
HAL Id: hal-00498048
https://hal.science/hal-00498048

Preprint submitted on 6 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Syntactic parsing with NooJ
Max Silberztein

To cite this version:

Max Silberztein. Syntactic parsing with NooJ. 2009. �hal-00498048�

https://hal.science/hal-00498048
https://hal.archives-ouvertes.fr

1

Syntactic parsing with NooJ

Max Silberztein
LASELDI, Université de Franche-Comté,
Besançon, France
max.silberztein@univ-fcomte.fr

ABSTRACT. When parsing a text, NooJ’s parsers store all the annotations that they produce in
the Text’s Annotation Structure (TAS). At each level of the various linguistic analyses and the
corresponding parser, a given parser may add annotations to, or remove annotations from,
the TAS. As annotations are attached to larger and larger sequences of texts, the TAS
represents the hierarchical structure of the sentence and its syntactic constituents. We have
added a new module that processes this structured information in order to display the
structural tree of sentences. We discuss the difference between a structural tree and a
derivation tree, and we show how NooJ's structural trees can represent any type of linguistic
units, including discontinuous ones.

1. Linguistic Units

One characteristic of NooJ is that its parsers process several types of linguistic units
in texts: prefixes and suffixes (e.g. dis-, –ization), simple words (e.g. table), multi-
word units (e.g. as a matter of fact) and discontinuous frozen expressions (e.g. to
take … into account).1 All linguistic units recognized by NooJ’s morphological,
lexical, syntactic and semantic parsers are represented as annotations, rather than
tags.2

An annotation might represent either an Atomic Linguistic Unit (ALU), i.e. an
element of the vocabulary of a language, or any type of sequences of ALUs that
constitutes a meaningful syntactic or semantic unit, such as a noun phrase (e.g. the
head of the company), a verbal group (e.g. may not have wanted to read) or an
adverbial complement (e.g. Monday February the 11th at 2PM), etc.

When parsing a text, NooJ’s parsers store all the annotations that they produce in the
Text’s Annotation Structure (TAS). Lexical annotations (ALUs) are displayed as

1 Cf. (Silberztein 2008).

2 Cf. (Silberztein 2007).

Max Silberztein

2

black labeled arrows in the TAS; syntactic annotations are generally displayed in
green in the TAS. At each level of the various linguistic analyses and the
corresponding parser (orthographical, lexical, morphological, syntactic and
semantic), a given parser may add annotations to, or remove annotations from, the
TAS. Usually parsers look up any type of information in the TAS, and enrich the
TAS as they produce different types of analysis.

As a large number of linguistic units are ambiguous, the TAS often represents more
than one annotation at a given location in the text, thus representing any type of
ambiguity that might occur within one level of linguistic analysis, or between
various levels of analysis. For instance, in the following figure that represents the
TAS after the lexical parsing of a text, we can see that the multi-word unit round
table (meaning a meeting) has been annotated in parallel with other literal
interpretations for the same exact sequence. A number of ambiguities produced by
low-level parsers might be solved by higher-level parsers: for instance it is easy to
disambiguate the word “that” in the following sentence:

I brought that with that table.

When a syntactic parser produces an analysis for the whole sentence, it annotates the
first occurrence as a pronoun and the second occurrence as a determiner.

Indeed, NooJ contains also a number of disambiguation mechanisms that can be
used to remove annotations from the TAS, either automatically (via syntactic
grammars selected in Info > Preferences), semi-automatically (via regular
expressions selected from the TEXT > Locate panel) or manually (directly in the
TAS window)3

However, it is often impossible to automatically disambiguate words, phrases or
sentences with purely linguistic tools. For instance, in the sentence:

.

There is a round table in room A32

there is no way a computer (or even a human, for that matter) can detect for sure if
the round table refers to a meeting or to a piece of furniture with a round shape. In
the real world, figuring out what this round table refers to might involve a complex
discourse analysis (to understand the semantic context of the sentence), or even a
pragmatic analysis (to understand the context of the situation).

3 see (Silberztein 2010a).

Syntactic parsing with NooJ

3

Figure 1.Lexical ambiguity is represented by parallel paths

In consequence, NooJ’s TAS is designed to store potential ambiguities along several
levels of linguistic analyses, and each of NooJ’s parsers (at the morphology,
syntactic and semantic levels) is designed to process ambiguous inputs and produce
ambiguous outputs.

2. Structured Annotations

Max Silberztein

4

NooJ syntactic grammars are typically used in order to describe sequences of words
that constitute meaningful units or entities (e.g. “the head of the European Central
Bank”, “Monday, June the 12th at 3PM”). In other applications, linguists write
syntactic grammars in order to locate syntactic constructions of interest, such as
idiomatic or frozen expressions4 or sentences that contain certain grammatical words
or syntactic constructs.5

NooJ Syntactic grammars can associate matching (recognized) sequences in the text
input with different kinds of information produced as an output; the information
produced in the output of the syntactic grammars is represented as annotations that
NooJ stores in the TAS. For instance, NooJ’s Date.nog syntactic grammar, which
represents date complements such as “Monday, June 13th at a quarter to 9”,
annotates every recognized date with the annotation <ADV+Date>; after having
applied this grammar to a text, the corresponding annotations appear directly in the
TAS in Figure 2.

A given grammar may produce more than one annotation for a given region of text
in order to represent structural information for a phrase or a sentence. Moreover, as
annotations can be recursively attached to substrings of the matching sequences, it is
possible to represent and annotate embedded phrases.

4 See for instance (Simonetta Vietri 2010).

5 See for instance (Silberztein Max 2010b).

Syntactic parsing with NooJ

5

Figure 2. A syntactic annotation in the TAS

For instance, NooJ will annotate all the sentences recognized by the syntactic
grammar of Figure 3 as <SENTENCE>; inside each of these annotated sentences,
the sequence of words recognized by the embedded graph NP at the left of the verb
will be annotated as <NP+Sub>, the sequence recognized by the graph VG will be
annotated as <VG>, and the sequence recognized by the graph NP after the verb will
be annotated as <NP+Obj>. Inside each of the graphs NP and VG (which
themselves contain other embedded graphs), there might or might not be other
annotations.

When such grammars are applied to a given text, the resulting TAS contains
annotations that are structured, and the structure of the TAS reflects on the structure
of the original sentence or phrase in Figure 4.

Max Silberztein

6

Figure 3. A grammar may produce embedded syntactic annotations

Figure 4. A structured system of annotations

It is important to realize that the syntactic TAS produced after a syntactic analysis
has a different nature than the lexical TAS:

Syntactic parsing with NooJ

7

-- in the lexical TAS, parallel annotations correspond to various types of
ambiguities. For instance, in Figure 1, the annotation for “round table” is parallel to
the sequence of two annotations for “round” followed by “table”. Obviously, these
two analyses are concurrent, as they cannot exist at the same time.

-- in the syntactic TAS, parallel annotations may correspond to different levels of
constituents in the phrase or sentence structure. For instance, in Figure 4, the
annotation <SENTENCE> co-exists with the sequence of the three annotations
<NP+Sub>, <VG> and <NP+Obj>. Of course, these parallel paths are both valid at
the same time: they correspond to two different levels in the structure.6

We have added the functionality of displaying this structured set of annotations to
NooJ in the form of a structural tree that represents the structure of the recognized
sequence, usually a phrase or a sentence (CONCORDANCE > Display Syntactic
Analysis), see Figure 5:

Figure 5.The corresponding structural tree

6 Note however that some lexical ambiguities might still remain in the TAS after the syntactic
parsing.

Max Silberztein

8

Note finally that if there are more than one set of syntactic annotations, or if there
are remaining lexical ambiguities in the TAS, NooJ will produce and display more
than one syntactic structural tree.

3. Structural trees vs Derivation trees

NooJ can display both structural and derivation trees and it is important to
understand their difference. NooJ’s structural trees, such as the one in Figure 5 that
was produced by the grammar of Figure 3, have a different nature than derivation
trees produced by traditional syntactic parsers.

NooJ structural trees represent the structure of the annotations that were attached to
the recognized sentences or phrases, whereas derivation trees represent the syntactic
parsing process, i.e. the path in the grammar that the parser took while it was parsing
the text.

For instance, consider the following grammar that contains a number of embedded
rules (or graphs):

NP = :Det N :Modif ;
Det = :DefinedDet | :UndefinedDet | :NominalDet |
:AdjectivalDet ;
DefinedDet = :Article | :PossessiveDet |
:DemonstrativeDet ;
Article = the;
PossessiveDet = my | your | his | her | our | their;
DemonstrativeDet = this | that | these | those;

…

The corresponding derivation tree is displayed in Figure 6. Traditional syntactic
parsers produce derivation trees as their main result. Although derivation trees are
very useful for figuring out how a given text was actually parsed7

, they represent
the structure of the grammars, rather than the structure of the sentence. And, of
course, derivation trees are highly dependent on the structure of the grammar: if a
linguist decides to reorganize the DET grammar for instance, the derivation trees
produced by the parser will change accordingly.

7 NooJ’s grammar debugger uses derivation trees to display the path of each matching
solution (see Grammar > Debugger).

Syntactic parsing with NooJ

9

Figure 6. The corresponding derivation tree

On the contrary, the structural information represented in NooJ’s structural trees is
quite independent from the way the grammar is organized: that independence allows
different linguists to construct and accumulate a large number of grammars over
time, and their merging does not jeopardize the integrity of the resulting analysis.

Max Silberztein

10

4. Complex Atomic Linguistic Units

NooJ’s syntactic parser processes represents affixes, simple words, multi-word units
as well as discontinuous expressions in a unified way.

Figure 7.A complex TAS and the corresponding syntactic tree

Syntactic parsing with NooJ

11

Figure 7 shows the TAS for the text “He cannot turn the lights off”: the contracted
word cannot is represented by two annotations, whereas the discontinuous phrasal
verb8

Since NooJ’s syntactic parser operates on the TAS rather than on the text itself, it
processes the two annotations “<can,V>” and “<not,ADV>” as if they were two
separate words. The discontinuous annotation for the phrasal verb “<turn
off,V+PV>” is not a problem for NooJ’s syntactic parser either: NooJ knows how to
handle discontinuous annotations.

 turn off is represented by a “bridge-type” annotation:

The ability to process all types of ALUs, including contracted or agglutinated as
well as simple words, allows linguists to design simple syntactic grammars. For
instance, in French, the word form au is a contraction of the preposition à and the
determiner le. Usually, these two components do not belong to the same phrase: the
preposition à belongs to the main verb’s structure (e.g. parler à quelqu’un) or to a
prepositional phrase (e.g. être à Paris), whereas determiners introduce noun phrases.
Because NooJ transparently solves contractions, syntactic grammars built into NooJ
do not need to take them into account: a regular, simple grammar for noun phrases
that start with a determiner will automatically work in NooJ, even if the initial
determiner happens to be contracted.

Figure 8 shows that the contracted word aux is processed as two ALUs (à and les)
that belong to different substructures of the structural tree. This capability is useful
for taking care of the dozen contractions in English and in Romance languages, and
it is absolutely crucial for agglutinative languages such as Arabic and Hebrew,
where series of grammatical words that belong to different structures of the sentence
are agglutinated: in these languages, sequences such as “and in my house” are
written as one word form9

.

8 See (Machonis 2008).

9 See (Mesfar 2010).

Max Silberztein

12

 Figure 8. Syntactic parsers process contracted words transparently

5. Disambiguation

Until now, the only method for automatically disambiguating words in texts was to
filter out annotations from the TAS by applying local grammars. Although local
grammars are easy to develop, perform very efficiently, and produce spectacular

Syntactic parsing with NooJ

13

results, in most cases, only a syntactic analysis of the whole sentence can produce a
perfect syntactic disambiguation of all ALUs in the sentence.10

NooJ’s syntactic parser makes it easy to perform this perfect syntactic
disambiguation: when one applies a syntactic grammar to the text with the option
“syntactic analysis” checked, NooJ keeps all matching ALUs in the concordance;
the concordance entry can then be reapplied to the original TAS as a filter, which in
effect removes all other ALUs: the resulting TAS is disambiguated. Figure 4 shows
such a resulting TAS: all the ALUs for the verb “to man” (such as in “you man the
ship”).

6. Conclusion

NooJ’s syntactic parser now allows linguists to build and accumulate larger
syntactic grammars up to the sentence level. As opposed to traditional syntactic
parsers, NooJ processes and represents all types of linguistic units: affixes, simple
words, multi-word units and also discontinuous expressions, which are transparently
represented as chains of linked leaves in the syntactic tree.

NooJ, as opposed to traditional syntactic parsers, distinguishes structural trees from
derivational trees: in particular, structural trees represent the structure of the text
which may be largely independent and different from the structure of the grammar
that was used to parse the text. This allows structural trees to be much more robust
and standardized, as any local or global reorganization of a syntactic grammar does
not need to have any impact on the representation of the resulting sentence structure.

This framework allows NooJ to process contractions and agglutinations
transparently: for instance, contracted words have no impact in the design of
syntactic grammar because they are taken care of before the syntactic parsing.
Another characteristic of NooJ’s syntactic parser is that it does not require the text’s
linguistic units to be fully disambiguated beforehand: in particular, lexical
ambiguities between multi-word units and sequences of simple words may remain
unresolved, both before and after the syntactic parsing of texts.

Structural syntactic grammars are used to produce a structural analysis of the
matching phrases and sentences, which can then be displayed as trees. As opposed

10 By perfect syntactic disambiguation, I mean that all the ALUs that cannot possibly occur in
the sentence, according to syntactic rules, will be deleted. Of course, the TAS still might
contains a number of remaining lexical ambiguities, see the ambiguity in “there is a round
table in room A32” (a meeting or a table?).

Max Silberztein

14

to traditional syntactic parsers, NooJ allows linguists to control the structure
produced independently from the organization of the grammar. I believe this feature
is crucial to the project of accumulating and sharing large numbers of grammars.
Finally, the resulting structured matches can be used as filters to disambiguate the
TAS in a more powerful and systematic way than possible when using local
grammars.

References

Machonis Peter, 2008. NooJ: a practical method for Parsing Phrasal Verbs. In Proceedings of
the 2007 International NooJ Conference. Cambridge Scholars Publishing: Newcastle (pp
149-161).

Mesfar Slim, 2010. Morphological Grammars for Standard Arabic Tokenization. In
Proceedings of the 2008 International NooJ Conference. Cambridge Scholars Publishing:
Newcastle (pp 114-127).

Silberztein Max, 2007. An Alternative Approach to Tagging. Invited Paper In Proceedings of
NLDB 2007. LNCS series, Springer-Verlag Eds (pp. 1-11).

Silberztein Max, 2008. Complex Annotations with NooJ. In Proceedings of the 2007
International NooJ Conference. Cambridge Scholars Publishing: Newcastle (pp 214-227).

Silberztein Max, 2010a. Disambiguation Tools for NooJ. In Proceedings of the 2008
International NooJ Conference. Cambridge Scholars Publishing: Newcastle (pp. 158-171).

Silberztein Max, 2010b. Analyse automatique des locutions en sous et sur. In Le français
moderne, July 2010.

Vietri Simonetta, 2010. The Formalization of Italian Lexicon-Grammar Tables in a NooJ pair
Dictionary/Grammar. In Proceedings of the 2008 International NooJ Conference.
Cambridge Scholars Publishing: Newcastle (pp. 182-191).

