (χ 4 τ 2 r 2 + χ 5 ω 2 + χ 6 τ 2 z 2 )N + χ 7 τ 2 (r ⊗ r)N +(χ 8 τ 2 zr • N + χ 9 τ ω( * r) • N)e, q ms = χ 10 τ 2 zr • N + χ 11 τ ω( * r) • N, R F s = (χ 12 τ 2 J A + (χ 13 τ 2 z 2 + χ 14 ω 2 )A)e, R Ms = χ 15 τ ωJ A (e 1 ∧ e 2 ), R Qs = χ 16 τ 2 J A + (χ 17 τ 2 z 2 + χ 18 ω 2 )A. ( 20 
)
Expressions for χ 1 , χ 2 . . . χ 18 in terms of the elastic constants used in the constitutive relation are given in the Appendix. A equals the area of cross-section of the bar, J A is the polar moment of inertia, and e 1 and e 2 are two orthonormal vectors in A. Substitution for T and ¨ from (16.1) and ( 16.2) into ( 17), and recalling (9), we arrive at the following f eld equations for the determination of ü and ψ.

F (v) + (c 3 + λ + μ)grad ẅ -(e 2 + e 3 )grad ψ + μv = b sA , in A, R ẅ + (c 3 + λ + μ)div v + 2(c 1 + λ 2 + c 3 + c 4 + µ) ẅ -(e 1 + e 2 + 2e 3 ) ψ = b se , in A, R ψ -(e 2 + e 3 )div v + 2(ε 1 + ε 2 -1/2) ψ -(e 1 + e 2 + 2e 3 ) ẅ = c s , in A, G(v)N + [(c 3 + λ) ẅ -e 2 ψ ]N = f msA , on ∂A, grad ẅ • N + μv • N = f mse , on ∂A, grad ψ • N -e 3 v • N = q ms , on ∂A, ( 21 
)
where

F (v) = µ R v + (λ + µ)grad div v, G(v) = 2µ Sym grad v + λ(div v) Î, ẅ = μ ẅ -e 3 ψ, ψ = -e 3 ẅ + (2ε 2 -1) ψ, b s = b sA + b se e, f ms = f msA + f mse e, (22) 
R is the Laplacian operator, and F = div G is the Navier operator in the plane A.

A Saint-Venant/Almansi Solution

We seek a solution of ( 21) of the form

ẅ = m i=0 z i i! ẅi (r), v = m i=0 z i i! vi (r), ψ = m i=0 z i i! ψi (r). ( 23 
)
Substituting from ( 23) into [START_REF] Daví | Saint Venant's problem for linear piezoelectric bodies[END_REF], recalling [START_REF] Dell'isola | Almansi-type boundary conditions for electric potential inducing f exure in linear piezoelectric beams[END_REF], and equating like powers of z i /i! on both sides, we obtain partial differential equations, boundary conditions and integrability conditions to determine ẅ0 , ẅ1 , . . . , v0 , v1 , . . . , ψ0 , ψ1 , . . .. For i > 3, these boundary value problems have null solutions. Denoting constants by a superscript zero, for i = 3, the solution is

v3 = v 0 3 + θ 0 3 ( * r), ẅ3 = w 0 3 , ψ3 = ψ 0 3 . ( 24 
)
The integrability conditions for the torque, axial force and the charge require that

θ 0 3 = 0, w 0 3 = 0, ψ 0 3 = 0. ( 25 
)
Using ( 24) and ( 25), equations for the determination of v2 , ẅ2 and ψ2 are

F (v 2 ) = 0, R ẅ2 = 0, R ¨ψ 2 = 0, G(v 2 )N = -2(λ + µ)τ 2 N, grad ẅ2 • N = -μv 0 3 • N, grad ψ2 • N = e 3 v 0 3 • N (26)
and their solution is

v2 = v 0 2 + θ 0 2 ( * r) -τ 2 r, ẅ2 = w 0 2 -v 0 3 • r, ψ2 = ψ 0 2 . ( 27 
)
The integrability conditions for the torque, axial force and the electric charge require that

θ 0 2 = 0, w 0 2 = 0, ψ 0 2 = 0. ( 28 
)
Field equations for v1 , ẅ1 and ψ1 are

F (v 1 ) = (c 3 + λ)v 0 3 , R ẅ1 = 0, R ψ1 = 0, G(v 1 )N = (c 3 + λ)(v 0 3 • r)N, grad ¨w 1 • N = -μv 0 2 • N, grad ψ1 • N = e 3 v 0 2 • N, (29) 
and have the solution

v1 = v 0 1 + θ 0 1 ( * r) + c 3 + λ 2(λ + µ) Sym(r ⊗ ( * r))( * v 0 3 ), ẅ1 = w 0 1 -v 0 2 • r, ψ1 = ψ 0 1 . ( 30 
)
Here T is the torque and Q the total charge. The surface tractions f at the end faces A 0 and A have zero resultant force, and their resultant moment equals T about the axis e of the bar. The solution of the second-order problem is

v = -νarω + z( * r)τ + [ξ 12 ω 2 + (ξ 13 R 2 + ξ 5 r 2 )τ 2 ]r + χ 15 μ z( * r)τ ω -1 2 z 2 rτ 2 , w = zaω + ξ 10 [(2ξ 5 (λ + µ) + ξ 0 )R 2 τ 2 + χ 5 ω 2 ]z, ψ = zω + ξ 11 [(2ξ 5 (λ + µ) + ξ 0 )R 2 τ 2 + χ 5 ω 2 ]z, ω = Q/ξ 14 A, τ = T / μJ A (35)
Thus the angle of twist/length equals τ + (χ 15 / μ)τ ω implying thereby that an electric f eld alters the angle of twist/length and this change is proportional to the charge/area. Also there is a second-order Poisson effect with one part proportional to r and another one proportional to r 3 ; the part varying as r 3 depends upon the piezoelectric constants.

One part of the axial strain w is proportional to τ 2 and ω 2 as expected and is a generalization of the Poynting effect to transversely isotropic piezoelectric materials. When τ = 0, the term χ 5 ξ 10 ω 2 represents the correction to the axial strain caused by the nonlinear response of the piezoelectric cylinder to the applied electric f eld.

Equation (35) 3 indicates that the difference of the electric potential at the two end faces of the piezoelectric cylinder depends upon the square of the angular twist. Even when there is no charge applied at the end faces, twisting of the piezoelectric cylinder will induce a measurable difference in the electric potential between the end faces. Hence a piezoelectric cylinder can be used to measure the angular twist.

Conclusions

We have studied the electromechanical deformations of a second-order, transversely isotropic homogeneous circular cylindrical bar with mechanical loads and/or electric charges applied to its end faces only. The constitutive relations are taken to be quadratic in the displacement gradients and the electric f eld. The centroid of one end cross-section is rigidly clamped in the sense that displacements, inf nitesimal rotations and the electric potential vanish there.

It is found that there is a second-order Poisson's effect not of the Saint-Venant type; this is proportional to r 3 where r is the distance of a point from the centroidal axis. Also, when the end faces are subjected to a pure torque and no electric charge, there may be a potential difference, proportional to the square of the angular twist, present between the end faces. 
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Equations for f nding f elds v0 , ẅ0 and ψ0 can now be written as

where expressions for ξ 1 , ξ 2 , ξ 3 , ξ 4 and other ξ 's introduced below in terms of other material parameters are given in the Appendix. The solution of (31) is

where functions and are given by

The clamping conditions u = 0, H -H T = 0, ψ = 0 at the centroid of A 0 require that

The second-order solution is characterized by seven constants v 0 3 , v 0 2 , θ 0 1 , w 0 1 and ψ 0 1 representing second-order f exure, bending, torsion, elongation and electric potential respectively. However, these effects are coupled in the sense that if a piezoelectric circular bar is twisted by applying equal and opposite torques at the end faces, then there is also second-order torsion, elongation and electric f eld.

Let us consider deformations of the bar under the following resultant loads.

Appendix

Using the notations

we f nd that the constitutive relations for a second-order transversely isotropic material with the axis of transverse isotropy along the unit vector e are as follows: 

Here