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Proactive Uniform Data Replication by Density
Estimation in Apollonian P2P Networks

Nicolas Bonnel, Gildas Ménier and Pierre-Francois Marteau

Valoria, European University of Brittany, 56000 Vannes, France

Abstract. We propose a data replication scheme on a random apol-
lonian P2P overlay that benefits from the small world and scale free
properties. The proposed algorithm features a replica density estimation
and a space filling mechanism designed to avoid redundant messages. Not
only it provides uniform replication of the data stored into the network
but it also improves on classical flooding approaches by removing any
redundancy. This last property is obtained at the cost of maintaining
a random apollonian overlay. Thanks to the small world and scale free
properties of the random apollonian P2P overlay, the search efficiency of
the space filling tree algorithm we propose has comparable performances
with the classical flooding algorithm on a random network.

1 Introduction

Although costly (bandwidth wise and/or memory side), data replication remains
a crucial operation for distributed systems to ensure scalability and fault toler-
ance. Optimizing the data replication is needed to harness the expensive cost of
creating replicas : there must be as few replicas as possible and these replicates
should be wisely chosen and distributed. In unstructured P2P network [5, 9, 16],
most of the search strategies involves a blind query propagation leading to a
cost, proportional to the number of random nodes to visit, called the Expected
Search Size (ESS) [6].

In uniform replication, since data are evenly replicated, the ESS is minimized
for high quantity of unsolvable queries [6]. This strategy can be achieved as
follows: each time a new piece of data is inserted into the network, a fixed number
of replicas is created and spread accross the network. This strategy is efficient in
structured P2P networks [11, 15, 10, 7] because routing protocols allow to easily
query for the presence of the data into the network. On the other hand, this
approach is very costly to implement in unstructured P2P network since data
presence can be answered only by querying the whole network, which is very
costly.

A replication strategy that is lineary proportional to popularity is used in
most unstructured or centralized P2P architecture designed to exchange files as
it lowers the access cost to popular data. For low number of unsolvable queries,
the best performance is reached when using the square root of popularity [6].
It is defined as follows: given two pieces of data A and B in the network, the



ratio between the number of copy R4 and Rp of these data is the square root of

the ratio of their popularity P4 and Pg : g—g =,/ %. Freenet [4] achieves this

replication mechanism thru path replication as stated in [6].

In most P2P structured architectures, data can be replicated when a node
leaves the network : the missing data is detected because of the direct relation-
ship used to bind data to a node-location. This reactive replication only uses
bandwidth when necessary thus leading to accidental surges of bandwidth use
that can be a problem for overlying applications.

Proactive replication scheme anticipates this problem by wisely replicating
data to balance the load over time [14] however at a cost of a slightly higher net-
work traffic that can be tuned to a bandwidth budget (see also path replication
scheme in Freenet [4]).

We present in this paper a uniform replication strategy that uses a local
replica density estimation. Because performances of the algorithm are linked to
the exploration strategy, we also present an unstructured random apollonian P2P
overlay that features non redondant exploration scheme. Next section introduces
data replication by density estimation, section 3 presents random apollonian P2P
networks, section 4 shows and discusses experiments and section 5 concludes this
papers with suggestions for future work.

2 data replication by density estimation

Since the relationship between data position and node position in unstructured
network is not defined as in structured P2P, the query language capabilities
are not limited or constrained by any assumptions. In this study, we focus on
languages with XPath-like [12] or XQuery-like [3] features. The more specific
queries are, the least answers are returned: this also increases the number of
unsolvable queries. As stated previously, uniform replication seems to be one of
the best approaches when the number of unsolvable queries is high because it
minimizes the expected search size. Because it may be difficult to detect missing
data after a node departure, we focus here on proactive replication.

In this paper, we propose a uniform proactive replication scheme based on
a local estimation of replica density for unstructured P2P networks where the
average number of replica remains proportional to the (unknown) network size.
This proactive strategy can be tuned to the amount of available network re-
sources: nodes with higher bandwidth can replicate data more often than the
ones featuring low bandwidth.

2.1 Principle

Our architecture is designed as follows: each user (node) n has two storage spaces.
The first one is its home space F,, in which all data explicitely downloaded by
n or shared with other users are stored. The second storage space is a cache C,
whose size is controlled by the users. C), is used by our architecture to store
data replicas. In order to distributively maintain the correct amount of replica,



a score is periodically computed for each replica. According to their score, data
are then replicated, kept or removed.

2.2 Replica management

Let each piece of data have a unique identifier d. Each node n in the network
maintains a list L,, containing all pieces of data that are candidates for replica-
tion. Elements in L,, are submited by other peers in the network. More precisely,
L,, contains pairs (d, A,,), with d a data identifier and A, the address of the
node m that submited the data to n and owns a local copy of this data. We
make no assumption on the size of L,,.

Score measurement Let Sy be the measure of the score for a piece of data
d. Sy is related to the density estimation of the replicas for d. This estimation
is made by exploring the neighborhood of the node and counting the number
of replicas of d encountered during this exploration. Therefore, most replicated
data should have the highest scores.

Proactive uniform replication In the following part of the paper, we do not
take into account heterogeneity in data size. The replication algorithm features
several stages that are performed periodically (and asynchronously) on every
node of the network. For each node n, a data candidate d is selected for repli-
cation/removal according to a score Sy. As described below, Sy is related to the
local replica density which is estimated by a local exploration of the neighbour-
hood of the node n. This exploration quantifies the number of d on each node
n.

For each piece of data d that could be potentially replicated, if its score Sy is
lower than the average score of all data in the cache of node n, then the piece of
data with the highest score in C), is deleted and d is dowloaded into C),,. When
this is finished, L,, is cleared.

The node n then selects k pieces of data in C}, U E,, having the lowest scores,
contacts k nodes selected at random (with a random walk) and submits to each
node a piece of data for replication. The algorithm 1 describes the whole repli-
cation process. The frequency of the execution of this algorithm can be tuned
for each node, for instance according to the resources available at the node.

3 Apollonian P2P Networks

3.1 Apollonian Networks

2-dimensional Apollonian Networks (ANs) [1] can be produced as illustrated on
figure 1: the initial network is reduced to a triangle and at each generation step,
a node is added into each triangle and connected to the 3 nodes that compose
the triangle. More precisely, we call these networks Deterministic ANs (DANS)



Algorithm 1: Replication algorithm performed periodically on each node n.
Data: k : number of data submited per node for replication
while true do

// Performs local exploration for computating the score

// Sq for all data d in C,, UE, U L,

T, 2decy Sd
. ZdeCn Td
S [Chl

forall d € L,, do
if Sq < S then
C,—C,U {d}
Cn — Cy \ {dmaac € Cy/Vd; € Cp, Sq > SdL}

maxz —

end
Ln — @
[d1..dx] < k pieces of data that have the lowest score in C,, U E,,
[m1..mg] < k nodes in the network randomly contacted
forall i € [1..k] do
| Lm, < Lm, U (di, An)
end
// Waits for the next iteration

end

because of their building algorithm. Random Apollonian Networks (RANs) have
the same properties that DANs (scale-free, small-world, Euclidean and space
filling) [19] but are slightly different in their construction. 2-dimensional RANs
are incrementaly built by inserting at each step a node in a triangle chosen at
random. This node is then connected to the three other nodes of the triangle, an
example of such network obtained is shown on figure 1(d). Both deterministic
and random ANs have also been studied in higher dimension [17, 18] by replacing
triangles with simplexes.

(a) (b) (c) @

Fig. 1. Three 2D DANs with one (a), two (b) and three (c) generations of nodes, and
a 2D RAN (d).

In a fully distributed P2P environment, peers do not have a global knowledge,
it is therefore impossible to distributively build a DAN. However it is possible in



such environment to build a RAN by contacting a random node and obtaining
a random simplex from this node, that is why we focus our study on RANs.

3.2 Efficient exploration in Apollonian P2P Networks

We propose an efficient way to perform not redundant exploration in P2P RANs
[2]. While our approach needs a few more hops than flooding or Lightflood for the
same coverage, it does not generate redundant messages, and do not use cache
on nodes to avoid the redundancy. Furthermore, it guarantees completeness as
long as the overlay contains only one connected component. Contrary to flooding
(or LightFlood [8]) filling trees on RANSs are exhaustive and do not need a cache
on nodes to store previous seen queries, as there is no discarding process.

Principle We assume the network is stable during the flooding process. We
design walkers able to incrementally build a spanning tree to explore a network
area. They keep the sequence of the visited nodes, recording a kind-of Ariadne
sequence composed with successive visited nodes. This sequence ensures that
a node is visited once and only once. On a planar graph, this sequence builds
incrementally an uncrossable fence for the walker. When encountering this limit,
the walker splits, and each new walker inherits the previously recorded path. The
sequences of paths taken by the walkers is a tree that fills the neighborhood of
the source node P;, ensuring that all nodes are scanned at least and at most one
time.

When the request carried out by the walker is fulfilled, it returns to the
initial node using the inverse path it has recorded. The walker terminates if all
neighbors have already been visited or if its TTL (Time To Live) reaches 0.

Cloning mechanism Let N(n) be the 1-hop neighborhood of node n. When a
walker visits n, it clusters the unvisited nodes of N(n). Thanks to the triangular
mesh, all nodes in N(n) describe a ring. By removing from this ring already
visited nodes and their connections, there are between 0 and =z = LMJ re-
maining connected components. A clone of the walker is spawned inside each of
these remaining connected component to fullfill the exploration.

A node is selected for propagation in each connected component according
to different heuristics, for instance the node with the highest or smallest neigh-
borhood, a random node, etc.

4 Experiments

We evaluate in this section several exploration strategies for estimating the den-
sity of replica: flooding, biased random walk (walkers cannot visit twice the
same node) and filling trees. For this last exploration strategy, we study dif-
ferent heuristics for propagation. All simulated networks contains 10000 nodes.



Flooding and biased random-walk are performed on a random graph while filling
trees are used on a random apollonian network.

In order to deal with heterogeneity among node resources [13], we attribute to
each node a capacity level according to the empirical distribution given in figure
2. This capacity level is used to compute the maximum degree and amount of
data nodes can store. In order to simulate heterogeneity among data popularity,
we give each piece of data a popularity level according to a uniform distribution.
Nodes then receive an amount of data proportionnal to their capacity level, data
pieces being chosen with a biased probability proportional to its popularity.

1004
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Fig. 2. Cumulative distribution of peers capacity.

Each time a node enters the network, its cache is freed. The size of the node
cache is equal to the amount of data the node received at the begining of the
experiment. We can then tune the average number of replica for each data by
altering data diversity.

We use the standard deviation estimation to measure the uniformity of the
replication. More precisely, we use a relative standard deviation in order to
compare the different approaches we evaluate.

4.1 Static network

In this experiment, the starting average replication rate is 0.6% (the target
replication rate is 1.2%). We set the TTL for the different approaches so that we
obtain approximatively the same network coverage, near 20%. Results are shown
in the table 1. At each step, nodes submit k = 2 pieces of data having the lowest
score for replication. This allows the algorithm to converge faster than when &
is set to 1, while preventing nodes copying many pieces of data simultaneously.

Figure 3 shows the evolution of relative standard deviation for replica quan-
tity. Random walk and filling trees with either a random or smaller degree
neighbor selection ffer the best performances. Results obtained with flooding
are acceptable while filling trees with the selection of the neighbor that has the



Felative standard deviation # replica

Strategy TTL|Network coverage
Flooding 4 19,65%
Random walk 2000 19.98%
FT-2hopNeighboor 13 18.07%
FT-random 120 19.86%
FT-smallestNeighborhood| 290 20.67%

Table 1. Network coverage for different exploration strategies.
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Fig. 3. Evolution of relative standard deviation for replica quantity.



highest degree offers very poor performances: while the relative standard devi-
ation decreases in the few first steps, it then highly increases. We believe this
phenomenon is because nodes with the lowest degree are never visited and some
data may have a lot of replicas located on these nodes.
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Fig. 4. Number of replicas created per nodes each step.

Figure 4 shows the average number of replicas created on each node at each
step. We can see that the algorithm converges on a static network with a flood-
ing exploration while there is no convergence at all with random walk. Results
obtained with filling trees are between random walk and flooding. We believe
these results are due to the randomness of the exploration strategy chosen: filing
trees with the selection of the higest degree neighbor features less randomness
that the selection of the smallest degree neighbor.

It seems that it is very important to visit the same nodes during each explo-
ration for the algorithm to converge on a static network, and performances could
be improved for filling trees. However we demonstrate in the next experiment
this criterion is not as important in a dynamic environment.

4.2 Impact of the density estimation

We can see on Figure 4 that the amount of created replica becomes steady within
20 steps. We measure the efficiency of uniform replication by estimating replica
density while running our replication algorithm for 20 steps. Each 20 run, the
average amount of data replica is updated so that we can evaluate the average
number of replicas seen per exploration. We compare in this study flooding
(best convergence on a static network) and filling trees with the selection of the
smallest degree neighbor (most uniform replication on a static network).
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Fig. 5. Relative statard deviation within 20 steps of replication algorithm according
to the average number of node having a replica seen during exploration.

Figure 5 shows the relative standard deviation obtained after 20 iterations.
When the number of visited node is too small or when the data is loosely repli-
cated, the number of replicas encountered during the exploration is too small
and the algorithm does not converge, and even worse, it diverges (the initial
relative standard deviation is bound between 0.3 and 0.4 as illustrated on figure
3).

Using flooding exploration, at least 7 replicas are needed to obtain a relative
standard deviation bellow 0.2 whereas an exploration with filling tree with the
choice of the lowest degree neighbor for propagation requires only 4 replicas.
Two hypothesis could explain this difference. The first one being the partial
randomness of filling tree exploration whereas flooding is fully deterministic.
The second one could be the heterogeneity of the size of the 4-hop neighborhood
in a random topology: a more homogoneous exploration space size could lead to
better performances.

Moreover, this experiment shows that uniform replication with density esti-
mation is adpated to environment featuring high replication rates.

4.3 Dynamic network

We have simulated a dynamic network by removing and adding new nodes at
each iteration step, so that the size of the network remains on average constant
in time. When new nodes are added, they receive an amount of data proportional
to their capacity, data being taken at random as described at the begining of
this section. Caches of newly added nodes are empty and their sizes are equal to



the number of data the node has. The replication algorithm is performed when
10% of nodes have been renewed.

Parameters in this experiment are as follows: the initial replication rate is
0.6% (the target replication rate is 1.2%). Each node submits only one (k = 1)
piece of data for replication to another node at each replication step: this reduces
the number of replicas created at each step but the algorithm takes more time
to converge.
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Fig. 6. Relative standard deviation of replicas amount.

Figure 6 shows the evolution of the relative standard deviation of replicas
amount. At the begining the amount of data adapts to the network, and then
there is a steady state with an average number of replica that remains nearly
constant. An exploration with flooding allows to go a little bit faster to the steady
state and both exploration schemes produce a replication similarly uniform. The
relative standard deviation is higher comparatively to a static network mainly
because new added nodes have empty caches.

Figure 7 shows the average number of replicas created per node at each
iteration step. We can see that the copy rate is lower with an exploration strategy
using filling trees comparatively to flooding. Performing the replication algorithm
when 10% of nodes have been renewed could seem to be important but for the
record, half of the nodes are renewed within one hours in operationnal P2P
networks [13]. We have not tried a configuration for which the algorithm is
performed when 50% of nodes have been renewed, since we believe that high
delay between two replication steps could lead to data loss.
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Fig. 7. Average number of replicas created per node each iteration step.

5 Conclusion and future work

We have presented a uniform replication strategy based on a local density esti-
mation scheme. This approach is mainly designed for unstructured P2P archi-
tectures supporting complex query languages with high rejection capability (ie
many requests cannot be fulfilled).

The local replica density estimation is performed by an efficient local ex-
ploration: we proposed a random apollonian P2P small world and scale free
architecture that pairs with a non redundant exploration scheme and that does
not use any cache on nodes. This architecture manages the heterogeneity among
peers capacities and deals very well in transient or dynamic environments.

We have shown that random walk is not well suited for density estimation,
while flooding produces quite good results - but also introduces a lot of redun-
dant messages. We deduced from our experiments that two exploration strate-
gies are best adapted to the replication scheme: LightFlood on Random P2P

networks and filling trees on random apollonian networks: experimental results

show similar performances with both approaches.
While apollonian networks do not use node caching to eliminate redundancy,

the LightFlood overlay is less costly to maintain. Filling trees offer several heuris-
tics for query propagation. The smallest neighbourhood heuristic helps the ex-
ploration space size remain constant given a fixed TTL : this seems to reduce
significantly network traffic in dynamic environment.
This study is still preliminary: data size is uniform and the replica coherency
problem remains to be addressed. Moreover, candidate nodes to the reception
of data replica are randomly chosen, which could be improved by the use of

heuristics.
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