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Abstract—New imaging devices provide image data at very
high spatial resolution acquisition and throughput rate. In
satellite or medical two-dimensional images, high-content and
large image issues plead for more high semantic level interactions
between the computer vision systems and the end-users in
order to leverage the cognitive symbiosis between both systems
for practical tasks such as clinical disease grading practices
based on visual inspection. Within the mathematical morphology
framework, this seminal paper proposes new theoretical tools to
perform high-level spatial relation queries for the exploration of
large amount of image data through sparse representations like
Delaunay triangulations.

I. INTRODUCTION

As from now, the images deemed important to be analyzed
in the field of computer vision get dramatically in size and
content. The notions of high-content or high-throughput are
mainstream realities in today image-based sciences. As a
matter of fact, end-users of computer vision systems such as
biologists or clinicians are more and more in demand of inter-
active time applications with high-level semantic interactions.
These systems are aimed to alleviate the burden of processing
such huge amount of data delivered at a high-throughput rate
and very high resolution both for satellite images or medical
images for instances.

For the sake of illustration, in typical histopathological
applications we are currently working on, Tab. I tries to give
an idea of the amount of data to be processed by either the
clinician or the numerical system. Then, Fig. 1 illustrates the
level of details depending of the acquisition resolution. Let
us note that images at each of the listed resolution must be
stored for clinical and virtual microscopy purposes and that
the sample in Fig. 1(b) is a 1024x1280 pixels sample image
at a resolution magnification of x40 out of over two thousands
such samples tiling the Whole Slide Image of Fig. 2(a).

TABLE I
HISTOPATHOLOGICAL IMAGE DATA

Magnification Size (pixels) Size (bytes)
x1 1018x768 3.05 MB

x10 3664x2763 39.54 MB
x20 14657x11054 632.48 MB
x40 58630x44216 7.77 GB

These figures along with clinical requirements endorse the
need for new image analysis toolboxes dedicated to sparse
representations of images. Due to large image database issues
in the field of object recognition (Ferrari et al. (2006, 2008);

(a)

(b)

Fig. 1. (a) Whole Slide Image at resolution x1 (b) Sample image at resolution
x40 out of over 2000 tiling the histopathological image

Shotton et al. (2007)), the representation of image data based
on geometrical points-of-interest have already gained momen-
tum in the past years. This is the reason why we consider the
set of extracted nuclei as a useful, simplified representation of
a microscopic slide (see Fig. 2(a)) on which the system can
perform efficient spatial queries. In addition, this simplified
architectural/structural representation is required to handle
such an amount of pixel data. Working on a restricted point set
representation instead of the radiometric Whole Slide Image
downsizes this amount of data from around 2.5 billions radio-
metric color pixels up to about 100 000 geometrical 2D points.
In the field of classical image analysis, only a few attempts are
going in that direction. In Ta et al. (2009), the same kind of



considerations gave rise to a successful attempt to adapt image
processing frameworks -such as Partial Differential Equations
based regularization methods- usually acting on radiometric
images over a regular grid to unorganized point sets defined
within graph representation. From now on, the set of nuclei
centroids can be seen as a set of geometrical unorganized
points S ∈ <2, that is a minimal structural representation of
the architecture of the cell distribution in the tissue. Besides,
there exist relatively robust ways to detect the nuclei in micro-
scopic images with state-of-the art computer vision algorithms
and specific biological markers Cloppet et al. (2008). We
recently developed new mathematical morphological operators
acting on unorganized point sets that we briefly describe
in Section II. Based on this new framework, we propose a
new way to perform spatial relation queries on such sparse
representations as explained in Section III. This study extends
the seminal work of Bloch et al. (2006) on radiometric images
to geometric sparse representations of images like Delaunay
triangulations.

II. MORPHOLOGICAL OPERATORS ON SPARSE DATA

In Lomenie & Stamon (2008), we designed new morpholog-
ical operators acting on unorganized point set representations
and subsequently on mesh representations such as Delaunay
triangulations that create the necessary neighborhood system
to design mathematical adjunctions like dilations, erosions on
such sparse representations. We related these new operators to
a computer graphics notion coined α-shapes in Edelsbrunner
& Mucke (1994). Hereby we recall the basic elements of the
theoretical foundations of this new set of operators and refer
the interested reader to the thorough description in Lomenie
& Stamon (2008). From a mathematical point of view, in this
seminal paper, we restrict ourself to the set theory framework.

Let S be a point set in <2. Let Del be the Delaunay
triangulation of the point sites S. Then, let us define ℘(Del)
as the set of all the corresponding sub-triangulations Di of
Del. As from now, we can define a complete lattice structure
for a point set, within the set theory framework, called
L = (℘(Del),⊆) where D1 ⊆ D2 denotes the order relation:
∀T ∈ Del, T ∈ D1 → T ∈ D2.

Let us consider any mesh representation as a set of triangles
T with an associated binary value valT either 0 or 1. Then
either manually or automatically we can define a sub-mesh of
interest associated to an object of interest as exemplified in
Fig. 2(b).

To define morphological operators, to each triangle we need
to affect values eT and dT in addition to the measure valT ,
defined by :

eT =min{valT ′|T ′∈ν(T )}
dT =max{valT ′ |T ′∈ν(T )} (1)

where ν(T ) is the set of all triangles T of Del sharing at least
one vertex with the triangle T , that is :

ν(T ) = {T ′ ∈ Del|T ′ ∩ T 6= ∅} (2)

(a)

(b)

Fig. 2. A real biological image and (a) the underlying nuclei architecture
embedded in a Delaunay triangulation Del(S) mesh representation and (b)
a crisp region of interest as a sub-triangulation of Del(S) . A membership
function of 1 is represented by a white triangle and membership values of 0
by transparent triangles

In our case, ν(T ) plays the role of a structuring entity
(element or graph - Heijmans et al. (1992)). We proved in
Lomenie & Stamon (2008) that with this definition of a
structuring entity the following designed operators e(D) and
d(D) are actual mathematical dilation and erosion as defined
in the complete lattice framework L:

∀D ∈ ℘(Del),
e(D) = {T ∈ Del|eT = 1}
d(D) = {T ∈ Del|dT = 1} (3)

With these definitions, it is straightforward to extend these



morphological operators to a functional framework within a
real valued lattice structure. Besides, like in classical math-
ematical morphology theory, we can define these operators
within the set theory framework as well. As a matter of fact,
for any sub-triangulation D ∈ ℘(Del), we can write that T is
an interior triangle of D (that is T ∈ int(D)) if there exists a
neighborhood of T which is contained in D. Then, with this
formal definition T ∈ int(D) ≡ ∃ν(T ) ⊂ D and:

∀D ∈ ℘(Del),
e(D) = {T ∈ Del | T ∈ int(D)}

d(D) = {T ∈ Del | T /∈ int(D)C} (4)

From now, having established a sound theoretical frame-
work dedicated to mesh representations, we can derive the
whole set of morphological operators including openings,
closings and so forth. In particular, we can derive numerical
implementations of spatial relation queries over these sparse
image representations.

III. INTERACTIVE SPATIAL QUERY

In the field of radiometric image analysis, few works have
dealt with the effective modeling of spatial relations such
as “between”, “surround” or “along” Matsakis & Wendling
(1999); Bloch et al. (2006). The major difficulty comes from
the high level of contextual references associated to the
semantic of these linguistic representations of image content.
To us, the more interesting modeling results in the field of
image processing can be found in Bloch et al. (2006) for
which the use of mathematical morphology operators makes
it possible to provide a generic modeling for such spatial
reasoning interactions and numerical implementations of such
symbolical descriptions.

In this work, our aim is to apply the same kind of consider-
ations to geometrical image representations such as Delaunay
triangulations. Usually, these triangulations can be associated
with the underlying point-of-interests architecture associated
with a radiometric image. We state that these simplified
representations are more correlated with the semantic of the
images and hence consider that spatial relation reasoning on
such representations should be closer to the cognitive spatial
reasoning processing performed by the pathologists onto histo-
pathological images.

We developed a Java interface 1 to test the proposed
operators that implements morphological operators acting on
Delaunay triangulations described hereby. All these function-
alities can be very useful whereby one needs to reason about
spatial entities corresponding to unorganized point sets as
in the case of extracted nuclei from medical images (see
Doyle et al. (2008) for interesting statistical analysis of nuclei
architecture embedded in a mesh representation for breast
cancer diagnosis).

1To test the presented results, a Java applet and its source code are available
in the public domain at http://sip-crip5.org/lomn/

A. The directional dilation

In order to infer spatial relation reasoning on mesh repre-
sentations, a useful operator used on regular lattice images is
the directional dilation (see Bloch et al. (2006)). We adapt this
concept on irregular lattice representations such as Delaunay
triangulations. Let α be the directional angle with regard to
the horizontal axis of the representation plane.

We define the directional dilation of any mesh D ∈ L
by modifying the definition of the neighborhood ν(T ) of a
triangle T as a directional structural element of direction α
that is :

να(T ) = {T ′ ∈ Del|T ′ ∩ T 6= ∅ and 6 (T, T ′) < α + ε} (5)

defining a type of anisotropic neighborhood referred as να, to
be put in parallel with the isotropic neighborhood definition
νiso of equation 2, where α stand for the angle with the
horizontal axis (O−→x ) and ε is the width or tolerance angle
of the structuring element (see Fig. 3). The angle between
triangles T and T ′ is given by:

6 (T, T ′) = 6 (−−−−→BT BT ′ , (O−→x )) (6)

where BT is the barycenter of the triangle T .

ε

πα
Fig. 3. Crisp angle representation for the directional dilation

Combining Eq. 5 and Eq. 3, we can define the directional
dilation as:

∀D ∈ ℘(Del), dα,ε(D) = dνα(D) (7)

where dneighborhood stands for a specific neighborhood sys-
tem. Whenever ε is not written, ε = π/8.0 and dα,ε = dα.

B. The relation “left of”

We can now define a simple absolute directional spatial
relation like “left of”:

Leftdil(D) = dn
π(D) with n/dn

π(D) = dn+1
π (D) (8)

where dn stands for d ◦ d ◦ ...d n times.
Fig. 4(b) illustrates the region “left of”. Due to the irregular

pavage of the underlying topological space, we advocate that
a directional dilation must be filtered out by a final isotropic
opening-like operator to get a significant result. As a primary
result, any spatial relation defined in this framework must
be filtered this way and subsequently we define the ”left of”
spatial relation as follows:

Left(D) = dνiso ◦ eνiso(d
n
π(D)) with n/dn

π(D) = dn+1
π (D)

(9)



Fig. 4(c) illustrates the final sub-triangulation corresponding
to the spatial region ”left of” defined over the sparse repre-
sentation of the image.

C. The relation “between”

Based on the proposed mesh-based morphological opera-
tors, we consider now the more complex and less objective
spatial relation “between” that can be defined as follows:

βdil(D1, D2) = dn[dn(D1) ∩ dn(D2)] ∩ DC
1 ∩ DC

2

with n = inf{k/dk(D1) ∩ dk(D2) 6= ∅} (10)

where DC stands for any involution operator like the set
complement operator for this study. And after the necessary
post-processing as stated previously, we define the relation
”between” over a sparse representation as follows:

Between(D1, D2) = eνiso ◦ dνiso(βdil(D1, D2))
with n = inf{k/dk(D1) ∩ dk(D2) 6= ∅} (11)

Fig. 5 illustrates the achieved results for this specific spatial
query over a sparse representation.

IV. CONCLUSION

The new amount of image data available at very high daily
rate and spatial resolution acquisition urge the computer vision
community to commit to develop new kind of image analysis
tools dedicated to sparse geometrical representations of images
and high-level semantic interactions with the novice end-user.
We proposed new ways for interacting with huge amount of
image data based on a sparse representation like a Delaunay
triangulation. Morphological operators previously designed to
act on such a sparse and geometrical image representation have
been used for efficiently modeling specific spatial relations
based on the dilation operator. This work aims at contributing
to the definition of a sound theoretical framework dedicated
to spatial relation modeling over mesh representations. In
addition to the modeling of high-level spatial query useful
for the guided exploration or scanning of huge microscopic
images, such a numerical modeling of spatial relations can
be used to control graph-based image segmentation algorithm
based on anatomical or medical knowledge Ta et al. (2009);
Colliot et al. (2006). Further work includes the thorough study
of an extended spatial relationships set of operators such
as ”between”, ”around” as much as the extension to fuzzy
versions according to the modeling described in Bloch et al.
(2006) for radiometric images.
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Fig. 4. (a) One sub-mesh of interest D (b) The left region Leftdil(D))
of the region D (c) The filtered open region left of D with eνiso ◦
dνiso(Leftdil(D))
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Fig. 5. (a) Two sub-triangulations of interest D1 and D2 (b) βDil(D1, D2)
(c) the filtered result after an isotropic opening Between(D1, D2)
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