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CENTRAL LIMIT THEOREMS AND QUADRATIC VARIATION IN TERMS OF

SPECTRAL DENSITY

HERMINE BIERMÉ, ALINE BONAMI, AND JOSÉ R. LEÓN

Abstract. We give a new proof and provide new bounds for the speed of convergence in the Central
Limit Theorems of Breuer Major on stationary Gaussian time series. Our assumptions are given in
terms of the spectral density of the time series. We then consider generalized quadratic variations
of Gaussian fields with stationary increments under the assumption that their spectral density is
asymptotically self-similar and prove Central Limit Theorems in this context.

1. Introduction

In this paper we essentially develop Central Limit Theorems that are well adapted to obtain as-
ymptotic properties of quadratic variations of Gaussian fields with stationary increments. Moreover,
we give bounds for the speed of convergence, which partially improve the bounds given by Nourdin
and Peccati in [22]. We rely heavily on their methods but adopt a spectral point of view, which
improves the final computations.

Before describing our theoretical results, let us describe the scope of applications that we have in
mind. The finite distributional properties of the increments of a real valued Gaussian field {Y (t); t ∈
R

ν} indexed by R
ν (ν ≥ 1) may be described from its variogram, that is, the function

(1) vY (t) := E(((Y (s + t) − Y (s))2)

or from its spectral measure, which is such that

(2) vY (t) = 2

∫

Rd

|e−it.x − 1|2 dτ(x) , ∀t ∈ R
ν .

Here t.x stands for the scalar product of the two vectors in R
ν and |x| denotes the Euclidean norm

of the vector x. The spectral measure τ is a non negative even measure on R
ν . We will only

consider absolutely continuous spectral measures, that is, measures that can be written as dτ(x) :=
F (x)dµν(x). Here µν denotes the Lebesgue measure on R

ν (we skip the exponent for ν = 1).
The function F , called the spectral density of Y , is assumed to be a non-negative even function of
L1

(
R

ν , min
(
1, |x|2

)
dµν(x)

)
. A typical example of such random fields is given by

(3) Y (t) =

∫

Rν

(
e−it·x − 1

)
F (x)1/2dW̃ ν(x), t ∈ R

ν ,

where W̃ ν is a complex centered Gaussian measure on R
ν with Lebesgue control measure µν , such

that W̃ ν(−A) = W̃ ν(A) a.s. for any Borel set A of R
ν . In fact, if we are only interested by

finite distributions of the random field Y , we can always assume that Y is given by such a spectral
representation (3).

Centered Gaussian fields with stationary increments are widely used as models for real data, for
example to describe rough surfaces or porous media that possess some homogeneity properties. In
particular the fractional Brownian field (fBf), first defined in dimension ν = 1 through a stochastic
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spending time in MAP5 to explain his work.

1
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integral of moving-average type by Mandelbrot and Van Ness [21], admits such a representation with
spectral density given by

FH(x) =
1

|x|2H+ν
, with H ∈ (0, 1) called the Hurst parameter.

The homogeneity of FH implies a self-similarity property of the corresponding random field YH ,
namely

∀λ > 0, {YH(λt) ; t ∈ R
ν} fdd

= λH{YH(t) ; t ∈ R
ν}.

When ν ≥ 2, the choice of this power of the Euclidean norm for the spectral density is equivalent
to the fact that the variogram is vYH

(t) = cH |t|2H , for some positive constant cH . It induces the
isotropy of the field YH (its law is invariant under vectorial rotations). Such a model is not adapted
when anisotropic features are observed. Anisotropic but still self-similar generalizations are simply
obtained by considering a spectral density given by F (x) = Ω(x)FH(x) with Ω an homogeneous
function of degree 0 satisfying Ω(x) = Ω(x/|x|). Then the corresponding variogram is given in a
similar form

v(t) = ω(t/|t|)|t|2H , with ω(t) = cH,ν

∫

|x|=1
|t · x|2HΩ(x)dx,

where dx denotes the Lebesgue measure on Sν−1 = {x ∈ R
ν ; |x| = 1}. When using such a model,

a typical question is the identification of the Hurst parameter H from real data. Many estimators
for the Hurst parameter of a one-dimensional fBf (called fractional Brownian motion) have been
proposed, based for example on time domain methods or spectral methods (see [11] and [3] and
references therein). Quadratic variations are relevant estimators when considering H as the critical
index of Hölder regularity for the sample paths. Moreover in [19] the authors give precise bounds
of the bias of the variance and show that minimax rates are achieved for this kind of estimators.
Generalized quadratic variations also apply to more general Gaussian processes and fields with sta-
tionary increments with the same Hölder regularity (see [17, 18] or [9, 10] for instance), for which
the variogram satisfies

v(t) = ω(t/|t|)|t|2H + O
|t|→0

(
|t|2H+s

)

for H ∈ (0, 1) and s ∈ (0, 2 − 2H) with ω a positive function on the sphere Sν−1 (and additional
assumptions of regularity). This kind of assumption can be replaced by an assumption on the spectral
density F (which is a priori stronger but does not require any extra assumption of regularity). More
precisely, we will be interested in random fields for which

(4) F (x) =
Ω(x)

|x|2H+ν
+ O

|x|→+∞

(
1

|x|2H+ν+γ

)
,

with Ω an even function on the sphere Sν−1 (or a constant when ν = 1). Our particular interest
in this situation, where the self-similar spectral density is perturbed by a rest that decreases more
rapidly at infinity, may be understood from previous work [7, 8]. This arises in particular when one
considers a weighted projection of a self-similar random field. We develop here methods that reveal
to be stable when adding such a perturbation to the spectral density. A source of inspiration for us
has also been the paper of Chan and Wood [9], which deals with stationary random Gaussian fields
with asymptotic self-similar properties.

The estimation of Ω or H goes through the consideration of quadratic variations of Y , observed
on finer and finer grids. Typically, we assume to have observed values of the random field on a grid
with uniform mesh, that is, {Y (k/n); k = (k1, . . . , kν) ∈ Z

ν with 0 ≤ k1, . . . , kν ≤ n − 1}. We want
to have Central Limit Theorems for the quadratic variation of this sequence when n tends to ∞.
One central idea used in this paper consists in a change of scale, so that we can as well consider a
fixed mesh, but for a different random field at each scale, because of the fact that F is asymptotically
homogeneous. The rest does not appear in the limit, and acts only on the speed of convergence,
which is in n−α, for some α > 0 depending in particular on γ. Once we have Central Limit Theorems
for finite distributions through this scaling argument, we can also recover asymptotic properties for
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continuous time quadratic variations, which may be used when dealing with increments of non linear
functionals of Y instead of increments of Y .

Let us come back to the theoretical part of this paper, which constitutes its core. We revisit
Breuer Major’s Theorem, which is our main tool to obtain Central Limit Theorems, and use the
powerful theory developed by Nourdin, Nualart, Ortiz-Latorre, Peccati and others to do so. This is
described in the next section and we refer to it for more details. We would like to attract attention
to a remark, which has its own interest: under appropriate additional assumptions, the Malliavin

derivative of
1√
n

n−1∑

k=0

H(X(k)), where (X(k))k∈Z
is a stationary Gaussian time series and where the

Hermite expansion of H starts with terms of order 2, can be written in terms of the integrated
periodogram of the sequence H ′(X(k)). Recall that the periodogram of this time series is defined as

1

n

∣∣∣∣∣
n−1∑

k=0

H ′(X)(k)eikx

∣∣∣∣∣

2

.

Up to our knowledge, this link between two different theories had not been given before. As a conse-
quence, the techniques that we use for having the speed of convergence in Central Limit Theorems
may be used for consistency of estimators given in terms of integrated periodograms.

Section 2 is devoted to the theoretical aspects (Central Limit Theorems, integrated periodograms,
speed of convergence) in dimension one. We chose to give the proofs in this context, so that the
reader can easily follow them. Once this done, we hope that it is not difficult to see how to adapt
them in higher dimension, which we do more rapidly in Section 3. We then apply this to generalized
quadratic variations in Section 4.

Acknowledgement. This work was done independently of the paper of Nourdin, Peccati and
Podolskij [23], which has been posted on the web while we were finishing to write this one. Compared
to the results of [23], we deliberately restricted to simple cases, but have found better bounds for the
speeds of convergence. It would certainly be helpful to make a synthesis between the two papers.
We chose not to do it here, but to stick to our initial project and to the applications we had in view,
with assumptions given on spectral densities and not on variograms.

2. Breuer-Major Theorem revisited

In this section we will be interested in stationary centered Gaussian time series X = (X(k))k∈Z

as well as approximate ones. We will start from Breuer-Major Theorem and give a proof of it
which is based on the Malliavin Calculus, as exploited by Nourdin, Nualart, Ortiz-Latorre, Peccati,
among others, to develop Central Limit Theorems in the context of Wiener Chaos (see [26, 22] for
instance). This kind of proof is implicit in the work of these authors, and explicit in the last paper of
Nourdin, Peccati and Podolskij [23], where speeds of convergence are given in a very general context.
Our interest, here, is to see that assumptions are particularly simple and meaningful when they are
given on the spectral density of the time series. Meanwhile, we improve the estimates for the speed
of convergence to the best possible through this method under the assumption that the spectral
density is in some Sobolev space. Also, this study will lead us to asymptotic estimates on integrated
periodograms, which have their own interest and are particularly relevant when one interests to
spectral densities.

Let us first state the theorem of Breuer Major in the simplest one dimensional case. For l ≥ 1, we
consider the stationary centered time series Hl(X) = (Hl(X)(k))k∈Z

where Hl(X)(k) = Hl(X(k))
with Hl the l-th Hermite polynomial.

Theorem 2.1 (Breuer-Major). Let (X(k))k∈Z be a centered stationary Gaussian time series. Assume
that for l ≥ 1, the sequence r(k) = E(X(j)X(j + k)) satisfies the condition

(5)
∑

k∈Z

|r(k)|l < ∞.

Then we have the following asymptotic properties for n tending to infinity:
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(i)

Var

(
1√
n

n−1∑

k=0

H
l
(X)(k)

)
−→ σ2

l ,

(ii)

1√
n

n−1∑

k=0

H
l
(X)(k)

d→ N (0, σ2
l ),

with

(6) σ2
l = l!

∑

k∈Z

r(k)l.

For p ≥ 1, we introduce the Banach space ℓp(Z) of p-summable sequences equipped with the norm

‖u‖ℓp(Z) =

(∑

k∈Z

|u(k)|p
)1/p

for u = (u(k))k∈Z
∈ ℓp(Z). Then, Assumption (5) can be written as

r = (r(k))k∈Z
∈ ℓl(Z). We recall that the sequence r(k) can be seen as the Fourier coefficients of a

positive even periodic finite measure, called the spectral measure of the time series (see [13] or [29]
for instance). We will restrict to time series for which the spectral measure is absolutely continuous
with respect to the Lebesgue measure µ.

We identify 2π-periodic functions both with functions on the torus T := R/2πZ and functions on
[−π, +π). The spaces Lp(T) are spaces of measurable functions f on [−π, +π) such that

(7) ‖f‖p
p := ‖f‖p

Lp(T) :=
1

2π

∫

T

|g(x)|pdµ(x) =
1

2π

∫ +π

−π
|f(x)|pdµ(x).

Let us come back to our assumption on the spectral measure. We call fX its density with respect
to the measure µ, and speak of spectral density of the time series as it is classical. Moreover we pose
fX = |g|2. We could of course choose g non negative, but want to have some flexibility later on.

So, in the following we assume that there exists some function g ∈ L2(T) which satisfies the

assumption g(x) = g(−x), such that

(8) r(k) :=
1

2π

∫

T

e−ikx|g(x)|2dµ(x) =
1

2π

∫ +π

−π
e−ikx|g(x)|2dµ(x).

Remark that the absolute continuity is only an additional property under (5) when l > 2. When the
sequence r(k) is square summable, one can find fX = |g|2 ∈ L2(T) by Plancherel’s Theorem.

Remark 2.2. Recall that, for U and V two centered Gaussian variables such that E(UV ) = ρ, we
have E(Hl(U)Hl(V )) = l!ρl. So, whenever the time series X has the spectral density fX , the time
series Hl(X) has the density fHl(X) = l!f∗l

X , where the notation f∗l
X stands for l times the convolution

of fX by itself on the torus. Assumption (5) implies the absolute convergence of the Fourier series
of the spectral density of Hl(X). It also means that f∗l

X is continuous on T and that σ2
l = l!f∗l

X (0).
For all l ≥ 2, Assumption (5) is in particular implied by the stronger assumption

(9) fX ∈ L
l

l−1 (T),

since ‖r‖ℓl(Z) ≤ ‖fX‖ l
l−1

by Hausdorff-Young Inequality (see [20] for instance).

Remark 2.3. Note also that the assumption that the Gaussian time series X has a spectral density
fX implies in particular that the time series Hl(X) is a strictly stationary ergodic one, for any l ≥ 1,
(see [12] for instance).

We will give a new proof of the theorem of Breuer Major under Assumption (8). We will use
for instance Theorem 4 in [26], which asserts that the Central Limit Theorem is a consequence of
the convergence of the variance given in (i) on one side, then of a quantity related to the Malliavin
derivative on another side, so that one does not need to consider all moments as in the original proof
of Breuer and Major. In a first subsection we recall the main tools in our framework.
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2.1. Complex Wiener chaos and Malliavin calculus. Let W be a complex centered Gaussian
measure on [−π, +π) with Lebesgue control measure 1

2πµ such that, for any Borel set A of [−π, π)

W (−A) = W (A) almost surely. We consider complex-valued functions ψ defined on [−π, +π),
considered as periodic functions of the torus that satisfy, for almost every x ∈ T

ψ(x) = ψ(−x).

We write L2
e(T) the real vector space of such functions that are square integrable with respect to the

Lebesgue measure on T. Endowed with the scalar product of L2(T), which we also note

〈ψ, ϕ〉µ =
1

2π

∫

T

ψ(x)ϕ(x)dµ(x),

L2
e(T) is a real separable Hilbert space. Moreover, for any ψ ∈ L2

e(T), one can define its stochastic
integral with respect to W as

I1(ψ) =

∫ +π

−π
ψ(x)dW (x).

Then I1(ψ) is a real centered Gaussian variable with variance given by ‖ψ‖2
2, where ‖ · ‖2 is the norm

induced by the scalar product 〈·, ·〉µ. For introducing the k-th Itô-Wiener integral, with k ≥ 1, we
consider the complex functions belonging to

L2
e(T

k) = {ψ ∈ L2(Tk) : ψ(−x) = ψ(x)}.
The inner product in the real Hilbert space of complex functions of L2

e(T
k) is given by

〈ψ, ϕ〉µk =
1

(2π)k

∫

Tk

ψ(x)ϕ(x)dµk(x).

The space L2
s(T

k) denotes the subspace of functions of L2
e(T

k) a.e. invariant under permutations of
their arguments. By convention L2

s(T
k) = R for k = 0. Let us define H(W ) the subspace of random

variables in L2(Ω, P) measurable with respect to W . The k-Itô-Wiener integral Ik is defined in such

a way that (k!)−1/2Ik is an isometry between L2
s(T

k) and its range Hk ⊂ H(W ), so that we have the
orthogonal decomposition

H(W ) =
∞⊕

k=0

Hk,

where H0 is the space of real constants. Each Y ∈ H(W ) has an L2(Ω, P) convergent decomposition

Y =
∞∑

k=0

Ik(ψk), ψk ∈ L2
s(T

k).

When moreover
+∞∑

k=1

(k + 1)!‖ψk‖2
2 < +∞, with ‖ψk‖2

2 = 〈ψk, ψk〉µk , the Malliavin derivative of Y ,

denoted by DY , is defined as the complex valued random process given on T by

DtY =

+∞∑

k=1

kIk−1 (ψk (·, t)) , t ∈ T.

Furthermore if Hk is the k-th Hermite polynomial for the standard Gaussian measure and denoting
by ψ⊙k the k-tensor product of the function ψ ∈ L2

e(T) we have

Hk(I1(ψ)) = Ik(ψ
⊙k) :=

∫

[−π,+π)k

ψ(x1) . . . ψ(xk)dW (x1) . . . dW (xk),(10)

so that its Malliavin derivative is given by DHk(I1(ψ)) = kHk−1(I1(ψ))ψ.
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2.2. Proof of Breuer Major Theorem under Assumption (8). As far as finite distributions
are concerned, when the time series X admits a covariance function given by (8) for some function
g ∈ L2

e(T), we can assume, without loss of generality, that

(11) X(k) :=

∫ +π

−π
e−ikxg(x)dW (x).

Up to normalization, we can also assume that r(0) = 1, or equivalently that ‖g‖2
2 = 1

2π

∫
T
|g(x)|2dµ(x) =

1. For any k ∈ Z, we write gk(x) = e−ikxg(x) ∈ L2
e(T) so that X(k) may be written as the Itô-Wiener

integral I1(gk). Moreover Hl(X) is in the Wiener chaos of order l with

Hl(X)(k) = Il

(
g⊙l
k

)
, k ∈ Z.

Let us now proceed to the proof. The computation of the variance in (i) is direct. Let us write

Yn =
1√
n

n−1∑

k=0

Hl(X)(k).

Then,

Var(Yn) =
1

n

n−1∑

k=0

n−1∑

k′=0

Cov(H
l
(X)(k), H

l
(X)(k′))

=
l!

n

n−1∑

k=0

n−1∑

k′=0

r(k − k′)l

= l!
n−1∑

k=−(n−1)

(
1 − |k|

n

)
r(k)l,

which tends to l!
∑

k∈Z

r(k)l = l!σ2
l . Recall that this last sum is absolutely convergent because of the

assumption on r. This concludes the proof when l = 1 since Yn is a Gaussian variable in this case.

When l ≥ 2 we write Yn = Il(Fn), with Fn =
1√
n

n−1∑

k=0

g⊙l
k . By Theorem 4 of [26], to prove Part (ii)

it is sufficient to prove that

‖DYn‖2
2 −→

n→+∞
lσ2

l in L2(Ω, P),

with DYn the Malliavin’s Derivative of Yn, which is given by

DYn =
1√
n

n−1∑

k=0

lHl−1(I1(gk))gk.

We first remark that

‖DYn‖2
2 =

l2

n

n−1∑

k,k′=0

Hl−1(I1(gk))Hl−1(I1(gk′))〈gk, gk′〉µ

=
l2

n

n−1∑

k,k′=0

H
l−1

(X)(k)H
l−1

(X)(k′)r(k − k′)

=
l2

2π

∫ π

−π
I(l−1)

n
(x)fX(x)dµ(x),

where

I(l−1)
n

(x) =
1

n

n−1∑

k,k′=0

H
l−1

(X)(k)H
l−1

(X)(k′)ei(k′−k)x =
1

n

∣∣∣∣∣
n−1∑

k=0

H
l−1

(X)(k)eikx

∣∣∣∣∣

2

,
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is the periodogram of order n of the stationary sequence
(
H

l−1
(X)(k)

)
k∈Z

(see [15] for instance).
The end of the proof is a direct consequence of the next subsection, which is devoted to the limit
of integrated periodograms. The fact that the Malliavin derivative may be written in terms of the
periodogram is an unexpected phenomenon.

2.3. Integrated periodograms. We keep the notations of the last subsection, so that for l ≥ 1,

(12) I(l)
n (x) :=

1

n

∣∣∣∣∣
n−1∑

k=0

H
l
(X)(k)eikx

∣∣∣∣∣

2

.

The periodogram I(l)
n

is used as an estimator of the spectral density of the stationary sequence

(H
l
(X)(k))k∈Z

, that is l!f∗l
X since its Fourier coefficients are equal to l!r(k)l. It is well known that

I(l)
n

(x) is not a consistent estimate of l!f∗l
X (x), even when well defined because of continuity (see [15]

for instance). However we can hope consistency results for

(13) I
(l)
φ,n :=

1

2π

∫ +π

−π
I(l)
n (x)φ(x)dµ(x).

Here φ is a test function, which is real, even, integrable and has some smoothness properties to be

stated later on. Such quantities I
(l)
φ,n are called integrated periodograms.

We have the following proposition, which gives in particular the asymptotic properties that are
required for the proof of Breuer Major Theorem. We introduce ck(φ) = 1

2π

∫
T

φ(x)e−ikxdµ(x) the
k-th Fourier coefficient of φ.

Proposition 2.4. Assume that (r(k))k∈Z
∈ ℓl+1(Z) and

∑

k∈Z

|ck(φ)|l+1 < ∞. Then, as n tends to ∞,

(i) E(I
(l)
φ,n) tends to l!

2π

∫
T

f∗l
X (x)φ(x)dµ(x).

(ii) I
(l)
φ,n − E(I

(l)
φ,n) tends to 0 in L2(Ω, P).

Remark that conditions on r and φ imply that the integral 1
2π

∫
f∗l

X (x)φ(x)dµ(x) may be given

meaning as
∑

k∈Z

r(k)l ck(φ), using the absolute convergence of the series. When φ = fX , as in the

proof of Breuer Major Theorem, the limit of the expectation is l!
∑

k∈Z

r(k)l+1 = σ2
l+1/(l + 1).

Proof. The first assertion follows from the fact that

E(I
(l)
φ,n) = l!

n−1∑

−n+1

(
1 − |k|

n

)
r(k)l ck(φ).

Next, in view of the second assertion, we consider the components of ‖DYn‖2
2 in the Wiener chaos

and use for this the multiplication formula (see [16] for instance), which we recall now:

H
l
(X)(k)H

l
(X)(k′) =

l∑

p=0

p!(2(l − p))!

(
l
p

)2

I2l−2p(g
⊙l
k ⊗p g⊙l

k′ ),

with

g⊙l
k ⊗p g⊙l

k′ = 〈gk, gk′〉pµ
(
g
⊙l−p

k ⊗ g
⊙l−p

k′

)
s
.

Here, as usual, if ψ ∈ L2
e(T

k), we note (ψ)s its symmetrization in L2
s(T

k), for k ≥ 2. For simplification,
we note s(k) := ck(φ). Then we have

Iφ,n − E(Iφ,n) =
l−1∑

p=0

p!(2(l − p))!

(
l
p

)2

Up,n,



8 HERMINE BIERMÉ, ALINE BONAMI, AND JOSÉ R. LEÓN

with

Up,n =
1

n

n−1∑

k,k′=0

s(k − k′)I2l−2p(g
⊙l
k ⊗p g⊙l

k′ )

=
1

n

n−1∑

k,k′=0

s(k − k′)r(k − k′)pI2l−2p((g
⊙l−p

k ⊗ g
⊙l−p

k′ )s).

Using orthogonality between components, it is sufficient to consider each of them separately. The
next lemma gives the convergence in L2(Ω, P) of each term.

Lemma 2.5. Assume that
∑

k∈Z

|r(k)|l+1 < ∞ and
∑

k∈Z

|s(k)|l+1 < ∞. Let p < l. Then E(|Up,n|2)

tends to 0 for n tending to ∞.

Proof. We can write Up,n as I2(l−p)(Fp,n), with

Fp,n :=
1

n

n−1∑

k,k′=0

s(k − k′)r(k − k′)p(g
⊙l−p

k ⊗ g
⊙l−p

k′ )s.

By isometry, the L2(Ω, P) norm of Up,n is equal, up to the constant (2(l−p))!1/2, to the L2
s

(
T

2(l−p),
)

norm of Fp,n. Now Fp,n may be written as the mean of (2(l−p))! terms, corresponding to permutations

of the 2(l− p) variables. It is easy to see that all terms have the same norm, so that the L2
s

(
T

2(l−p)
)

norm of Fp,n is bounded by the L2
e

(
T

2(l−p)
)

norm of one of the terms, that is

∥∥∥∥∥∥
1

n

n−1∑

k,k′=0

s(k − k′)r(k − k′)pg
⊙l−p

k ⊗ g
⊙l−p

k′

∥∥∥∥∥∥
2

.

Finally, E(|Up,n|2) is bounded by

(2(l − p))!

(2π)2l−2p

∫

(−π,+π)l−p×(−π,+π)l−p

Kp,n(x, y)fX(x1) · · · fX(xl−p)fX(y1) · · · fX(yl−p)dµl−p(x)dµl−p(y),

with

Kp,n(x, y) :=

∣∣∣∣∣∣
1

n

n−1∑

k,k′=0

r(k − k′)ps(k − k′)e−ik(x1+···+xl−p)eik′(y1+···+yl−p)

∣∣∣∣∣∣

2

=
1

n2

n−1∑

j,j′,k,k′=0

r(k − k′)ps(k − k′)r(j − j′)
p
s(j − j′)e−i(k−j)(x1+···+xl−p)ei(k′−j′)(y1+···+yl−p).

We pose ρ1(k) := |r(k)|p|s(k)| and ρ2(k) = |r(k)|l−p, for k ∈ Z and denote by ρ1,n(k), respectively
ρ2,n(k), the truncated series ρ1,n(k) = ρ1(k), respectively ρ2,n(k) = ρ2(k), when |k| ≤ n − 1 and 0

otherwise. Assumption on r implies that ρ2 ∈ ℓ
l+1
l−p (Z), while together with assumption on s and

Hölder inequality imply that ρ1 ∈ ℓ
l+1
p+1 (Z), with ‖ρ1‖

ℓ
l+1
p+1 (Z)

≤ ‖r‖p
ℓl+1(Z)

‖s‖ℓl+1(Z). Therefore the

convolution product of ρ1 and ρ2 is well defined and is uniformly bounded:

ρ1 ∗ ρ2(k) =
∑

k′∈Z

ρ1(k − k′)ρ2(k
′) ≤ ‖ρ1‖

ℓ
l+1
p+1 (Z)

‖ρ2‖
ℓ

l+1
l−p (Z)

.
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Then, the same bound holds for ρ1,n ∗ ρ2,n(k) and

E
(
|Up,n|2

)
≤ (2(l − p))!

n2

n−1∑

j,j′,k,k′=0

ρ1,n(k − k′)ρ1,n(j − j′)ρ2,n(k − j)ρ2,n(j′ − k′)

≤ (2(l − p))!

n2

n−1∑

k,j′=0

(
ρ1,n ∗ ρ2,n(k − j′)

)2
.

It follows that

E
(
|Up,n|2

)
≤ (2(l − p))!

n

∑

|j|≤n−1

(
1 − |j|

n

)
(ρ1,n ∗ ρ2,n(j))2 ,

such that E
(
|Up,n|2

)
is uniformly bounded with

E(|Up,n|2) ≤ (2(l − p))!‖r‖2l
ℓl+1(Z)‖s‖2

ℓl+1(Z).

Let us now prove that E(|Up,n|2) tends to 0. We will use a density argument. For s̃ a sequence
with finite support, the quantity

1

n2
E

∣∣∣∣∣∣

n−1∑

k,k′=0

s̃(k − k′)I2l−2p(g
⊙l−1

k ⊗p g
⊙l−1

k′ )(k′)

∣∣∣∣∣∣

2

tends to 0. To prove the same with s in place of s̃, for a given ε > 0 we write s as the sum of some

s̃ with finite support such that
∑

k∈Z

|s̃(k) − s(k)|l < ε. We conclude by a standard argument. ¤

We have completed the proof of Proposition 2.4, and in the same time the proof of Breuer Major
Theorem under the assumption that the spectral measure has a density. ¤

This proposition on periodograms seems new. Actually Part (i) proves the asymptotic unbiasedness

of the estimator I
(l)
φ,n, while Part (ii) implies its consistency.

Remark 2.6. If we are only interested in asymptotic unbiasedness, continuity of the function f∗l ∗φ
at 0 is sufficient, see [14]. Remark that the assumptions given here imply that its Fourier series
is absolutely convergent. Note also that consistency is proved through asymptotic normality under
stronger assumptions of integrability in [14]. This proposition may also be compared with [2], where
Central Limit Theorems are developed for integrated periodograms when the test functions are in the
Sobolev space Hα for α > 1/2.

Recall that Hα := Hα(T) is the space of functions ψ ∈ L2(T) such that
∑

k∈Z

|ck(ψ)|2(1 + |k|)2α < ∞.

We now give a bound for the speed of convergence in Proposition 2.4 when φ is a test function that
satisfies a condition of Sobolev type. More precisely, we have the following proposition.

Proposition 2.7. Assume that r ∈ ℓl+1(Z) and
∑

k∈Z

|ck(φ)|l+1(1 + |k|)α(l+1) < ∞, for some α > 0.

Then, for some constant Cα and for all n ≥ 1, we have

Var
(
I

(l)
φ,n

)
≤ Cα

{
max(n−1, n−2α) if α 6= 1

2
n−1 log(n) if α = 1

2

Proof. Going back to the last proof and its notations, it is sufficient to prove that
∑

|j|≤n−1

(ρ1,n ∗ ρ2,n(j))2 ≤ C max(1, n1−2α).

We will only consider the case p = 0 and leave the reader see that the proof is the same for the

other terms. In this case, ρ2,n is uniformly in ℓ
l+1

l (Z). By Hausdorff-Young Inequality, one has the
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inclusion ℓ
l+1

l (Z) ∗ ℓq(Z) ⊂ ℓ2(Z) when 1
q = 1

2 + 1
l+1 , with the corresponding norm inequality. So it is

sufficient to compute the norm of ρ1,n in ℓq(Z), which is elementary by Hölder Inequality. For this,
we use the fact that

∑

|k|≤n

(1 + |k|)−2α ≤ Cα max(n1−2α, 1) when α 6= 1

2
and

∑

|k|≤n

(1 + |k|)−1 ≤ C 1
2
log(n).

¤

This kind of proof can be generalized to other assumptions on data. We give now one computation
that leads to a bound for the speed of convergence in Breuer major Theorem.

Proposition 2.8. Assume that
∑

k∈Z

|r(k)|l+1(1 + |k|)α(l+1) < ∞ for some α > 0. Then, when l = 1,

for some Cα > 0 and for all n ≥ 1 we have the uniform estimate

Var
(
I

(1)
fX ,n

)
≤ Cα max(n−1, n−4α).

For l ≥ 2, for some Cα > 0 and for all n ≥ 1 we have

Var
(
I

(l)
fX ,n

)
≤ Cα





n−2α(l+1) : α < 1
l(l+1)

n−2α− 2
l+1 : 1

l(l+1) < α < 1
2 − 1

l+1

n−1 : α > 1
2 − 1

l+1

.

Proof. Again, we go back to the previous notations and estimate
∑

|j|≤n−1

(ρ1,n ∗ ρ2,n(j))2. Let us first

consider l = 1. The only case to consider is p = 0, and we want to prove the estimate
∑

|j|≤n−1

(ρ1,n ∗ ρ2,n(j))2 ≤ C max(n1/2−2α, n1/2).

Here ρ1,n = ρ2,n coincides with |r| for |k| ≤ n− 1. Assume first that α < 1/4. It follows from Hölder

inequality that ‖ρ1,n‖ℓ4/3(Z) ≤ Cαn1/4−α. Now the convolution of two sequences in ℓ4/3(Z) is in ℓ2(Z),

which allows to conclude in this case. For α > 1/4, the sequence ρ1 is in ℓ4/3(Z) and we conclude in
the same way.

It remains to conclude for α = 1/4. We want to prove that
∑

|j|≤n−1

(ρ1,n∗ρ2,n(j))2 is uniformly bounded

under the assumption that
∑

k∈Z

|r(k)|2(1 + |k|)1/2 < ∞. Let hn be the trigonometric polynomial with

ρ1,n as Fourier coefficients. Then ρ1,n ∗ ρ2,n = ρ1,n ∗ ρ1,n are the Fourier coefficients of the function

h2
n. The function hn is uniformly in the Sobolev space H1/4. Now it follows from Sobolev Theorem

(see [20] for instance) that such functions are uniformly in L4(T). By Plancherel Identity,

∑

j∈Z

(ρ1,n ∗ ρ1,n(j))2 =
1

2π

∫

T

|hn(x)|4dµ(x) ≤ C.

Let us now consider l ≥ 2 and estimate again the norm of ρ1,n ∗ ρ2,n in ℓ2(Z). The worst case is

obtained for p = 0. Then ρ1,n coincides with |r| while ρ2 is equal to |r|l. Then

‖ρ1,n ∗ ρ2,n‖ℓ2(Z) ≤ ‖ρ1,n‖ℓ2(Z)‖ρ2,n‖ℓ1(Z).

The first estimate is obtained by taking the norm of ρ1,n in ℓ2(Z) and the norm of ρ2,n in ℓ1(Z), as
long as this last one is not uniformly bounded. For larger values of α, ρ2 in ℓ1(Z) and the bound is
given by the the norm of ρ1,n in ℓ2(Z), as long as this last one is not uniformly bounded. ¤
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2.4. Variable spectral densities. In practice, the spectral density may change at each step of
computation of the mean. This is what happens for instance when we look at increments of a
Gaussian process at different scales. It is important to have still Central Limit Theorems in this
context, as well as methods to compute the speed of convergence. Let us first state a CLT in this
context.

Theorem 2.9. Let Xn = (Xn(k))k∈Z
be centered stationary Gaussian time series. Let l ≥ 2. We

assume that there exists a sequence (gn) of complex functions in L
2l

l−1 (T) ∩ L2
e(T) that converges in

this space to a function g and such that fXn = |gn|2. We call r(k) := 1
2π

∫
T

e−ikx|g(x)|2dµ(x) and
assume that r(0) = 1. Then we have the following asymptotic properties for n tending to infinity:

(i)

Var

(
1√
n

n−1∑

k=0

H
l
(Xn)(k)

)
−→ σ2

l ,

(ii)

1√
n

n−1∑

k=0

H
l
(Xn)(k)

d→ N (0, σ2
l ),

with

(14) σ2
l = l!

∑

k∈Z

r(k)l.

Proof. Remark that we can always assume that

Xn(k) =

∫ +π

−π
e−ikxgn(x)dW (x).

This is a particular case of the following situation. We consider triangular arrays that are obtained
in the following way. We assume that we are given random centered Gaussian variables Xn(k) for
k = 0, · · · , n − 1. We assume that Cov(Xn(j), Xn(j + k)) = rn(k).

Proposition 2.10. Let l ≥ 1. Assume that we are given such a triangular array and that, moreover,
there exists a stationary centered Gaussian sequence X with given covariance r ∈ ℓl(Z) such that
r(0) = 1, defined on the same probability space than Xn with Cov(Xn(j), X(j′)) = hn(j − j′) and the
two following assumptions are satisfied:

(a)
∑

|k|<n−1

|rn(k) − r(k)|l tends to 0 for n tending to infinity.

(b)
∑

|k|<n−1

|hn(k) − r(k)|l tends to 0 for n tending to infinity.

Then, the conclusion of Theorem 2.9 holds true.

Proof. If we define Yn as before, we can apply Breuer Major Theorem to Yn. Let us define

Zn :=
1√
n

n−1∑

k=0

H
l
(Xn)(k).

We will prove that ‖Yn−Zn‖L2(Ω),P → 0, as n → +∞, from which we can conclude directly according

to Slutsky’s Theorem. Since Yn and Zn are centered variables, ‖Yn − Zn‖2
L2(Ω,P) = Var(Yn − Zn),

with

Var(Yn − Zn) = Var(Yn) + Var(Zn) − 2Cov(Yn, Zn).

Similar computations as for Yn imply that

Var(Zn) = l!

n−1∑

k=−(n−1)

(
1 − |k|

n

)
rn(k)l.



12 HERMINE BIERMÉ, ALINE BONAMI, AND JOSÉ R. LEÓN

It follows from Assumption (a) that Var(Yn) and Var(Zn) have the same limit.
Let us now consider the covariance,

Cov(Yn, Zn) =
1

n

n−1∑

k=0

n−1∑

k′=0

Cov(Hl(Xn)(k), Hl(X)(k′)

=
l!

n

n−1∑

k=0

n−1∑

k′=0

hn(k − k′)l

= l!
n−1∑

k=−(n−1)

(
1 − |k|

n

)
hn(k)l.

Again Cov(Yn, Zn) and Var(Yn) have the same limit from Assumption (b). ¤

Let us finish the proof of Theorem 2.9 for l ≥ 2. It is sufficient to remark that convergence of

gn to g in L
2l

l−1 (T) implies convergence of |gn|2 to |g|2 in L
l

l−1 (T), which, in turn, by the theorem
of Hausdorff-Young, implies the convergence of the sequence of Fourier coefficients in ℓl(Z). We

conclude for the convergence of rn to r. We have also the convergence of gng to |g|2 in L
l

l−1 (T).
Since the Fourier coefficients of gng give the sequence hn, this implies its convergence to r. ¤

2.5. Speed of convergence in Breuer Major Central Limit Theorem. We are now able to
bound the speed of convergence in Theorem 2.1 under the assumption that

∑ |r(k)|l(1 + |k|)lα is
finite for some α > 0, as well as in Theorem 2.9. We recall that the distance of Kolmogorov between
the random variables Y and Z is defined as

(15) dKol(Y, Z) = sup
z∈R

|P (Y < z) − P (Z < z)|.

We will be particularly interested by the distance of Kolomogorov to some normal random variable
σN , where N ∼ N (0, 1). We recall that (see [22] for instance), for Z a centered random variable
with variance 1 in the l-th Wiener chaos,

(16) dKol(Z, N) ≤
√(

Var

(
1

l
‖DZ‖2

2

))
.

The following lemma will allow us to compute the required Kolmogorov distances.

Lemma 2.11. For Y and Z two centered random variables in the l-th Wiener chaos, for all ǫ > 0
we have the inequality

dKol(Y, Z) ≤ Cǫ(Var(Y − Z))
1
2
−ǫ + 2dKol(Z, N).

Proof. We have

|P (Y < z) − P (Z < z)| ≤ max{P (Y < z, Z ≥ z), P (Y ≥ z, Z < z)}.
So let us give a bound for P (Y < z, Z ≥ z), the other term being treated by the same method. We
have, for all m ≥ 1, and for η > 0 to choose later on,

P (Y < z, Z ≥ z) ≤ P (z ≤ Z < z + η) +
E(|Y − Z|2m)

η2m

≤ 2dKol(Z, N) + P (z ≤ N < z + η) + Cm
Var(Y − Z)m

η2m

≤ 2dKol(Z, N) + η + Cm
Var(Y − Z)m

η2m
.

We have used the fact that all Lp(Ω, P) norms are equivalent in a Wiener chaos. We choose m =
ǫ−1 − 1

2 . We conclude by minimizing the right hand side as a function of η. ¤
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We do not know whether this inequality is far from sharp or not.

In the particular case when Z is itself a Gaussian random variable, we have a better estimate.
This leads to the following lemma.

Lemma 2.12. For Y a centered random variable in the l-th Wiener chaos we have the inequality

dKol(Y, σN) ≤ 2

σ2
|Var(Y )) − σ2| +

√(
Var

(
1

lσ2
‖DY ‖2

2

))
.

Proof. When |Var(Y )−σ2|
σ2 > 1

2 there is nothing to prove. Otherwise we write

dKol(Y, σN) ≤ dKol(Y,
√

Var(Y )N) + dKol(
√

Var(Y )N, σN).

We use the Malliavin derivative for the first distance, then a direct computation of the distance
between N and a multiple of N . More precisely, for example for z > 0 and σ > 1, one has the

inequality P (z ≤ N ≤ σz) ≤ (σ − 1)ze−z2/2 ≤ σ − 1. ¤

We can now state the first theorem of this subsection, which gives the speed of convergence in
Breuer Major Theorem.

Theorem 2.13. Let (X(k))k∈Z be a centered stationary Gaussian time series with an absolutely
continuous spectral measure. Assume that r satisfies r(0) = 1 and the assumption

(17)
∑

k∈Z

|r(k)|l(1 + |k|)lα < ∞

for some α > 0. Then, for l = 2, for some constant Cα > 0 and for all n ≥ 1,

(18) dKol

(
1√
n

n−1∑

k=0

H2(X)(k), σ2N

)
≤ Cα max(n−2α, n−1/2),

while, for l ≥ 3, for some constant Cα > 0 and for all n ≥ 1,

(19) dKol

(
1√
n

n−1∑

k=0

H
l
(X)(k), σlN

)
≤ Cα





n−αl : α < 1
l(l−1)

n−α− 1
l : 1

l(l−1) < α < 1
2 − 1

l

n− 1
2 : α > 1

2 − 1
l

.

with σ2
l = l!

∑
k∈Z

r(k)l.

Proof. Let us first prove that

(20) |σ2
l − Var(Yn)| ≤ C max(n−αl, n−1).

From the expression of Var(Yn) given above we deduce that

l!−1
∣∣σ2

l − Var(Yn)
∣∣ ≤ 1

n

n−1∑

k=−(n−1)

|k||r(k)|l +
∑

|k|≥n

|r(k)|l.

We conclude directly, by Hölder Inequality, using the fact that
∑

|k|≥n

|r(k)|l(1 + |k|)lα < ∞. Now the

required estimate for the Malliavin derivative is given by Proposition 2.8. ¤

This bound for the speed of convergence can be compared to the ones given in [23], which it
improves. In particular, the speed of convergence for the fractional Brownian Noise given in Example
2.7 in [23], which one can obtain through the same method as above, can be improved to the following
bounds.

Remark 2.14. Assume that r(k) = O(|k|−a). Then, for a > 1
2 , l = 2 and a 6= 3

4 ,

(21) dKol

(
1√
n

n−1∑

k=0

H2(X)(k), σ2N

)
≤ C max(n1−2a, n−1/2),
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while, for l ≥ 2 and a > 1
l

(22) dKol

(
1√
n

n−1∑

k=0

H
l
(X)(k), σlN

)
≤ C





n−la+1 : a < 1
l−1

n−a : 1
l−1 < a < 1

2

n− 1
2 : a > 1

2

.

It may be seen that these estimates are the best possible that one can obtain by the Malliavin
derivative. Remark that for l = 2 and a = 3/4, explicit computations can be done in terms of the

Riesz potential, which show that one cannot have the rate n−1/2. For a = 1/2, one can also improve
the logarithmic rate given in [23].

Next we give the speed of convergence in Theorem 2.9, which depends on the speed of convergence
of gn to g.

Theorem 2.15. Let Xn = (Xn(k))k∈Z
be centered stationary Gaussian time series, which can be

written as

Xn(k) =

∫ +π

−π
e−ikxgn(x)dW (x),

and satisfy the assumptions of Theorem 2.9 with r(k) := 1
2π

∫
T

e−ikx|g(x)|2dµ(x). We assume more-
over that the two following properties are satisfied.

∑

k∈Z

|r(k)|l(1 + |k|)αl < ∞.(23)

‖gn − g‖ 2l
l−1

≤ Cn−β.(24)

Then, for ǫ > 0, for l = 2, for some constant Cα and for all n ≥ 1, we have

(25) dKol

(
1√
n

n−1∑

k=0

H2(Xn)(k), σ2N

)
≤ Cα max(n−β/2+ǫ, n−2α, n−1/2),

while, for l ≥ 3, for some constant Cα and for all n ≥ 1, we have

(26) dKol

(
1√
n

n−1∑

k=0

H
l
(Xn)(k), σlN

)
≤ Cα





max(n−β/2+ǫ, n−αl) : α < 1
l(l−1)

max(n−β/2+ǫ, n−α− 1
l ) : 1

l(l−1) < α < 1
2 − 1

l

max(n−β/2+ǫ, n− 1
2 ) : α > 1

2 − 1
l

.

Proof. We go back to the notations used in the proof of Proposition 2.10. From the last theorem we
already have a bound for the speed of convergence of Yn. We will use Lemma 2.11 to obtain a bound
for the speed of convergence of Zn. We want to have the speed of convergence of Var(Yn −Zn) to 0,
or, which is equivalent, the speed of convergence of Var(Zn)−Var(Yn) and Cov(Yn, Zn)−Var(Yn) to
0, that is, the speed of convergence of |∑ |rn(k)|l − ∑ |r(k)|l| on one side, |∑ |hn(k)|l − ∑ |r(k)|l|
on the other one, with hn(k) = Cov(Xn(k), X(0)) = 1

2π

∫
T

e−ikxgn(x)g(x)dµ(x). The first one is

bounded (up to some constant) by ‖rn − r‖ℓl(Z) ≤ ‖|gn|2 − |g|2‖ l
l−1

, by Hausdorff-Young Inequality.

Now this last quantity is bounded (up to some constant) by ‖gn − g‖ 2l
l−1

. We do the same with

hn. ¤

We do not know whether one can get rid of the ǫ, or improve this bound of the speed of convergence.

3. Vector-valued central limit theorem and generalizations

3.1. Vector-valued central limit theorem. We now describe a very useful expansion of Theorem
2.9 to the vectorial case. In our setting of multiple Itô-Wiener integrals, our main tool is [27] who
proves that vectorial Central Limit Theorems follow from Central Limit Theorems for marginals and
convergence of covariance matrix. For this purpose let us introduce several notations. Let d ≥ 2. Let
us consider −→gn = (g1,n, . . . , gd,n) for n ∈ N and −→g = (g1, . . . , gd) such that all marginals are complex
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valued functions in L2
e(T) and normalized so that 1

2π

∫
R
|gj(x)|2dµ(x) = 1, for all 1 ≤ j ≤ d. Then

one can consider the vector-valued centered stationary Gaussian time series defined by

−→
X (k) =

∫ +π

−π
e−ikx−→g (x)dW (x) and

−→
Xn(k) =

∫ +π

−π
e−ikx−→gn(x)dW (x), k ∈ Z.

Let us recall that
−→
X (k) = (X1(k), . . . , Xd(k)) with Xj(k) = I1(gj,k), writing gj,k(x) = e−ikxgj(x),

and consider the stationary vector-valued processes
−−−−→
Hl(X)(k) = (Hl(X1)(k), . . . , Hl(Xd)(k)) =

(
Il

(
g⊙l
1,k

)
, . . . , Il

(
g⊙l
d,k

))
, k ∈ Z, l ≥ 1.

Similarly we define
−−−−−→
Hl(Xn), replacing gj,k by gj,n,k(x) = e−ikxgj,n(x). Then we write

ri,j(k) = Cov(Xi(k), Xj(0)) =
1

2π

∫

T

e−ikxgi(x)gj(x)dµ(x).

Theorem 3.1. Let l ≥ 2. We assume that −→gn is a sequence of vectorial complex functions in

L
2l

l−1 (T) ∩ L2
e(T) that converges in this space to the function −→g . Then, for n tending to infinity,

1√
n

n−1∑

k=0

−−−−−−−→
H

l
(Xn)(k)

d→ N (0, Σl),

with (Σl)i,j = l!
∑

k∈Z

ri,j(k)l.

Proof. Following the proof of Theorem 2.9 we introduce

−→
Zn =

1√
n

n−1∑

k=0

−−−−−→
H

l
(Xn)(k) and

−→
Yn =

1√
n

n−1∑

k=0

−−−−→
H

l
(X)(k).

Assumptions ensure that
−→
Zn −−→

Yn → 0, as n → +∞, in L2(Ω, P) so that, using Slutsky’s Theorem as

in the proof of Proposition 2.10, it is sufficient to prove that
−→
Yn

d→ N (0, Σl). First, let us denote by
Σn,l the covariance matrix of this vector and remark that, for 1 ≤ i, j ≤ d, (Σn,l)i,j is given by

Cov(Yn,i, Yn,j) =
1

n

n−1∑

k=0

n−1∑

k′=0

E(Il(g
⊙l
n,i,k)Il(g

⊙l
n,j,k′)) =

l!

n

n−1∑

k=0

n−1∑

k′=0

〈gn,i,k, gn,j,k′〉lµ,

with

〈gn,i,k, gn,j,k′〉µ =
1

2π

∫

T

e−i(k−k′)xgn,i(x)gn,j(x)µ(dx) := rn,i,j(k − k′).

Assumption on gn implies that gn,ign,j ∈ L
l

l−1 (T) such that rn,i,j ∈ ℓl(Z), according to Hausdorff-

Young Inequality. Similarly ri,j ∈ ℓl(Z). Moreover, up to a constant C that may change from a line
to another one∣∣∣∣∣∣

∑

|k|≤n−1

(
1 − |k|

n

) (
rn,i,j(k)l − ri,j(k)l

)
∣∣∣∣∣∣

≤ C‖rn,i,j − ri,j‖ℓl(Z)

≤ C‖gn,ign,j − gigj‖ l
l−1

≤ C
(
‖gn,i − gi‖ 2l

l−1
+ ‖gn,j − gj‖ 2l

l−1

)
.

This proves that

(27) Σn,l −→
n→+∞

Σl,

and therefore Σl is a covariance matrix such that Assumption 6 of Proposition 2 of [27] is satis-
fied. Moreover, we already know by Theorem 2.9 that the real random variables Yn,j converge in
distribution to N (0, (Σl)j,j). According to Proposition 2 of [27], this is sufficient to conclude for the
proof. ¤
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Remark 3.1. One can also have a bound for the speed of convergence as in Section 2, based on
results of [25, 24].One considers now the distance of Wasserstein

dW (
−→
Y ,

−→
Z ) = sup |E(Φ(

−→
Y ) − E(Φ(

−→
Z ))|,

where the supremum is taken on all Lipschitz functions with Lipschitz constant bounded by 1, under
the assumption that the matrix Σl is positive definite. When it is not the case, the function Φ is
taken of class C2, with bounded second derivatives. Mutatis mutandis, the bounds obtained for the

speed of convergence are the same as in the last section for
−→
Yn. For

−→
Zn, they rely on the speed of

convergence of the functions −→gn towards −→g . One has to adapt Lemma 2.11 and 2.12 in this context.
Lemma 2.11 can be replaced by the fact that, for Φ with Lipschitz constant bounded by 1, the distance

of Wasserstein between
−→
Y and

−→
Z is bounded by E(|−→Y − −→

Z |) ≤ E(|−→Y − −→
Z |2) 1

2 . So Theorem 2.15
holds with obvious changes in the assumptions, with β/2 − ǫ replaced by β/2 in the conclusion.

3.2. Extension to stationary centered Gaussian fields. Until now, we have chosen to restrict
our study to stationary centered Gaussian processes, essentially for notational sake of simplicity.
However, all previous results have their counterpart in the framework of Gaussian random fields that
are indexed by Z

ν for some integer ν ≥ 2 instead of Z. The Hilbert space L2
e(T) is replaced by L2

e(T
ν)

such that when g ∈ L2
e(T

ν), one can define a stationary random field by the stochastic integral

X(k) =

∫

[−π,π)ν

e−ik·xg(x)dW ν(x), k ∈ Z
ν ,

where k · x is the Euclidean scalar product of k and x in R
ν and W ν is a complex centered Gaussian

measure on [−π, π)ν with Lebesgue control measure 1
(2π)ν µν , satisfying W ν(−A) = W ν(A) a.s. for

any Borel set A of [−π, π)ν . By isometry the covariance function of such a field is still given by the
Fourier coefficients of the function |g|2 ∈ L1(Tν) defined by

r(k) =
1

(2π)ν

∫

Tν

e−ik·x|g(x)|2dµν(x), k ∈ Z
ν .

Then Theorems 2.9 and 3.1 are generalized in the following setting.

Theorem 3.2. Let ν, d ≥ 1 integers. Let
−→
Xn =

(−→
Xn(k)

)
k∈Zν

be centered stationary Gaussian fields

with values in R
d, which can be written as

−→
Xn(k) =

∫

[−π,π)ν

e−ik·x−→gn(x)dW ν(x).

We assume that −→gn is a sequence of vectorial complex functions in L
2l

l−1 (Tν) ∩ L2
e(T

ν) that converges
in this space to a function −→g = (g1, . . . , gd). We call rj(k) := 1

(2π)ν

∫
Tν e−ik·x|gj(x)|2dµν(x) and

assume that rj(0) = 1 for 1 ≤ j ≤ d. Then, for n tending to infinity,

(i)

Var


 1

nν/2

n−1∑

k1,...,kd=0

H
l
(Xn,j)(k)


 −→ (Σl)jj ,

(ii)

1

nν/2

n−1∑

k1,...,kd=0

H
l
(
−→
Xn)(k)

d−→ N (0, Σl),

with

(28) (Σl)i,j = l!
∑

k∈Zν

ri,j(k)l where ri,j(k) =
1

(2π)ν

∫

Tν

e−ik·xgi(x)gj(x)dµν(x).
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Remark 3.3. One can also have a bound for the speed of convergence (written in terms of the
distance of Wasserstein if d > 1) as in the last subsection, but with different exponents coming from
the generalization of Proposition 2.8. The new bound is max(n−ν , n−4α) when l = 1, due to the fact
that the Sobolev space Hα is contained in L4(Tν) for α = ν/4. When l ≥ 2, the new bound is

max(n−2(l+1)α, n−2α− 2ν
l+1 , n−ν).

4. Application to generalized quadratic variations

In this section we consider a continuous time real-valued centered Gaussian field with stationary
increments, defined through a spectral representation

(29) Y (t) =

∫

Rν

(
e−it·x − 1

)
F (x)1/2dW̃ ν(x), t ∈ R

ν ,

where W̃ ν is a complex centered Gaussian measure on R
ν with Lebesgue control measure µν , such

that W̃ ν(−A) = W̃ ν(A) a.s. for any Borel set A of R
ν . We refer to the introduction for more

notations and comments.
We assume that only {Y (k/n); k = (k1, . . . , kν) ∈ Z

ν with 0 ≤ k1, . . . , kν ≤ n − 1} are known for
some large n. We now define generalized quadratic variations. We first define generalized increments.
More precisely, our first step is to consider a stationary field induced by these observations and this
is obtained through a filtering of this sequence. In particular we consider the discrete time stationary
field

Zn,a(k) =

p∑

m1,...,mν=0

a1(m1) . . . aν(mν)Y

(
k1 + m1

n
, . . . ,

kν + mν

n

)
, for k = (k1, . . . , kν) ∈ Z

ν

and a = (a1, . . . ,aν) with aj = (aj(0), . . . , aj(p)) ∈ R
p+1 a discrete filter of length p + 1 and of order

Kj (p, Kj ∈ N with p ≥ Kj), which means that

p∑

mj=0

aj(mj) 6= 0 when Kj = 0 and otherwise

p∑

mj=0

aj(mj)m
r
j = 0 for 0 ≤ r ≤ Kj − 1 and

p∑

mj=0

aj(mj)m
Kj

j 6= 0.

For ν = 1, examples are given

• the increments of Y : Zn,a(k) = Y
(

k+1
n

)
− Y

(
k
n

)
for a = (−1, 1), which is a filter of order 1.

• the second order increments of Y : Zn,a(k) = Y
(

k+2
n

)
− 2Y

(
k+1
n

)
+ Y

(
k
n

)
for a = (1,−2, 1),

which is a filter of order 2.

In dimension ν = 2, following the works of Chan & Wood [9] and Zu & Stein [30] we can also consider
the following types of increments:

• Vertical Zn,a(k) = Y
(

k1
n , k2+2

n

)
− 2Y

(
k1
n , k2+1

n

)
+ Y

(
k1
n , k2

n

)
for a1 = (1) filter of order 0

and a2 = (1,−2, 1) filter of order 2.

• Horizontal Zn,a(k) = Y
(

k1+2
n , k2

n

)
− 2Y

(
k1+1

n , k2
n

)
+ Y

(
k1
n , k2

n

)
for a1 = (1,−2, 1) filter of

order 2 and a2 = (1) filter of order 0.

• Superficial Zn,a(k) := ¤
n
k1,k2

(Y ) = Y
(

k1+1
n , k2+1

n

)
−Y

(
k1+1

n , k2
n

)
−Y

(
k1
n , k2+1

n

)
+Y

(
k1
n , k2

n

)

for a1 = a2 = (−1, 1) filter of order 1.

Coming back to the general case, let us associate to the filter aj the real polynomial

Paj
(xj) =

p∑

mj=0

aj(mj)x
mj

j , for xj ∈ R,
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then aj is a filter of order Kj ≥ 1 if and only if P
(r)
aj

(1) = 0, for 0 ≤ r ≤ Kj − 1 and P
(Kj)
aj

(1) 6= 0.
By Taylor formula, this implies that there exists cj > 0 such that

(30)
∣∣Paj

(
e−ixj

)∣∣ ≤ cj min
(
|xj |Kj , 1

)
, xj ∈ R.

Moreover using the spectral representation of Y , one has

Zn,a(k)=

∫

Rν

e−i k·x
n

ν∏

j=1

Paj

(
e−i

xj
n

)
F (x)1/2dW̃ ν(x).

We will note Pa(x) :=
∏ν

j=1 Paj
(xj). The only assumption that we will use is the fact that Pa has a

zero of order K := K1 + K2 + · · ·Kν at (1, · · · , 1). We say that the filter a has order K. Then we
have

Cov(Zn,a(k), Zn,a(k
′)) =

∫

Rν

e−i
(k−k′)·x

n

∣∣∣Pa

(
e−i

x1
n , · · · , e−i xν

n

)∣∣∣
2
F (x)dµν(x)

=
1

(2π)ν

∫

[−π,π)ν

e−i(k−k′)·x
∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣2 ∑

k∈Zν

(2πn)νF (nx + 2nπk)dµν(x).

So the spectral density of the Zn,a is given by

(31) fn,a(x) =
∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣2 ∑

k∈Zν

(2πn)νF (nx + 2nπk), x ∈ [−π, π)ν .

Because of the assumption on a, one can find a positive constant c > 0 such that

(32)
∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣ ≤ c|x|K , x = (x1, . . . , xν) ∈ [−π, π)ν ,

Then, the generalized quadratic variations of Y are defined as

(33) Vn,a =
1

(n − p + 1)ν

n−p∑

k1,...,kν=0

(Zn,a(k))2 .

Such quantities are very helpful to estimate the H parameter as explained below.

4.1. Central Limit Theorem for quadratic variations. We now consider random fields Y for
which Assumption 4 is valid. More precisely, let Ω be a strictly positive homogeneous function of
degree 0 that is continuous on the sphere Sν−1. We assume that

(34) F (x) =
Ω(x)

|x|2H+ν
+ R(x),

where the rest R satisfies the estimate

(35) |R(x)| ≤ κ

|x|2H+ν(1 + |x|γ)
.

We will prove a Central Limit Theorem for the generalized quadratic variations related to H. We
will see that the limit does not depend on the rest. We use the notations given above.

Theorem 4.1. Let us assume that F , the spectral density of Y satisfies (34) and (35) for some
H > 0 and γ > 0. Let a be a filter of order K. If K > H + ν

4 , then for n tending to infinity,

(i) (n − p + 1)νVar
(

Vn,a

E(Vn,a) − 1
)
−→ σ2

a(H)

(ii) (n − p + 1)ν/2
(

Vn,a

E(Vn,a) − 1
)

d−→ N (0, σ2
a(H)),

with

(36) σ2
a(H) =

2(2π)ν

Ca(H)2

∫

[−π,π)ν

∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣4
∣∣∣∣∣
∑

k∈Zν

Ω(x + 2πk)

|x + 2πk|2H+ν

∣∣∣∣∣

2

dµν(x),

where

(37) Ca(H) =

∫

Rν

∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣2 Ω(x)

|x|2H+ν
dµν(x).
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Proof. This will be a direct consequence of the previous sections. We can write

Vn,a

E (Vn,a)
− 1 = H2(Xn,a(k)),

with {Xn,a(k), k ∈ Z
ν} a stationary Gaussian time series, given by

Xn,a(k) :=
Zn,a(k)√

Var (Zn,a(k))
.

The spectral density of Xn,a is easily deduced from the one of Zn,a given in (31), using the fact that

Cn,a := Var (Zn,a(k)) =

∫

Rν

∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣2 nνF (nx)dµν(x).

This means that we can write fXn,a as |gn,a|2, with

(38) gn,a(x) :=
1√
Cn,a

Pa

(
e−ix1 , · · · , e−ixν

) √ ∑

k∈Zν

(2πn)νF (nx + 2nπk).

We are in position to apply Theorem 2.9 or Theorem 3.2 depending on the dimension. It is sufficient
to prove that gn,a is uniformly in L4(T) and converges to ga, with

(39) ga(x) =
1√

Ca(H)
Pa

(
e−ix1 , · · · , e−ixν

)
√ ∑

k∈Zν

(2π)ν
Ω(x + 2πk)

|x + 2πk|2H+ν

and Ca(H) given by (37). The required convergence properties are contained in the following lemma.

Lemma 4.2. We have the following.

n2H
E (Vn,a) − Ca(H) =





O
n→+∞

(
n−2(K−H)

)
if K − H < γ/2

O
n→+∞

(n−γ log n) if K − H = γ/2

O
n→+∞

(n−γ) if K − H > γ/2

.

Moreover gn,a and ga are in L4(T) and

‖gn,a − ga‖4 =





O
n→+∞

(
n−(K−H−ν/4)

)
if K − H < γ + ν/4

O
n→+∞

(n−γ log n) if K − H = γ + ν/4

O
n→+∞

(n−γ) if K − H > γ + ν/4

.

Proof. For the first estimates, we have to bound
∫

Rν

min(|x|2H , 1)

|x|2H+ν(1 + |nx|γ)
dx =

∫

|x|<1/n
+

∫

1/n<|x|<1
+

∫

|x|>1
.

Next, let us prove that ga is in L4(T). We write that

∫

Tν

|ga(x)|4 dµν(x) = c

∫

[−π,π)ν

∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣4
( ∑

k∈Zν

Ω(x + 2πk)

|x + 2πk|2H+ν

)2

dµν(x)

≤ c

∫

[−π,π)ν

|x|4H Ω(x)2

|x|4H+2ν
dµν(x) + C

< +∞.

We have used the fact that, for |x| ≤ π, the sum
∑

k 6=0

1

|x + 2πk|2H+ν
is uniformly bounded since

K > H + ν
4 . Next, in order to bound the norm of gn,a − ga, we have to consider the quantity

∆n(x) :=

∣∣∣∣∣∣
n

ν
2
+H

( ∑

k∈Zν

F (n(x + 2kπ))

) 1
2

−
( ∑

k∈Zν

Ω(x + 2πk)

|x + 2πk|2H+ν

) 1
2

∣∣∣∣∣∣
.
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By Minkowsky Inequality,

∆n(x) ≤


 ∑

k∈Zν

∣∣∣∣∣n
ν
2
+HF (n(x + 2kπ))

1
2 − Ω(x + 2πk)

1
2

|x + 2πk|H+ ν
2

∣∣∣∣∣

2



1
2

.

From Assumptions (34) and (35) and from the fact that Ω is bounded below on the unit sphere, we
deduce that (with some constant C that varies from line to line)

|R(x)| ≤ C

|x|γ
Ω(x)

|x|2H+ν
.

It follows that, for |x| > 2C
n , we have the inequality

∆n(x) ≤ C

nγ |x|γ

( ∑

k∈Zν

Ω(x + 2πk)

|x + 2πk|2H+ν

) 1
2

.

Using this inequality, as well as the fact that for all x we have

∆n(x) ≤ C

( ∑

k∈Zν

Ω(x + 2πk)

|x + 2πk|2H+ν

) 1
2

,

we estimate easily the integral of |x|4K |∆n(x)|4 on (−π, +π). The inequalities for the norm of gn,a−ga

follow at once. ¤

This finishes the proof of the theorem. ¤

4.2. Remark on the speed of convergence. We keep the notations of the last subsection and
interest ourselves to the speed of convergence towards a Gaussian law. We want to give a bound for

the Kolmogorov distance in one variable, or the distance of Wasserstein in general, between
Vn,a

E(Vn,a)

and a Gaussian random variable of law N (0, σ2
a(H)). By Lemma 4.2, we have a bound for the speed

of convergence of gn,a towards ga. So we can use Theorem 2.15 or Remark 3.3 as soon as |ga|2 belongs
to some Sobolev space Hα. Or, if the Fourier coefficients of |ga|2 behave like a power |k|−a, then we
can use Remark 2.14 to have sharp bound for the speed of convergence. This is what we discuss now.

Let us start with the dimension one, where Ω is a constant. Then the Fourier coefficients of |ga|2
are also, up to a constant, the values of the Fourier transform of the function

|Pa(e
−ix)|2

|x|2H+ν
.

It is classical that these last ones may be written as

r(k) :=

p∑

m=−p

bm|k + m|2H

where bm are coefficients of the polynomial Q := |P |2. Using the fact that Q vanishes at order 2K
and Taylor’s Formula, one sees that |r(k)| = O(|k|2H−2K), which is the kind of estimate that we
wanted.

In higher dimension, we will show that we can conclude with some regularity assumption on Ω.
Specifically, if we assume that Ω is of class C1 on the unit sphere, then the first partial derivatives of

ha(x) :=
|Pa(e

−ix)|2Ω(x)

|x|2H+ν

satisfy the same kind of estimates as the function itself, apart from the loss of 1 in the power of
|x| in one term, and the fact that P or P has been replaced by its derivative in another one. If
again r(k) :=

∫
Rν e−ik·xha(x)dµν(x), then kjr(k) appears as the Fourier coefficients of the jth partial

derivative of ha. Remark first that we have proved in Lemma 4.2 that the sequence r(k) is in ℓ2(Zν)
by proving that the periodization of ha is in L2(Tν), which is equivalent by Plancherel Theorem.
For the same reason, to prove that kjr(k) is a sequence in ℓ2(Zν), it is equivalent to prove that the
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periodization of the jth derivative of ha is in L2(Tν). Under the assumption that Ω is of class C1 on the
unit sphere, we do this by the same method, but on the stronger assumption that K − 1−H > ν/4.
The stronger assumption is linked to the loss of 1 in the power of |x|. Finally, under these two

assumptions, we conclude that
∑

k∈Zν

|k|2|r(k)|2 < ∞.

One can weaken or strengthen these assumptions on Ω to obtain the full range of Sobolev spaces.
In all cases we have a speed of convergence towards a Gaussian law in |n|−ǫ with ǫ depending on γ,
K, H, and the regularity of Ω.

4.3. Application to the identification of H. As we said before, a central question is the estima-
tion of H from real data. As an application of generalized quadratic variations, we obtain Proposition
1.3 of [8] without additional assumption of regularity on the spectral density. Actually, let us fix the
dimension ν = 1 and, following [18], let us consider the filtered process of Y with a dilated filter.
More precisely, let U ≥ 2 an integer. For an integer u ∈ {1, . . . , U}, the dilation au of a is defined
by, for 0 ≤ m ≤ pu,

au
m =

{
am′ if m′ = mu
0 otherwise.

Since
pu∑

m=0
mrau

m = ur
p∑

m=0
mram, the filter au has the same order than a but length pu. Then,

{Xn,au(k) ; k ∈ Z
ν , u ∈ {1, . . . , U}} fdd

=

{
Zn,au(k)√

Var (Zn,au(k))
; k ∈ Z

ν , u ∈ {1, . . . , U}
}

,

so that

(
Vn,au

E(Vn,av)
,

Vn,a2

E(Vn,a2)

)
−→

n→+∞
(1, 1) almost surely with asymptotic normality for K > H + 1

4 ,

according to Theorems 3.2 and 4.1, for any u, v ∈ {1, . . . , U}. According to Proposition 1.1 of [8]
(see also Lemma 4.2 above), Assumption (4) implies that

n2H
E (Vn,au) = u2HCa(H) +





O
n→+∞

(
n−2(K−H)

)
if K − H < γ/2

O
n→+∞

(n−γ log n) if K − H = γ/2

O
n→+∞

(n−γ) if K − H > γ/2

,

so that for u, v ∈ {1, . . . , U},

Ĥn,a(u, v) :=
1

2 log(u/v)
log

(
Vn,au

Vn,av

)
−→

n→+∞
H a.s.

with asymptotic normality when K > H + 1/4 and γ > 1/2.

4.4. Functional Central Limit Theorem for Quadratic variations of a stationary Gaussian

random process. Up to now, we have only considered finite distributions. In this last subsection
we want to prove that one can have convergence for continuous time processes as well. For sake of
simplicity we restrict our study to the case ν = 1. Let us consider the random process Y given by
(3) in dimension ν = 1. Then Assumption (4) on the spectral density F of Y can be written as

(40) F (x) =
c

|x|2H+1
+ O

|x|→+∞

(
1

|x|2H+1+γ

)
.

We keep the notations of the previous section and consider for a discrete filter a of length p + 1 and
order K ≥ 1 the filtered process of discrete observations of Y defined for n ≥ p by

Zn,a(k) =

p∑

m=0

amY

(
k + m

n

)
, for k ∈ Z.

Following Donsker’s Theorem we consider a functional version of the Central Limit Theorem obtained
in Theorem 4.1. For this purpose let us introduce the continuous time random process defined for
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t ∈ [ p
n , 1] by

Sn,a(t) =
1√

n − p + 1

[nt]−p∑

k=0

(
Zn,a(k)2

Cn,a
− 1

)
,

and Sn,a(t) = 0 for 0 ≤ t < p
n , where Cn,a = E

(
Zn,a(k)2

)
. Then Sn,a(1) =

√
n − p + 1

(
Vn,a

E(Vn,a) − 1
)
.

Moreover, Sn,a is a.s. a càdlàg process on [0, 1] and we denote as usual D([0, 1]) the set of such

processes. We also introduce the càdlàg random process defined on [0, 1] by Yn(t) = Y
(

[nt]
n

)
. Let

us recall that according to (40) and Proposition 1 of [7] we can assume that Y is a.s. continuous on
[0, 1]. It follows that Yn converges in law to Y in the space D([0, 1]) equipped with the Skorohod
topology. Then, Theorem 6 of [4] has the following counterpart in our setting.

Theorem 4.3. We keep notations introduced in the previous section. Let assume that F , the spectral
density of Y satisfies (40) for some H > 0 and γ > 0. Let a be a filter of order K. If K > H + 1

4 and∫
R

min
(
1, |x|4K

)
F (x)2dµ(x) < +∞, then for n tending to infinity, we obtain the weak convergence

(in the space D([0, 1])2 equipped with the Skorohod topology)

(Yn(t), Sn,a(t))−→
(
Y (t), σ2

a(H)B(t)
)
,

where B is a standard Brownian motion on [0, 1] that is defined on the same probability space than
Y , independent of Y and

(41) σ2
a(H) =

4π

Ca(H)2

∫

[−π,π)

∣∣Pa

(
e−ix

)∣∣4
∣∣∣∣∣
∑

k∈Z

c

|x + 2πk|2H+1

∣∣∣∣∣

2

dµ(x),

where

(42) Ca(H) =

∫

R

∣∣Pa

(
e−ix

)∣∣2 c

|x|2H+1
dµ(x).

Proof. Let us first consider the convergence of Sn,a(t). As previously we introduce the function

ga(x) =
1

Ca(H)
Pa

(
e−ix

) √∑

k∈Z

2πc

|x + 2πk|2H+1
,

and denote by ra the Fourier coefficients of |ga|2. Let us consider the centered stationary discrete
Gaussian time series Xa which admits |ga|2 for spectral density, and therefore ra as covariance
function. Then, let us define the random process

S̃n,a(t) =
1√

n − p + 1

[nt]−p∑

k=0

H2(Xa)(k),

for t ∈ [ p
n , 1] and S̃n,a(t) = 0 otherwise. It follows from the proof of Theorem 2.9 that, for all n ≥ p,

Sn,a(t)
fdd
= S̃n,a(t) + o

L2(Ω,P)
(1).

Then according to Slutsky’s Theorem the convergence in finite dimensional distributions of Sn,a

toward σ2
a(H)B will follow from the one of S̃n,a.

Note that ga ∈ L4(T) when K > H + 1
4 , such that ra ∈ ℓ2(Z). Then, one has for all t > 0,

S̃n,a(t) =

√
[nt] − p + 1

n − p + 1

1√
[nt] − p + 1

[nt]−p∑

k=0

H2(Xa)(k)
d−→

n→+∞
N

(
0, tσ2

a(H)
)

= σ2
a(H)B(t),

according to Theorem 2.1.
Therefore, according to Proposition 2 of [27], it is sufficient to prove that for any 0 < t < s,

Cov
(
S̃n,a(t), S̃n,a(s)

)
−→

n→+∞
σ2
a(H)Cov (B(t), B(s)) .
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So let us write

Cov
(
S̃n,a(t), S̃n,a(s)

)
= Var

(
S̃n,a(t)

)
+ Cov

(
S̃n,a(t), S̃n,a(s) − S̃n,a(t)

)
.

The first term converges to σ2
a(H)t = σ2

a(H)Var (B(t)), according to Theorem 2.1. Then

Cov
(
S̃n,a(t), S̃n,a(s) − S̃n,a(t)

)
=

2

n − p + 1

[nt]−p∑

k=0

[ns]−p∑

l=[nt]−p+1

r2
a(l − k)

≤ 2

n − p + 1

[ns]∑

j=1

jr2
a(j) +

[ns]∑

j=min([nt]−p,[ns]−[nt]−1)

r2
a(j).

The second term tends to zero as a rest of a convergent series, since t < s. For the first term, recall
that

|ra(k)| ≤ C(1 + |k|)−2(K−H),

so that for α ∈ (0, min(2 (K − H − 1/4) , 1/2))

2

n − p + 1

[ns]∑

j=1

jr2
a(j) ≤ Cn−2αs1−2α,

which tends to zero as n tends to infinity. This ends the proof of the convergence in finite dimensional

distributions of S̃n,a and thus Sn,a to σ2
a(H)B.

Let us prove the tightness. We clearly have for 0 < t ≤ s and n sufficiently large

E

(
(Sn,a(t) − Sn,a(s))

2
)

≤ C‖gn,a‖4
4

(
[ns] − [nt]

n

)

≤ C
(
‖ga‖4

4 + 1
)
(s − t).

Finally for t ≤ s ≤ r, by Hölder inequality and using the equivalence of Lp(Ω, P) norms in the second
chaos,

E

(
(Sn,a(t) − Sn,a(s))

2 (Sn,a(r) − Sn,a(s))
2
)

≤ E

(
(Sn,a(t) − Sn,a(s))

4
)1/2

E

(
(Sn,a(r) − Sn,a(s))

4
)1/2

≤ CE

(
(Sn,a(t) − Sn,a(s))

2
)

E

(
(Sn,a(r) − Sn,a(s))

2
)

≤ C(s − t)(r − s) ≤ C(r − t)2.

The tightness of Sn,a follows from Theorem 13.5 of [6].
Now, let us consider the sequence of vectorial processes (Yn, Sn,a) which belong to D([0, 1])2. Each
coordinate is tight, thus (Yn, Sn,a) is also tight. It remains to study the finite dimensional convergence.
Any linear combination of the coordinates of the above vector belongs to the order one and order two
Chaos respectively. Moreover they have both a Gaussian limit. The Theorem 1 (item (iv)) of [27]
allows to conclude of the vector itself and that the two Gaussian limit are independent. Summarizing
we have

(Yn, Sn,a)
d→ (Y, σ2

aB),

where the convergence is in distribution in the space D2([0, 1]) and the two processes coordinates are
Gaussian and independent. This also implies that the convergence is stable in law. ¤

Such a result is a fundamental tool when one deals with non linear function of a Gaussian field, see
[10] for instance. The observed field is now U(t) = g(Y (t)), t ∈ R, for a non-linear function g with
extra assumptions of smoothness and integrability. A Central Limit Theorem can be obtained for
the suitably normalized quadratic variations of U instead of Y , using Taylor expansion and similar
computations than in Theorem 7 of [4]. In this case the limit variable is no more Gaussian and is

given by the stochastic integral σ2
a(H)

∫ 1
0 (g′(Y (t))2 dB(t).
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José R. LEÓN, Escuela de Matemáticas, Facultad de Ciencias, UCV. AP: 47197. Los Chaguaramos.

Caracas 1041-A. Venezuela

E-mail address: jose.leon@ciens.ucv.ve


