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A layer of a saturated binary mixture of soil and water, both of which are true density
preserving, is considered. This layer is subjected from above to normal and shear
tractions and an inflow of water, and from below to drainage of water and abrasion
of till from the rock bed. Sliding processes along the top and bottom interfaces, as
well as deformational creep of the sediment and water constituents within the layer
generate heat, but here the purely mechanical problem is analysed. We study the
steady-state plane flow with vanishing abrasion and balanced inflow and drainage of
water. The differential equations governing the horizontal creep flows of the sediment
and water decouple from the equations describing the vertical profiles of the vertical
water velocity and the solid volume fraction. A stiff second-order ordinary differential
equation is shown to describe the distribution of the latter; it genuinely depends on
the inflow of water, the fluid viscosity and the thermodynamic pressure, a variable
not present in classical formulations and introduced by Svendsen and Hutter in 1995.
The singular nature of this equation is resolved by methods of matched asymptotic
expansions.

It is shown that in conformity with thermodynamics in the sediment layer, two
regions of more dense and less dense solid fraction arise, one of which is a boundary
layer. This boundary layer is formed where the fluid enters the sediment layer. More-
over, by using the thickness of this boundary layer as the internal length parameter,
we find several constitutive equations for the thermodynamic pressure which ade-
quately describe this creeping flow problem. Viewed as a model for the saturated
till layer below ice sheets, the analysis shows that the question of whether soft basal
sliding may develop catastrophically is a question of thermodynamics rather than
dynamics.

Keywords: saturated binary mixture; soil-water interaction; sheared saturated soil;
soft basal sliding; thermodynamic stability; singular perturbations

1. Introduction

In dell’ Tsola & Hutter (1998), referred to henceforth as I, we presented a saturated
binary mixture model of a granular solid and fluid both of which are true density
preserving. This model may serve for the description of the dynamics of the thin
sediment—water layer below temperate glaciers or ice sheets (see figure 1). In partic-
ular, it was shown that the water and till flow within this layer was governed by the

Proc. R. Soc. Lond. A (1998) 454, 3105-3120 © 1998 The Royal Society
Printed in Great Britain 3105 TgEX Paper


http://rspa.royalsocietypublishing.org/

3106 F. dell’ Isola and K. Hutter

ice flow
—

heat generated
by viscous Jatent heat water melted
sliding L used by melting at interface

W%“ \\\\\\\\\\\\\“““‘“‘\‘\\\\T\ W‘W

heat generated
by viscous diss. o
" and work done h h (t) !
. b Oy e
MG ETHELTETEILTELEEE R LT ‘
;\\»%_\

geothermal heat E;ast"gie:;rated till abrasion drainage of

diffusive
moisture
flux

heat transported
by advection
and conduction

by frictional water through
sliding cracks

144
rock motion

Figure 1. A sketch of the thermodynamic processes affecting the saturated till layer below ice
sheets. The arrows on the right indicate the mass flow of water and sediments into and out of
the layer, those on the left indicate the flow of heat. The various boxes describe the physical
processes that are specified by the mathematical model of dell’ Isola & Hutter (1997, 1998).

water inflow from the ice sheet above it, the drainage of water into the rock bed, and
the amount of till abraded at the rock—bed interface. The redistribution of mass by
the flows of water and sediment within the layer is governed by the force balances
of these two constituents; in these balances internal friction and interface friction
at the ice—sediment-layer interface and the rock—bed interface are essentially bal-
anced by the pressure and driving shear stresses exerted by the ice sheet from above.
The latter are so dominant that gravity forces within the layer can be ignored. The
lubrication is provided to the system primarily by the melting processes due to the
geothermal heat, the heat generated by viscous dissipation and the work done by
the Darcy forces within the layer, and the heat generated by the viscous sliding of
the ice over the ice—sediment interface. It was further made clear in I that a binary
mixture model of viscous constituents was needed for properly describing the ther-
modynamically coupled processes, and that the earlier models by MacAyeal (1992),
Kamb (1991) and Alley et al. (1987a,b) were likely to be too simple to properly
describe the difficult thermomechanical problem.

In §5 of I, it was made plausible that steady plane shear flow of water and sediment
in a layer of constant depth in which the horizontal and vertical velocity components
are assumed to be functions only of the vertical coordinate, is likely to form a well-
posed boundary-value problem; however, no explicit solution was constructed. In this
paper we focus our attention on a very similar problem; our emphasis will now be to
construct explicit solutions to a certain boundary-value problem that still contains
the essential ingredients of the shear flow that prevails in the till layer below ice
sheets. However, we focus attention on the across-layer solid volume fraction pro-
files, how they form as a result of the across layer water flow, which is an essential
ingredient of the subglacial till mechanism. We shall demonstrate that the ther-
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modynamic stability condition and the dynamic equations of balance of mass and
momentum constrain the functional behaviour of the thermodynamic pressure of the
solid constituent.

The equation from which this result is derived is an ordinary differential equation
for the distribution of the solid volume fraction across the layer. Genuine quantities
describing this equation are the across-layer fluid-flow rate, the fluid viscosity and the
thermodynamic pressure of the solid constituent. In classical theories of saturated
soils, the latter two are both ignored (see, for example, Vulliet & Hutter 1988; Drew
& Segel 1971; Drew & Lahey 1979; Mackenzie 1984). This equation is second order in
the spatial derivative, and the term with the highest derivative is small, giving reason
for the use of matched asymptotic expansions. We demonstrate that for Stokes flow,
thermodynamic restrictions place this boundary layer at the top of the layer. The
solid volume fraction is highest at the rock—bed interface; it is practically constant
throughout the layer but quickly decreases as the upper boundary is approached.
This demonstrates that the boundary layer develops where the water enters the
layer.

Beyond this result, this application of the model also offers guidelines as to the
estimation of explicit expressions for the thermodynamic pressure as a function of
the solid volume fraction. These functional relations are obtained from requirements
of the thickness of the boundary layer. The problem as such does not introduce
an internal length scale; the boundary-layer thickness which we choose to be 1073~
1072 m (i.e. of the order of several particle diameters) serves as this length scale. In
fact, its thickness is related to the exact value of the flow rate from above, and the
above figures correspond to 1073-10° m a~! as incoming velocity. Together with the
thermodynamic stability requirement that the Helmholtz free energy be a convex
function of the solid volume fraction, its choice determines the qualitative behaviour
of the thermodynamic pressure as a function of the solid volume fraction; it must
possess a strong (exponential-like) singularity at a finite value of the solid volume
fraction in order that the internal length scale assumes physically meaningful values.
We offer explicit proposals for this dependency. Experiments ought to isolate the
correct choice.

In §2 we present the governing equations specialized for the problem at hand. To
fully understand equations (2.1), (2.9) and (2.12) the reader may have to consult I;
however the remaining text is disjoint from I and self-consistent. Section 3 presents
the asymptotic analysis for steady-state conditions and shows that the two-point
boundary problem for the solid volume fraction profile is singular; techniques of
matched asymptotic expansions are used to solve it. These methods are then also
used in the specification of the constitutive relation for the thermodynamic pressure
in §4. In §5 we summarize our findings and draw inferences.

2. Governing equations

To list the governing equations that form the basis of this study, let Ozyz be a
Cartesian coordinate system with origin O, horizontal axes (z,y) and vertical axis
z pointing upwards opposite to the direction of gravity. Consider a layer bounded
by z = fu(z,y,t) (bottom surface) and z = h(z,y,t) (top surface) and of infinite
horizontal extent. Let this layer be filled by a saturated mixture of sediment and
water. The solid volume fraction, the velocity fields of the fluid and solid and the
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temperature field within this layer are driven by the mass, momentum and energy
conservation conditions at the bounding surfaces; they are derived in I and are linked
to processes of ice-sheet flow for z > h(x,y,t) and bedrock deformation for z <
fo(x,y,t). Here we treat the input quantities at z = h(z,y,t) and at z = fp(x,y,t) as
prescribed, and we ignore temperature variations, i.e. consider isothermal conditions,
since our focus is a qualitative analysis of the till-layer behaviour.

We restrict considerations to plane flow and thus ignore the third, y-coordinate.
Moreover, we suppose all process quantities except the saturation pressure to be
independent of the horizontal z-coordinate, so that the z-coordinate and the time
t will remain as the only surviving independent variables. The analysis will show
that with these prerequisites the solid volume fraction profile as well as the hori-
zontal velocity profiles of the till and the fluid within the layer can be determined
analytically and/or numerically as functionals of the input quantities.

Time-independent steady conditions prevail, if abrasion of till from the bedrock
is ignored, the incumbent pressure is time independent and the drainage of water
equals the constant inflow of melt water from above. This steady problem, special as
it is, will allow in-depth analysis of the processes and thus provides hints as to the
proper parametrization of some of the constitutive equations arising in the model.

From § 2, formula (20), of I, we deduce the following reduced forms of the balances
of mass and momentum for the solid and the fluid:

, (2.1)

_ya—i + (psuL) — v(1 —v)a(us — ug) = 0,

0
—(1 = )50 + (st + (1= v)a(u, - u) =0,
inzé€ (fy,h), t>0,

in which the prime denotes differentiation with respect to z, and the various symbols
have the following meaning: v is the solid volume fraction; us, us are the horizontal
velocity components of the solid and fluid, respectively; ws, ws are the vertical velocity
components of the solid and fluid, respectively; p is the saturation pressure; Gs(v) is
the thermodynamic pressure; pg, ps are the true fluid and sediment mass densities;
g, iis are the (apparent) fluid and solid viscosities; & =: peg/K; a := pr/ ps;

7 S

T T vt (= vr(-va

g is the gravity constant; and K is the soil permeability. The thermodynamic pressure
Os(v) is related to the inner free energy ; (v, = const.) via

1

Bs(v) = (vps + (1 — I/)[A)f)g (v, ¥ = const.) (2.2)
and will henceforth be written as
Bs = Bo+ Bs(v), B:(0) =0. (2.3)

Proc. R. Soc. Lond. A (1998)


http://rspa.royalsocietypublishing.org/

Dynamics of a sheared and pressurized layer of saturated soil 3109

In the ensuing analysis we shall propose explicit expressions for the function [s(v);
this must be done in conformity with the thermodynamic stability requirement that
91 is a convex function of v. Thus 9%¢1/dv? must always be positive semi-definite;
this implies

dgs 1 a
P ﬁsz/—l—b}O’ b_l—a’ (2.4)
a condition which must be satisfied by every constitutive relation for f;.

Equations (2.1) are six partial differential equations for v, p, ws, wt, us, ug, of which
the first four are decoupled from the remaining two. Moreover, it follows from (2.1)s5 ¢
that dp/dx does not depend on z, so that p is linear as a function of z.

Equations (2.1) must be complemented by boundary and initial conditions. Before
we turn to these, let us transform (2.1) to an analytically more convenient form.
Adding (2.1)1 2 and integrating the resultant equation over z yields

vwg + (1 — v)wy = WE(t), (2.5)

where Wg(t) is an integration constant, a function of ¢, called the vertical component
of the composite velocity.

Next, by summing (2.1)3 4 and integrating the resulting equation over z one obtains
the saturation pressure in the form

p = v + pswg + Fuewg + po(t). (2.6)

Evaluating p’ and substituting the resulting expression into (2.1)3 or (2.1)4 leads to
the following equation:

VFW) —v(zpewg) + (1= v)(pswl) — v(1 — v)a(ws — we) =0, (2.7)

where

Fv):=w—-&)Bs—v(l—v) (il?/b

Equations (2.1)q, (2.5) and (2.7) form a well-posed initial boundary-value problem
(IBVP) for v, ws and wg, provided the inflow of the fluid (melting rate) at the top
boundary, (1—wv(h,t))ws(h,t), and abrasion rate at the bottom boundary, vws( fy, t),
are a priori known, the incumbent pressure, p;(t), at the top surface is given and
the drainage function at the bottom interface, (1 —v(fy,t))ws(fv,t), is prescribed. In
addition, an initial distribution for the volume fraction, v(z,0), must be prescribed,
and the kinematic conditions be obeyed that (i) the top boundary moves with the
solid particles, whereas (ii) the bottom interface velocity coincides with the bottom
abrasion rate. These requirements can be expressed by the following statements.
(1) At the top interface z = h(t):

(2.8)

we(l —v) = Vo,
n_,
o 7 (2.9)

—av'p; = —v(Bs + p) + pswi,
—(1— av)p = —(1 = v)p + L,
in which Vg is the volume flow per unit area of water from the top into the layer

(see I, formula (61)). The first of (2.9) is a mass balance, the second a kinematic
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statement, and the third and forth combine the continuity of the traction condition
across the top surface with the postulate of how this traction is divided amongst the
constituents (see I, formulae (32), (33), in which I = ). Adding (2.9)34 and using
(2.6) implies that

pi(t) = po(t)- (2.10)
With this result and (2.6), relations (2.9) may be rewritten as follows:
U)f(l - V) = VVan
oh
— = 2.11
O (2.11)

Cy = (v—a)p; +v(1 —v)Bs — (1 — v)pswl + svpews = 0.
(2) At the bottom interface z = f,(¢):

on M
ot T
MP o mp
(1 —v)sgn(ws — wy)(wg — wp) = —+ = —Lof, (2.12)
Pt 143
b
v(ws — wp) = —/\fls
Ps
and
or = (1 —v)p — Fpwi. (2.13)

Here p, is the rock density and MP/p, the abrasion rate, while MP/py is the drainage
rate of water into the rock bed. (2.12); is the kinematic equation and (2.12)2 3
are jump conditions of mass, and a constitutive relation for the drainage function
proposed in I, formula (52), has been used. Note, that requesting vanishing abrasion
rate makes the bottom-interface location steady, so that z = 0 may be identified
with it. In this case (2.12) reduce to

b

m
wp =ws =0, (1—v)ws= A—foﬁ, at z = 0. (2.14)
43

If at the same time v, Vi and p; are also time independent then (2.1); and (2.11);
imply

(1—v)ws=Vi Vze|0,h], (2.15)
and thus MP/p; = Viy, which in our application is negative.

(3) Initial conditions ¢t = 0. As dv/0t, O fy, /Ot and Oh /Ot are the only field variables
of which the time derivatives appear in the field equations, initial conditions must
be imposed for these. We shall denote them by v(2), ho and fio.

We conclude this formulation of the problem by making plausible that the above

IBVP is well posed. To this end let v(z,tp) be known and evaluate (2.5) at the
bottom and top interfaces at ¢t = tg; this yields

v(fo)ws(fo) + (1 — v(fo))we(fo) = W (to), }

o (2.16)
v(h)ws(h) + (1 — v(h))we(h) = W (to)

Proc. R. Soc. Lond. A (1998)
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Note that from (2.9) and (2.12), ws(f,) and we(h) are known because the water
inflow at the top and the abrasion rate at the bottom are prescribed. Thus, (2.16)
constitutes two equations for we(fy,) and ws(h) as functions of W2 (to). Next, from
(2.11)3 we see that C depends on w;(h) and wg(h):

C1 = Cu(w(h), wi(h)) = 0. (2.17)

However, recalling from (2.5) that

/

wh = v (wa8)+w§<1i>, Vz € [fu, h], (2.18)

T2
we alternatively write C; = Cy (we(h), wh(h), W&(to)) = 0 and as w;(h) is known,
Cy = C1(Wi(to), wi(h)) = 0. (2.19)

Moreover, from (2.12)s we may derive

b

Co = (1= v(fu))(we(fy) — wp) — ‘;j ot =0, (2.20)

in which o¢ is defined in (2.13). This shows that C3 is a function of we(fy), wi(fp)
and w(fy,), namely

Co = Co(we(fi), wh( i), wi(f)) = 0. (2:21)
Using (2.18) at z = f;, and (2.16);, we may write instead of (2.21)
Cy = C’Q(wﬂfb)a Wg(to)) = 0. (2.22)

Next, consider the equation (2.7) in which w/ is replaced by use of (2.5). What
emerges is a second-order ODE for w¢(z). Two initial conditions for this ODE are
obtained from (2.22) and (2.16);. Via integration we obtain

we = We(2; W(to)). (2.23)

Evaluating the function 0w¢(-)/0z for z = h we obtain
0 _ .
wilo=n = -t (h; We (to)) = (hs We(to))- (2.24)

With this expression substituted into (2.19), this latter equation becomes an equation
determining WZ(tp), and so ws(h) is now known from (2.16)s. Since the vertical
velocity profiles of the solid and fluid are thus fully determined we may evaluate

% with the aid of (2.1)4,

% with the aid of (2.9)s,

% with the aid of (2.12);

at time t = tg. A forward step in time now determines v, h, f;, at time t = tq + At.
Thus the problem is well posed.

From this point onwards we now suppose steady conditions with vanishing abrasion
rate and time-independent incumbent pressure.

Proc. R. Soc. Lond. A (1998)
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Table 1. Characteristic values of physical quantities

variable value dimension
[1e¢] 2x 1078 kgm 's!
[[Viol] 1073-10° ma~!
[H] 1-10 m
[51] 10°-107 Pa
a 10910 kgm 357!
mP 10721073 kg3 m?s”

3. Asymptotic analysis for steady-state drainage and
vanishing abrasion rate

Consider equation (2.7) with the specializations (2.14) and (2.15):

VE@v) —v(Guwg) + v(1 — v)aw = 0, (3.1)
(1 —v)wg = Vo, .
in which @ may, but need not, be treated as constant. Introducing the scalings
z=[H|z, wg = |Vyow,
)z Vol .
pe = [pelpe,  F(v) = [B]F(v),

in which the bracketed terms have fixed values of a typical order of magnitude for

the variable which they are scaling, and the variables () are dimensionless, equations
(3.1) can be transformed to the following dimensionless second-order ODE:

V’FIEW + 6 (ﬂf (111)), —ne =0, (3:3)

in which primes are redefined as ()’ = d/dZ and
_ 4 [pe[Vio]

: WL VOl —20 _10-17
o= 5 Gy = 00071071, "
_ o UVolllH] _ 0(10-7-10—4 .
N = B (1077-107%).

The coefficients 6 and 7 are dimensionless quantities determined exclusively by
the scales and by & of which the above estimates were obtained using the values in
table 1 as suggested in I. Both coefficients are small and the differential equation
(3.3) defines a singular perturbation problem. A more convenient form of (3.3) is
obtained by the transformation

v= 1iy’ hy) := _w7 y € [1,00); (3.5)
then (3.3) becomes
(f166)y" + (R(y) + fgdr)y” —ne = 0. (3.6)

It follows also from (2.8) that
) = (1= 0 (B + 30 5.7)

v+b  dv

Proc. R. Soc. Lond. A (1998)
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which is an explicit dependence on v. The differential equation (3.6), even though it
is determining the solid mass distribution in the layer, is governed by the viscosity
of the fluid. If the latter is constant, fif = 0, and fif = 1, so that

by + h(y)y' = e (3.8)

describes the constant fluid-viscosity case. Imposing inviscidity of the fluid implies
6f = 0 and reduces (3.8) to first order. Likewise, assuming no inflow (and no outflow)
through the layer, Vip = 0, implies 6 = 0 and 7 = 0, whence y' = 0 or v(2) =
const. Apart from this the equation is chiefly governed by thermodynamics of the
solid, as h is given by (3.7) in terms of (s and dfs/dv. In the geophysical and
geotechnical literature (see, for instance, Drew & Segel 1971; Ehlers 1993), (5 is not
even introduced and the fluid is in most cases assumed to be inviscid, so that n¢
would have to vanish. This then would mean that Vi had to vanish in this case: no
water flow across the layer would be permissible.

Returning to the full equation (3.6) or (3.8), we now impose the boundary condi-
tions. At the top interface (2.11)3 must hold; eliminating w¢ and ws in the third of
these equations and non-dimensionalizing the resulting equation yields

Di 2

[61] (1—-v)?

At the bottom boundary (2.12) must hold, of which the steady state reduction takes
the form

(v — o)== + Bov(1 — v) + b¢fig =0, atz=1. (3.9)

b
Meod, atz=0. (3.10)

(1 =v)ws = Vio = ——
Substituting in turn relation (2.13) for o¢ and equation (2.6) for p, and non-dimen-
sionalizing the resulting expression as before, yields

vy

N - _ v e - _
(1-v) 1] Bsv(1 —v) + 6fuf(1 — F=0, atz=0, (3.11)
where
L LfO/A)f L/4 1 ~ —1 100
F o= ( : ) B~ 0(10-1-10%), (3.12)

and an estimate for F has been determined with the aid of table 1. Introducing the
transformation (3.5), (3.9) and (3.12) take the forms

1 p Yy -
— +—2_F=0, atz=0,
y—1[8] y—1

-1
Sy + LA+ <1 - a(y_1> ) Pi_o, atz=1,
y y [61]
in which [35 is now regarded as a function of ¢, and p; and F are prescribed.
The differential equation (3.6) and the boundary conditions together define a non-
linear two-point boundary-value problem (TPBVP) which we will solve as é — 0, in
which case it is prone to develop boundary layers either at the top or at the bottom
interfaces, and in principle such layers are possible at the interior of the interval
Z € [0,1]. The question of where the boundary layer forms is one of thermodynam-
ics, as it will depend on the sign and form of the function h(y) in y € [1,00) and,

N 1~
_6fufy/ + 7/65 -
Yy
(3.13)

Proc. R. Soc. Lond. A (1998)
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consequently, can be traced back to the functional form of the Helmholtz free energy.
The question is non-trivial because h(y) is a first-order (linear) differential operator
in s through (2.8). In the linear case, when p¢ = 0 and the coefficient h = h(Z) of
the first-order derivative in the considered ODE is a function of Z only, then h > 0
(h < 0) locates the boundary layer at Z = 0 (2 = 1), and when h changes sign at
Z = Zp € [0,1] such that h(Zr) = 0, there is a transition layer near Zt (see Bush
1992, p. 155), where this computation is done explicitly.

To corroborate this qualitative behaviour of the above nonlinear singular pertur-
bation problem we solve (3.8) subject to the boundary conditions:

y(0) =yo, (1) =wyn, withyo > yn. (3.14)

These boundary conditions imply v(0) > v(1) which is the physically expected
behaviour. The inequality can be qualitatively inferred from (3.13) (see Appendix A).
The outer solution of (3.8) takes the form

Yy
H.y")+ Co=m(z =), with Hyy')i= [ h@)ds (19
-
where Cy is a constant of integration.

Suppose now that h(y) > 0 Yy € [1,00) and assume that the boundary layer is
at Z = 0. Then writing Z = 6f'(, accordingly transforming the differential equation
(3.8), balancing the terms on the left-hand side and applying the principle of least
degeneracy (see Bush 1992, p. 159) yields p = 1 and

d3y dy
— + h(y =6 3.16
as the transformed ODE in the stretched coordinates. Its lowest-order solution in
the limit n¢és — 0 can be obtained by dropping its right-hand side, implying the first
integral

dy
= C 3.17
dc + H(y7 ) 1, ( )
and the second
+ Cs. 3.18
( / C1— H(yv ) ? ( )
At 2=0,ie ( =0, y = yg, which fixes C5 so that
Yy dij
¢= i (3.19)

Yo Cl - H(g7 y*) '
Matching this solution with the outer solution requires that, as { — oo, ¥y — yn.
Thus

Yh dg
too = / _ v 3.20
v C1—H(@,y*) (3.20)

The integrand must therefore be non-integrable at the upper limit § = yy; the
necessary condition for this to hold is

Cl = H(y}uy*)v (321)

Proc. R. Soc. Lond. A (1998)
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so that

/yO dg
—00 = — .
Yh H(yhay*) - H(?Jay*)

Moreover, to have this equal to —oo, H(yn, y*) < H(y;,y*). So, as yy is the smallest
value which y can attain, H(y,y*) is monotonically increasing in y, and thus h(y)
is indeed positive. Repeating this analysis for h < 0 and y, < yo we find that,
irrespective of whether y, > yo or yn < yo: (1) the boundary layer is at Z = 0, if
h > 0; (2) the boundary layer is at 2 =1, if h < 0.

This demonstration is not a rigorous proof that the same properties also apply
when (3.8) is being solved subject to the two boundary conditions (3.13), but we
take the position that alternatives are unlikely; indeed in Appendix A we parametrize
the solution of the ODE (3.8) in terms of the variables yy and y;, and prove that no
further singularity arises when mixed boundary conditions like (3.13) are considered.
Here it suffices to state that with (3.17) and (3.21) we have

(3.22)

dy 1 [Y
—(y) =—— h(y)dy < 0. 3.23
2w =5 [ nwa (3.23)
In absolute value, the largest derivative arises at y = yo, the edge of the boundary
layer. Since h is monotonically increasing with y, (3.23) implies the bounds

_;f< max h(y)> (Y0 — yn) < %(y) < —(;f( min h(y))(yo ). (3.24)

YE[yn,yol YE[yn,yo]

This allows us to find estimates for 3 in (3.13) that support the computation in
Appendix A.

It is now necessary to use the thermodynamic inequality (2.4) together with (3.7)
to see whether h obeys one or both of the above inequalities. It is easy to see that
(2.4) and the thermodynamic pressure 35 > 0 imply h < 0, thus excluding any
boundary layer at the bottom interface.

4. The specification of BS
The inner solution of (3.8) has the form

71 vo dy
C = —-— ” — . 4-1
b¢ v Hwo,y5) — H(y,y*) (4.1)

Assume now that h(y) is bounded Vy € [yn, yol; then according to the mean value
theorem of integral calculus

H(yo,y") — H(y,y") = —h{(yo)(y — yo) + o(ly — vol), (4.2)

which upon substitution in (4.1) implies

. h(yn) N yn/yo — 1
(-1 O¢ =1 (y/yo—l

This equation allows us to estimate h(yg). To this end we note that the right-hand
side is negative for y € [yn, Yo for yn < yo, and varies from —oo to 0 with a logarithmic
singularity at y. The thickness of the boundary layer is obviously 6¢/|h(yo)| and not

) Oy = wol). (4.3)
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6¢. To have it of reasonable thickness, i.e. to have it of the dimension of several
particle diameters we choose ¢ = 107P, p € [2,4], where

_ 6 i

implying h(yo) ~ 10718-10713 with a mean of, perhaps, 1071°.
To model this boundary layer we pick two trial functions as examples
(1) h(y) = —exp(—ki/v(y)),
(2) h(y) = =1 + tanh® (ks /v(y)).
These trial functions exhibit the fortunate behaviour that explicit analytical expres-

sions for B can be found (e.g. by MAPLE) which satisfy the thermodynamic stability
inequality. These choices are very delicate as the trial functions for g,

(4.5)

14

2n
v om > 0; In(v, —v); ( ) , n>0; tanh '(v/v.), (4.6)

V— Uy
where v, € [0, 1], lead to values of ¢ = 10~ with p > 10. This is physically meaning-
less, because in physical units the boundary layer would turn out to be of the order
of magnitude of 1078 m! In other words logarithmic and algebraic singularities of (3
at v, are not sufficiently strong to generate a boundary layer of the order of 1072 to
1072 m (which would physically be expected). Exponential singularities are needed
for 35 at the point v = v,, and such singularities are exactly obtained with the choices
(4.5). We cannot give a systematic rule of how these functions were determined. It
was essentially trial and error by selecting either h(y) or Bs(y) and determining the
other function by using (3.7). The choices needed to be such that the thermodynamic
stability requirement was satisfied and ¢ in (4.4) assumed reasonable values.
Using (4.5) in (4.4) yields

k1 15 ~
(1)  h(yo) exp< y(y0)> 107 = ky ~ 13.6,
2 k2 “15 N
(2) h(yo) =1—tanh <1/(y0)> 1077 = kg >~ 7.2
with the functions (4.5) being given and definition (3.7) of h(y) in terms of 3, and
its derivative integration determining (3. The constant of integration By must then
be chosen such that the resulting s function is in conformity with the thermody-
namic stability condition. 8y = 0 in both cases is sufficient for this. We refrain from
presenting these results explicitly, because they can easily be obtained by using e.g.
MAPLE. B
The formulae for B that are obtained by using (4.5) are very lengthy and incon-
venient expressions. Thus it may be advantageous to try to select (s in simple form
such that the thermodynamic stability condition (2.4) is satisfied and to determine
the function h(y) by differentiation. This we have done in several cases and table 2
gives the selection of five different choices of which one does not conform with the
stability condition. For the first choice (a), G is exponentially decaying as v — 0 for
all £ > 0 and assumes a finite value at v = 1. The corresponding function —h(y(v))
is zero at v = 0, very small in its neighbourhood, forms a hump with a maximum at

(4.7)
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Table 2. Properties of functions s and corresponding functions h which do (OK) or do not
(NO) satisfy the thermodynamic stability criterion

() Aulv) = exp(—%) OK
® ) =0+ 0ew(-2) OK
© B0 = (-5 oK
(@A) =es( 1 ) ew(-2) NO
© A0 = en(-L). 933 oK
@ A0 = (- wpet( g L) oK
() hy®) = ~(1 = v)* @ + e/ (3 vils E) OK
@ w) == (L e ) OK

(d) hy)=-01- 1/)361/(17”)67]“/” (%M + a _IV)Q + %) NO

(e) h(y(y))zfﬂe*’“/”( L +k) OK

(vL —v)Y vab v —v 12

about 1y and finally reaches zero at v = 1. This qualitative behaviour also persists
for the choice (b) of table 2; in fact it can be shown that

Bs(v) = (1 —v) exp(—k/v), —3<v< o0

generates such a hump for —h(y(v)), whereas the choice (¢) (7 < —3) makes —h(y(v))
monotonically increasing with increasing v with an algebraic singularity at v = 1. If
Bs(v) is not finite at ¥ = 1 but has an exponential singularity, the thermodynamic
stability condition can no longer be satisfied (case (d) of table 2). Now it can be
shown (see Appendix A) that with the hump-like hA(y(v)) the original boundary
condition (3.13) at Z = 0 cannot be satisfied (as can be easily inferred with the aid of
(3.24)); by contrast, however, this is possible for a function h(y(v)), which becomes
singular as v — v, where 11, = 1 in case (d) of table 2. As physically ¥ = 1 can
never be achieved, functions fs(v), and consequently h(y(v)), must be modified as
shown in item (e) of table 2, in which vy, is a constitutive quantity (a constant) with
a value of approximately 0.8-0.85.

5. Concluding remarks

In this paper a layer of saturated binary-mixture of soil and water, of which both
are true density preserving, is considered. This layer is subjected from above to
the overburden pressure of the overlying ice and the shear traction exerted by its
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horizontal movement. Melt water from the ice above is pressed into the layer. At the
lower boundary, the rock bed, abrasion of till may add sediment mass to the layer and
drainage of water contributes to a true filtering process from above through the layer,
thereby affecting the sediment concentration profile and influencing the effective
resistance of the layer to horizontal shearing. It turned out that the determination of
the vertical flow plus the vertical profile of the solid volume fraction uncouple from
those of the horizontal flow (except for the abrasion rate), and ignoring the abrasion
rate led to a steady problem if also the bordering tractions were assumed to be time
independent.

The analysis of this steady problem is interesting because it shows that the dis-
tribution of the solid volume fraction across the layer is determined by the vertical
water transport through the layer, the viscosity of the water and the constitutive
equation for the thermodynamic pressure of the solid. All three are lumped together
in one differential equation for the solid volume fraction profile (see (3.6) or (3.8)).
In a theory ignoring the thermodynamic pressure, i.e. assuming the Helmholtz free
energy to be independent of the solid volume fraction—this is so for most von Terza-
ghi type theories (see de Boer 1996; Mackenzie 1984; Ehlers 1993 and others)—this
equation collapses to a physically non-acceptable statement, implying that the effect
of the filter flow on the distribution of the solid volume fraction cannot be studiedf.

The problem is also interesting because the differential equation exhibits boundary-
layer structure; the boundary layer grows linearly both with the fluid viscosity and
the water transport across the layer. However, it is also influenced by the behaviour of
the thermodynamic pressure as a function of the solid volume fraction. This function
must satisfy the thermodynamic stability criterion that the Helmholtz free energy
is a convex function of the solid volume fraction, and this condition constrains the
boundary layer to be at the top rather than at the bottom surface (when the granules
are rock material and the fluid is water). This property has important glaciological
implications, because high solid volume fraction concentrations are to be expected at
the (abrading) bed. This high value is reduced through the boundary layer, so that
under Stokes flow conditions the larger part of the layer has relatively large values
of the solid volume fraction, conditions which favour low shear velocities within the
layer. Conversely, if the boundary layer were at the bottom surface, where the solid
volume fraction is minimal, the larger part of the layer would have low solid volume
fraction, making the layer weak to shear deformations.

This physical mechanism has never been envisaged by geologists and glaciolo-
gists who deal with the destabilization of an ice sheet such as West Antarctica (see,
for example, Alley et al. 1987a,b; MacAyeal 1992; Kamb 1991; and others). In I,
the previous formulations might have been too simple and might have missed some
destabilizing mechanisms that enhance the potential for the disintegration of the
West Antarctic Ice Sheet. We proved in I by applying a systematic mixture model
(Svendsen & Hutter 1995) that additional processes contribute to this destabiliza-
tion, but did not give a direct demonstration. However, we proved in the present
paper that a classical mixture theory which ignores the dependence of the Helmholtz
free energy on the solid volume fraction is too simple to discover the behaviour, and

1 Indeed, (3.10) reduces in this case to y” = &H?/ug = 1/e (= 10'5), of which the solution subject
to y(0) = o, y(1) = yp produces a solid volume fraction profile which at Z = 1 is larger than unity,

2
u(%) ~ 1 + 8¢, which is physically meaningless.
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we show how thermodynamic completion of such a model does allow this expected
behaviour.

Future analyses will have to include acceleration terms and the abrasion process
and thus focus on time-dependent behaviour.

K.H. acknowledges financial support by the Alexander von Humboldt Foundation and the Max
Planck Society through the Max Planck Prize. We thank Professor L. W. Morland for his
thorough review.

Appendix A.

In this appendix we demonstrate that the boundary conditions (3.14) are in confor-
mity with the boundary conditions (3.13), provided f is chosen accordingly. The
required properties B, must fulfil are

(1) Bs(u) — 0, exponentially as v — 0,
(2) Bs(v) — oo, algebraically,
with a power v > 3 for v — v, where vy, € (ofl/(l*l), 1).

To see this, consider the boundary condition (3.13):

1 p Y _
— +—2_F=0, atz=0,
y—1[8] wy—1

- 1~
76f/’l/fy/ + &ﬂs -

-1 (A1)
~o s y—1 pi .
—osfisy + —0Bs+ [ 1 — a| =— =0, atz=1.
y y [61]
The boundary layer is located at Z = 1, and |y/| is very large and needs to be
estimated. Such an estimate follows from (3.23) and takes the form
1 * *
y'(y) = 5, (Mo, y™) = H(y,y™)) + OCm)- (A2)
At 2 =0, i.e. y = yp, the term ¢’ in (A1) is given by (3.8) with & = 0, while at
Z =1 (A 2) must be substituted in (A 1)y, implying

oppigme 1 5 I pi Yy -
— + -0 — F=0, atz=0,
h(y(0)) "y y—1[] y-1

1- -1\ p _
ﬂf<—H<yo,y*>+H<y,y*>>+yﬂs+(1—a(y) )p _0 atiel,

Y [31]
(A3)
or, after some trivial manipulations,
3, 1 St
B _ LF+ —1[2} + f’gé‘f;y), at Z =0,
g Y Yy 1 Yy (A4)

-1
~ * * y— 1 Di ~
= pe(H(Yo,y") — H(y,y")) — <1—a<> > , at z=1.
) (H(yo,y™) — H(y,y7)) , 1]
However, in the case of constant viscosity, fir = 1, and as in the physically admissible
range for y we have
1 pi
FZ

y [B1]
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(see (3.12)), these relations become (approximately)
5 Oemefie(y) Yy b
Bs = y+ ;

h(y) y—11[0]

-1
2 ~ * * -1 Di ~
Bs = _?J(_Mf(H(yan ) = Hly,y")) + <1 —a<y> ) ) at z=1,
y [61]

(A5)
which imply (under the above-stated general properties for BS, which are, for instance
verified by the example given in case (e) of table 2) that

1 _
b (L)Y, (A6)
L
Indeed, the factor of p;/[51] on the right-hand side of (A 5); must be non-positive,
implying (A 6). Moreover,

‘mmww—ﬂwwﬂ——/mmmw,

appearing in (A 5)q, must be sufficiently negative to counterbalance the last addend
on the right-hand side. Because of the second itemized property of 35, this is possible
for all y =~ yr, (v =~ v1).

at z =0,
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