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Abstract. In this paper, we present a way to implement refinement relations over
transition systems, useful for incremental behavioural model development. Our
work is based on the extension relation defined over Labelled Transition Sys-
tems (LTS). This relation appears to be suitable for refinement developments, but
its computability has not yet been established. We propose an implementation
which relies on the generalisation of a bisimulation relation applied on accep-
tance graphs. It is formally demonstrated and illustrated through a case study of a
system modelled both in UML state machine and LTS. The analysis is performed
on LTS by a JAVA prototype we have developed, and the interpretation of results
is given on the corresponding UML state machine. Moreover, when the relation
is not satisfied, the tool can exhibit failing traces and can give several proposals
to improve the model. Hence, this work goes toward a behavioural semantics for
the class specialisation relation of object oriented models.

1 Introduction

We are interested in the refinement of UML State Machines (UML SM). So far, the
refinement notion has been well stated on formal specifications such as set theory based
languages Z and B [1]. In the object orientation world, this is not a primary notion,
even though the specialisation relation between classes has some similarities with a
refinement relation. In behavioural models like automata’s theory (Labelled Transition
Systems—LTS, Input/Output Automata, Petri Nets, Process Algebras, . . . ), refinement
is neither a built-in notion. In the UML community, some works address the problem
of inter-consistency and intra-consistency [2]. Nevertheless, the refinement problem of
State Machines is rarely addressed.

If we consider the simple language of LTS, it appears that an already defined re-
lation is adequate for refinement purposes, in the sense that any implementation of a
‘detailed’ model is an implementation of the initial model. However, no efficient verifi-
cation implementation of this relation has been proposed yet. In this paper, we propose
an implementation technique which relies on bisimulation computations over trans-
formed graphs, thanks to related works developed by [3].

The complementary side of these works consists in adapting these results on UML
SM. Rather than defining a new refinement relation on UML SM, we choose to propose
a transformation between UML SM and LTS, compare the obtained LTS with respect
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to the chosen relation, and make an abstract interpretation of the comparison on UML
models. This allows us to point out some modelling refinement mistakes, since a non
checked relation on LTS means there is no refinement on UML SM.

The paper is organized in three parts. Section 2 presents existing relations over LTS
and proposes an adequate one for refinement purposes, along to two criteria. This part
is completed by formal definitions over LTS. Section 3 focuses on the refinement rela-
tion computability. For this purpose, it proposes a theorem which relates refinement to
bisimulation computed over acceptance graphs. This leads to an efficient algorithm. In
section 4, we present the demonstrator we have developed in JAVA. The obtained results
are illustrated on a case study. An example of a non trivial mistake during refinement
is pointed out thanks to the proposed relation verification. This part also presents the
transformation principles from UML state machines to LTS. Section 5 concludes and
presents our future works.

2 Analysis of existing relations

This section gives an informal presentation of preorders defined overs LTS and shows
that the extension relation is a good candidate for a strong refinement relation. Then, we
recall definitions of LTS [4], refusal sets [5], acceptance sets [6] and some associated
results useful to give an implementation of refinement verification.

2.1 Toward a refinement relation to compare behavioural models

This part proposes a summary of existing relations developed for comparing behavioural
models in order to point out which of them can be used in a framework of refinement
modelling.

We are looking for asymmetric (but not necessarily antisymmetric) and transitive
relations. The refinement technique we want to follow consists in adding concrete de-
tails and reducing non-determinism. A refined model is more precise (details are added)
and more concrete (abstraction is reduced) step towards an implementation model.

Refinement relations for LTS. Here, we present informal interpretations of relations
which will be formally defined in the next section. For the moment, we consider that
LTS describe machines interacting with their environment by means of actions. A spe-
cial (unobservable) action is also proposed to describe internal treatments.

Trace inclusion. In the case of LTS, adding details consists in defining new traces and
possibly new actions. A trace is an observable and partial sequence of actions starting
from the initial state. The problem that arises is that a LTS R can have more traces than
a LTS A and be less deterministic (for instance, using Milner notations [4], R =def

a; b; stop+ a; stop has the same trace set as A =def a; b; stop, but may fail after a).



Simulation relations. By the same way, simulation relations proposed by Milner [4] are
not adequate for refinement and implementation purposes. Indeed, like trace inclusion,
if R simulates A, R may only do what A must do, but may also refuse it. Again, R
can be less deterministic than A. If we see A like a reference specification, we want to
define a refinement R that should accept what A must accept.

Conformance relations. The relation conf has been proposed as an implementation
relation to check if a model of an implementation fulfils its specification [7,8]. It is a
formalisation of the conformance relation defined in conformance testing. An imple-
mentation model I conforms to a specification model S if it must do all what S must
do (or if S may refuse all what I may refuse). The conf relation specifically captures
the ‘reduction of non determinism’ but it is not transitive.

Extension and reduction relations [7,8] are conformance relations combined with
trace inclusion. They respectively consist in extending and reducing the set of traces
while preserving conformance. Both are transitive. The extension consists in adding
new functionalities by preserving existing ones. The reduction consists in removing
useless functionalities or adding constraints to existing ones, always by preserving
core functionalities. This latter approach may seem more intricate, and is more rarely
adopted in model development. The extension relation combines reduction of non-
determinism and extension of traces, which is exactly what we are looking for.

Unfortunately these relations (conf , red and ext) appear to be hard to check in
practice [9]. Interesting implementation results can be found for may and must pre-
orders defined by Hennessy and Cleaveland [3]. May and must relations are similar to
trace inclusion and reduction relation, but are defined to take also into account the cases
of divergent automata (i.e. automate which could enter in infinite internal transition se-
quences). Cleaveland [3] proposed polynomial algorithms to implement may and must
preorders.

The following table gives a summary of these relations according to two criteria:
reduction of non determinism and extension of the set of traces.

Reduction of
non determinism

Extension of traces

conf ? ? ? ?

red ? ? ? ∅
ext ? ? ? ? ? ?

may ∅ ? ? ?

must ? ? ? ∅

? may be supported.
? ? ? is guaranteed.
∅ is not supported.

The extension relation is the only one which matches the two targeted criteria. Let
us examine in more details if it is suitable for refinement purposes. As stated by Guy
Leduc [7], conf and ext are such that:

R ext A⇒ ∀P. (P conf R⇒ P conf A). (1)

Considering that conf is an implementation relation, this latter relation states that ext
is stronger than a refinement relation w, characterized by

R w A⇔ ∀P (P imp R⇒ P imp A). (2)



Where R w A means that R refines A. This property can also be formulated by [10]:

R w A⇔M(R) ⊆M(A), (3)

whereM(A) denotes all the implementations of A. This matches the B or Z definition
of refinement [1].

The ext relation is a refinement relation, but it is not the largest one. In a context of
model development, such a relation is useful in case it is satisfied (since it guarantees,
then, that the refinement is a correct one), and can be used like a warning in case it is
not satisfied.

Refinement relations for UML State Machines. We consider that UML State Ma-
chines are associated to classes. They are used to describe the expected behaviours of
the objects of a class. On object oriented models, if a class CR is a specialisation of
a class CA, which is written CR extends CA in some object oriented languages like
JAVA, this means that all instances of CR can behave like instances of CA: any instance
of CR is also an instance of CA. Instances of CR can do everything that instances of
CA can also do. Stated more formally, we could write:

CR extends CA ⇒ Instances(CR) ⊆ Instances(CA). (4)

More precise definitions could be found in [11]. Properties (1) and (4) are similar.
This means that the extension relation over classes is a refinement relation. But what
about class refinement and their associated state machines refinement? What kind of
relation can we define to state that a state machine SMR refines a state machine SMA,
and how could we check this relation? Since UML state machines can be seen like
extensions of simple labelled transition systems, our point of view is to consider LTS
like an abstract interpretation of state machines. We won’t define a detailed relation
over State Machines (like we did for conformance [12]). Rather, we shall elaborate a
translation from UML to LTS and check whether extension is satisfied or not between
LTSs. The backward interpretation leads to point out some abstract results (the one
carried by LTS models).

2.2 Formal definitions of conformance relations

A LTS [4] is a graph consisting of states linked by labelled transitions. It models be-
havioural specifications as well as implementations.

Definition 1 (Labelled Transition Systems). A LTS P = (S,Act,→, s0) is a tuple
consisting of a non-empty finite set S of states; a set Act of actions; a transition relation
→⊆ S ×Act× S; an initial state s0 ∈ S.

Act = L ∪ {τ} where τ represents any internal, unobservable actions, and L is the
set of observable actions. Let P and Q be two LTS. We need the following notations:

s
a−→ s′ =def (s, a, s′) ∈→

s
a1···a2−−−−→ s′ =def ∃s0, . . . , sn. s = s0

a1−→ . . .
an−−→ sn = s′



s
a1···a2−−−−→ =def ∃s′. s

a1···an−−−−→ s′

s
ε==⇒ s′ =def s = s′or s τ ···τ−−−→ s′

s
a==⇒ s′ =def ∃s1, s2. s

ε==⇒ s1
a−→ s2

ε==⇒ s′

s
a1···a2====⇒ s′ =def ∃s0, . . . , sn. s = s0

a1==⇒ . . .
an==⇒ sn = s′

s
σ==⇒ =def ∃s′. s

σ==⇒ s′

s after σ =def {s′ | s
σ==⇒ s′}

P after σ =def s0 after σ

Traces : Tr(P ) =def {σ ∈ L∗ | s0
σ==⇒}

Out(p) =def {a ∈ L | p
a−→}

Out(p, σ) =def ∪p′∈p after σOut(p
′)

Out(P, σ) =def Out(s0, σ)

D(s, a) =def {s′ | s
a−→ s′}

The refusal set of P after trace σ is defined by:

Definition 2 (Refusal set). Ref (P, σ) =def

{
X | ∃p ∈ P after σ. p 6 e==⇒,∀e ∈ X

}
.

The refusal set is a set of sets, Ref (P, σ) ⊂ P(L). If σ 6∈ Tr(P ), Ref (P, σ) = ∅.

Definition 3 (Conformance). Q conf P if ∀σ ∈ Tr(P ). Ref (Q, σ) ⊆ Ref (P, σ).

Extension and reduction are defined as extending or reducing traces, while preserving
the conformance.

Definition 4 (Reduction). Q red P if Tr(Q) ⊆ Tr(P ) and Q conf P.

Definition 5 (Extension). Q ext P if Tr(P ) ⊆ Tr(Q) and Q conf P.

The relation conf is not a preorder relation: conf has not the transitivity property.
But red and ext are reflexive and transitive.

2.3 Acceptance sets

In this section, we present a definition of acceptance sets and their relation with re-
fusal sets. This notion will be used in the next section to build up acceptance graphs
associated to LTS.

Definition 6 (Acceptance set). The acceptance set of P after σ is defined by:

Acc(P, σ) = {X | ∃p′ ∈ P after σ. X = Out(p′, ε)}

The acceptance set represents the “sets of possible actions” of a process after a trace.
Intuitively, the inclusion of acceptance set allows us to check whether a process is more
deterministic than another.



Definition 7 (Set of sets inclusion). Let A,B ⊆ 2Act. A ⊂⊂ B if:

∀S ∈ A. ∃S′ ∈ B. S′ ⊆ S.

Theorem 1. ∀σ ∈ Tr(Q). Acc(P, σ) ⊂⊂ Acc(Q, σ)⇔ Ref (P, σ) ⊆ Ref (Q, σ)

Proof. Firstly, we must show the relationship between the inclusion of refusal sets and
the inclusion of acceptance sets.

We can rewrite the definition 2 as follows:

Ref (P, σ) =def

{
X|∃p′.P σ==⇒ p′ ∧ p′

e

6⇒,∀e ∈ X
}

⇔ Ref (P, σ) =def

{
X|∃p′.P σ==⇒ p′ ∧X ⊆ L−Out(p′, ε)

}
Secondly, we can reformulate the definition 7 by applying the definition of the accep-
tance set 6:

∀σ ∈ Tr(P ). Acc(P, σ) ⊂⊂ Acc(Q, σ)
⇔∀σ ∈ Tr(P ). ∀X ∈ Acc(P, σ). ∃Y ∈ Acc(Q, σ). Y ⊆ X

⇔∀σ ∈ Tr(P ). ∀X ∈ {Out(p′, ε)|P σ==⇒ p′}. ∃Y ∈ {Out(q′, ε)|Q σ==⇒ q′}. Y ⊆ X(7)

Let X,Y, Z be three sets, we have: X,Y ⊆ Z ∧ Y ⊆ X ⇔ Z −X ⊆ Z − Y
With Out(p′, ε) and Out(q′, ε) ⊆ L, we have therefore:

∀σ ∈ Tr(P ).{(L−Out(p′, ε))|P σ==⇒ p′} ⊆ {(L−Out(q′, ε))|Q σ==⇒ q′}
⇔∀σ ∈ Tr(P ).Ref (P, σ) ⊆ Ref (Q, σ))

So we have Acc(P, σ) ⊂⊂ Acc(Q, σ)⇔ Ref (P, σ) ⊆ (Q, σ).

3 Computability of extension and reduction relations

After having selected the most appropriate relations to compare models and introduced
main definitions of the domain, we outline the problem of computability of the rela-
tions ext and red. As far as we know, these relations have not been implemented yet.
Nevertheless, Cleaveland and Hennessy [3] have introduced the concept of acceptance
graphs to implement may and must relations. We will follow the same approach to
demonstrate the extension and reduction relations. At first, we introduce main defini-
tions about bisimulation and acceptance graphs and next, we present our demonstration.

3.1 Bisimulation

Inspired of the Cleaveland’s work of generalisation of prebisimulation definition [3],
we reformulate the definition of bisimulation given by Milner [4].

Definition 8 (Bisimulation relation.).
LetΠ ⊆ S×S and Ψ1, Ψ2 ⊆ S×Act. The relationR 〈Π,Ψ1, Ψ2〉 is a bisimulation

ifR ⊆ Π and, for all p, q ∈ S, pRq implies:



1. 〈p, a〉 ∈ Ψ1 ⇒ (p a−→ p′ ⇒ ∃q′.q a−→ q′ ∧ p′Rq′)
2. 〈q, a〉 ∈ Ψ2 ⇒ (q a−→ q′ ⇒ ∃p′.p a−→ p′ ∧ p′Rq′)

When Π = S × S and Ψ1, Ψ2 = S × Act, the formula is the same as the bisimulation
defined by Milner.

Definition 9 (Largest bisimulation.).
P ⊂≈

Π
〈Ψ1,Ψ2〉 Q if there exists a bisimulationR 〈Π,Ψ1, Ψ2〉 with pRq.

In this definition, if Ψ2 is replaced by ∅, the bisimulation becomes the simulation
preorder. The advantage of this definition is to encapsulate the bisimulation and the
relation Π defined over two states.

3.2 Acceptance graphs

Before presenting acceptance graphs, we recall the definition of ε-closure.

Definition 10. ε-closure of a set of states Q:

Qε = {p|∃q ∈ Q.q ε==⇒ p}

Definition 11 (Acceptance graph.). A(P ) = 〈T,Act,→T , t0〉 of LTS P is a tuple
where:

1. T is the set of states. T = {Q ∈ 2S |Q = Qε};
2. →T is the set of transitions;
3. For t ∈ T , we define the acceptance set t.acc = {X|X = Out(q, ε) ∧ q ∈ Qε};
4. For A ∈ t1.acc, a ∈ A⇒ ∃t2 ∈ T such that t1

a−→T t2;
5. t0 = ({p0})ε.

This definition is similar to acceptance graphs of [3], but the definition of acceptance
sets does not take into account divergence states. The algorithm of acceptance graphs
construction introduced by [3] can be adapted to the construction of acceptance graphs
as defined in this paper.

3.3 Demonstration of the extension and reduction computability

Theorem 2. Let P be a LTS and A(P ) be its acceptance graph: Tr(A(P )) = Tr(P ).

Proof. We can prove it by induction with each trace σ ∈ Tr(P )

Theorem 3. Let Π = {〈t, u〉|u.acc ⊂⊂ t.acc} and P,Q be two LTS:

1. Q red P ⇔ A(P ) ⊂≈
Π
〈∅,Ψ2〉 A(Q)

2. Q ext P ⇔ A(P ) ⊂≈
Π
〈Ψ1,∅〉 A(Q)

Proof. We are going to prove (2.). (1.) is similar and will not be expressed in this article.
We note t is a state ∈ A(P ) and u ∈ A(Q)
⇐) We must prove A(P ) ⊂≈

Π
〈Ψ1,∅〉 A(Q)⇒ Q ext P

Firstly, we establish the relationR〈Π,Ψ1, ∅〉 as follows:



R = {∀t′.t a−→T t
′ ⇒ (∃u′.u a−→T u

′ ∧ t′Ru′) ∧ ( u′.acc ⊂⊂ t′.acc)}

We have to demonstrate the trace inclusion which is in the definition of ext. Hence,
the first part of the relationR can be rewritten:

∀t′ ∈ A(P ).t a−→T t
′ ⇒ ∃u′ ∈ A(Q).u a−→T u

′

⇒∀a ∈ σ ∧ σ ∈ Tr(A(P ))⇒ ∃σ ∈ Tr(A(Q))
⇒Tr(A(P )) ⊆ Tr(A(Q))⇒ Tr(P ) ⊆ Tr(Q).(Theorem 2)

To continue to demonstrate the conformance, we use the definition of acceptance
graph u′.acc = Acc(Q, σ), t′.acc = Acc(P, σ) and theorem 1. So the second part of
the relationR can be reformulated:

∀t′ ∈ A(P ).∃u′ ∈ A(Q).u′.acc ⊂⊂ t′.acc
⇒∀σ ∈ Tr(P ). Acc(Q, σ) ⊂⊂ Acc(P, σ)
⇒∀σ ∈ Tr(P ). Ref (Q, σ) ⊆ Ref (P, σ)

We have therefore the conformance: A(P ) ⊂≈
Π
〈Ψ1,∅〉 A(Q)⇒ Q ext P

⇒)
From Q ext P , we must prove the relationR〈Π,Ψ1, ∅〉 as defined above.
By using theorem 1, we try to give the formula of the strong simulation relation.

Q ext P ⇒ Q conf P

⇔∀σ ∈ Tr(P ). Ref (Q, σ) ⊆ Ref (P, σ)
⇔∀σ ∈ Tr(P ). Acc(Q, σ) ⊂⊂ Acc(P, σ)(Theorem 1)

⇒{∀σ ∈ Tr(A(P )).t0
σ−→T tn ⇒ (∃un.u

σ−→T un) ∧ (un.acc ⊂⊂ tn.acc)}. (5)

To prove the relationR as established above, we must prove tn R un.

From (5): {∀σ ∈ Tr(A(P )). t0
σ−→T tn. ⇒ ∃un.u0

σ−→T un}
Suppose that a ∈ tn.acc⇒ a ∈ un.acc and σ.a ∈ Tr(P ) ⊆ Tr(Q)

⇒{tn
a−→ t′n ⇒ ∃u′n. un

a−→ u′n ∧ u′n.acc ⊂⊂ t′n.acc}

Let us prove t′n R u′n. Suppose that t′n
b−→T t

′′
n.

σ.a ∈ Tr(P ) ⊆ Tr(Q) ∧ b ∈ u′n.acc ⊂⊂ t′n.acc⇒ σ.a.b ∈ Tr(P ) ⊆ Tr(Q).

Because A(Q) is deterministic ⇒ ∃u′′n. u′n
b−→T u

′′
n.

⇒u′′n.acc ⊂⊂ t′′n.acc (By using (5))

⇒t′n
b−→T t

′′
n.∃u′′n. u′n

b−→T u
′′
n.u
′′
n.acc ⊂⊂ t′′n.acc

⇒t′n R u′n

Finally, we have Q ext P ⇔ A(P ) ⊂≈
Π
〈Ψ1,∅〉 A(Q)



The extension relation can be simply interpreted such as the simulation between
two transformed graphs (A(Q) simulates A(P )), and at each simulation states pair,
there exists the inclusion of acceptance set (Π = {〈t, u〉|u.acc ⊂⊂ t.acc}).

The proof of the reduction relation red is similar except that the simulation is ex-
pressed in the opposite way. i.e A(P ) ⊂≈

Π
〈∅,Ψ〉 A(Q) means that A(P ) simulates A(Q).

This theorem allows extension and reduction relations to be calculated like simula-
tion relations on transformed graphs, although a direct implementation of their initial
definitions, based on a trace set inclusion, would have been P-space complete.

4 Implementation and results

This part gives an overview of the JAVA prototype we have developed to implement
the extension relations. In order to illustrate obtained results, we present a case study
modelling a phone and the different models that may be set up during the incremental
modelling approach.

4.1 Implementation of extension and reduction relations

Fig. 1. Overview of the computation of extension relation

The JAVA prototype we have developed follows the computation approach of the-
orem 3. Consequently, the main steps to compute the extension relation are (see Fig-
ure 1):



– Transformation of state machines to be analysed into their corresponding LTS. This
step is manually achieved using informal rules presented in [13] and summarised
in Figure 2. Note that, at present, the UML state machines we consider do not take
into account signal or method parameters, neither other variables. Hence, UML
guards are not taken into account in corresponding LTS, and systematically lead to
non deterministic transitions.

– Computation of the acceptance graph associated to LTSs to be compared. This step
is automatic and leads to associate an acceptance set to every node of the graph.

– Computation of the bisimulation relation for every state of the acceptance graph
and verification of the acceptance sets inclusion.

UML visible action hidden action

time or change event [guard]/action
τ−→ . a−→ τ−→

call or signal event [guard]/action
e−→ · a−→ e−→

[guard]/action
τ−→ · a−→ τ−→

/action
τ−→ · a−→ τ−→

Fig. 2. Rules to transform transitions of UML state machines into LTS

The last step leads to guarantee that the model under development is an extension of
the reference model or not. If it is not the case, the verification tool gives details about
the state which failed and the reason why. By this way, the designer is guided to modify
the LTS of the model under development. Consequently, he is able to enhance the UML
model. A new verification loop is entering in order to test again the new model, until the
extension relation is verified. Next section illustrates this iterative modelling approach.

4.2 Case study: modelling simple and double call phones

This case study concerns the incremental modelling process of a phone and the ver-
ification of relations existing between classes developed at each step. A UML class
diagram presenting phone classes and interfaces is shown in Figure 3. The first step
consists in defining the specification of a simple phone from the user point of view (see
class SimplePhone in Figure 3). The specification required interface are user actions:
hang up, pick up, dial and comm in (incoming communication). These are signals the
SimplePhone is subscribed to. Signals provided by the phone and intended to the user
are shown in interface User msg. Let us suppose that class SimplePhone is consid-
ered as a reference model. Next modelling step consists in extending the functionality
of SimplePhone in order to specify a phone accepting a double call while the user is
on the phone. The class DoubleCall (Figure 3) is a specialisation of the SimplePhone
class. It inherits SimplePhone interfaces, and has its own required interface defining
signals accepting or rejecting/stopping the second call. In order to follow results of re-
duction analysis between SimplePhone and DoubleCall , let us consider state machines
associated with these classes (Figure 4).



Fig. 3. Class diagram of simple and double call phones

Fig. 4. (a) SM SimplePhone (b) SM DoubleCall

SM SimplePhone (Figure 4.a) represents the state machine associated with SimplePhone
class. There are two functionalities:

– The user is calling (left part of SM SimplePhone). In this case, the user picks-up and
dials. The connection is thus requested and two cases may occur: the number is
wrong or the called line is busy, and the called person picks-up. In the first case, the
user can only hangs-up (transition hang-up). The second case leads to a connection
(transition with a guard ack) that ends when the user hangs-up or when the calling
person decides to stop the call.

– The user is called (right part of SM SimplePhone). If he picks-up, the connection is
established and end as mentioned in the previous case. If he does not pick-up, the
call ends when the calling person decides to stop the call.

SMDoubleCall (Figure 4.b) is the same as SM SimplePhone apart from state Con-
nected: there is a new transition named when(called) in order to model the second call.



Two cases may occur: the user does not accept the second call and stops it (transition
stop of state Beeping) or the user accepts the second call and interrupts the first one
(transition accept of state Beeping). In this last case, when the second call ends (transi-
tions stop of state Connected2), the phone comes back in state Connected, except if the
user hangs-up (transition hang-up of state Connected2).

The goal is to verify if there is an extension relation between the simple call phone
and the double call one.

4.3 Does SM DoubleCall extend SM SimpleP hone?

The result given by our tool is that LTSDoubleCall does not extend LTSSimplePhone .

Fig. 5. (a) LTSSimplePhone (b) LTSDoubleCall

We give in details intermediate computations in order to illustrate the application
of theorem 3 as performed by the tool (see Figure 1). Figure 5 shows the LTS as-
sociated with state machines SM SimplePhone and SMDoubleCall, respectively named
LTSSimplePhone and LTSDoubleCall. LTS actions are named by the first letters of UML
labels. UML signals which are required and provided (such as comm in and comm out)
are translated into a single LTS action (com).

Having defined LTS associated with state machines to be compared, the analy-
sis tool is run in order to build up acceptance graphs and compute the bisimulation
relation. Figure 6 (resp. Figure 7) represents the acceptance graph associated with
LTSSimplePhone (resp. LTSDoubleCall). In these graphs, transitions are labelled by
actions defined in the LTS. Tables of Figures 6 and 7 give the acceptance set associated
to every node of the acceptance graphs.

Two properties are automatically checked. The first one is that there exists, for each
node of A(SimplePhone), a node of A(DoubleCall) which simulates it. The result of



AState Acceptance set
x0 {{ca}, {ca, p}}
x1 {{ca}, {ca, p}}
x2 {{d, h}, {com}, {com, h}, {h}}
x3 {{e}, {com}, {b}, {com, e, b, h},

{com, h}, {h}}
x4 {{com}, {com, h}, {h}}
x5 {{h}}
x6 {{d, h}}

Fig. 6. A(SimplePhone) and its acceptance sets

AState Acceptance set
z0 {{ca}, {ca, p}}
z1 {{ca}, {ca, p}}
z2 {{d, h}, {com}, {ca}, {h},

{ca, com, , s, a, h}}
z3 {{com}, {e}, {ca}, {ca, com, s, a, h},

{b}, {e, ca, com, b, s, a, h}, {h}}
z4 {{com}, {ca}, {ca, com, s, a, h}, {h}}
z5 {{ca}, {com}, {ca, com, s, a, h}, {h}}
z6 {{h}}
z7 {{d, h}}

Fig. 7. A(DoubleCall) and its acceptance set

this first property is expressed by a set of pairs representing simulation relationships. In
this case, it is: {(x4, z5), (x5, z8), (x6, z7), (x3, z3), (x2, z2), (x1, z1), (x7, z9), (x0, z0)}.
The second property is that the acceptance set of each node ofA(DoubleCall) has to be
included into the acceptance set of its associated node in A(SimplePhone). This prop-
erty is checked by analysing acceptance sets given in tables of Figures 6 and 7 for each
pair belonging to the simulation relation. However, the inclusion is not verified for the
first simulation pair (x4, z5) since Acc(z5) 6⊂⊂ Acc(y4). So LTSDoubleCall does not
extend LTSSimplePhone . The reason of failure has to be analysed in order to improve
model SM DoubleCall .

4.4 Improving double call specification

Let us examine in details the reason of the failure highlighted by the verification tool
between LTSSimplePhone and LTSDoubleCall : Acc(z5) 6⊂⊂ Acc(x4). By analysing ac-
ceptance sets of nodes x4 and z5 (see tables in Figures 6 and 7), we can observe that
after traces p; d or p, DoubleCall machine may refuse h and com while SimplePhone
may refuse h or com , but not both. Solutions can thus be automatically proposed to
the designer to fulfil the inclusion property: actions com, h or both have to be added to
node z5. Following the Occam’s Razor, the designer is advised to add only one action



(com or h) outgoing from state s13 which is the state associated to z5 whom acceptance
set is limited to {ca}. The mistake is corrected on the LTS. Then, the issue is to find the
corresponding element on the UML state machine. In this case, s13 has been introduced
as an intermediate state for modelling the state occurring after the event when(called).
The corresponding correction on the UML state machine consists in decomposing the
when(called)/call transition into two transitions and adding a new state that may ac-
cept action call and action com or h. Let us suppose that action com is selected. Fig-
ure 8 shows the modified part of SM DoubleCall∗ , the new UML model obtained after
the correction.

Fig. 8. Modified part of SM DoubleCall∗ , the corrected version of SM DoubleCall

The analysis is again performed between the new acceptance graph of DoublePhone∗

and the acceptance graph of SimplePhone .
In this case, the simulation relation is the same as previously and acceptance sets

associated to simulated states fulfil the inclusion property. Thus, LTSDoublePhone∗ is
guaranteed to extend LTSSimplePhone.

4.5 Conclusion about the phone case study

We have defined a class DoubleCall∗ representing a high-level specification of a dou-
ble call phone. It has been demonstrated that this specification is an extension of the
simple call phone. Future modelling step could consist in defining an implementation
of this class and verifying its conformance using the tool we have developed [13]. Since
the extension relation is a refinement relation (see property (1) in section 2.1), if an im-
plementation of DoubleCall∗ conforms to its specification, then it surely conforms to
SimplePhone . It means that any DoubleCall∗ implementation is also an implementa-
tion of SimplePhone .

5 Conclusions and future works

In this paper, we focused on the extension relation over LTS which is a refinement
relation, and proposed an efficient way to implement its verification. We have also pro-
posed translation schemes from UML SM to LTS. We have illustrated results obtained



by our JAVA prototype on a simple but representative example. Since UML can describe
more detailed behavioural models, abstract results obtained on LTS verification have to
be considered like warnings on UML SM. As illustrated by the case study, when the
relation is not satisfied, exhibited failing traces help us find correction ways.

In previous works [13], we have proposed verification techniques for the implemen-
tation relation. Combined with current works, this helps define a semantics to UML SM
specialisation and implementation.

Future work will address two issues. The first one concerns the refinement relation
itself. The extension relation over LTS is not the largest refinement one. We are looking
for an implementation of the exact relation ‘refines’, defined as follows:

R refines A⇔ ∀P. (P conf R⇒ P conf A). (6)

The second issue concerns a more formal approach to translate UML SM into LTS.
This work can benefit from the MDE approach.
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