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CENTRAL LIMIT THEOREMS AND QUADRATIC VARIATIONS IN TERMS

OF SPECTRAL DENSITY

HERMINE BIERMÉ, ALINE BONAMI, AND JOSÉ R. LEÓN

Abstract. We give a new proof and provide new bounds for the speed of convergence in the Central
Limit Theorems of Breuer Major on stationary Gaussian time series, which generalizes to particular
triangular arrays. Our assumptions are given in terms of the spectral density of the time series. We
then consider generalized quadratic variations of Gaussian fields with stationary increments under
the assumption that their spectral density is asymptotically self-similar and prove Central Limit
Theorems in this context.

1. Introduction

In this paper we essentially develop Central Limit Theorems that are well adapted to obtain as-
ymptotic properties of quadratic variations of Gaussian fields with stationary increments. Moreover,
we give bounds for the speed of convergence, which partially improve the bounds given by Nourdin
and Peccati in [21]. We rely heavily on their methods but adopt a spectral point of view, which is
particularly adapted to applications in signal processing.

Before describing our theoretical results, let us describe the scope of applications that we have in
mind. The finite distributional properties of a real valued Gaussian field {Y (t); t ∈ R

ν}, indexed by
R

ν (ν ≥ 1), with stationary increments, may be described from its variogram, that is, the function

(1) vY (t) := E(((Y (s + t) − Y (s))2)

or from its spectral measure τ , which is such that

(2) vY (t) = 2

∫

Rd

|e−it·x − 1|2 dτ(x) , ∀t ∈ R
ν .

Here t · x stands for the scalar product of the two vectors in R
ν and |x| denotes the Euclidean

norm of the vector x. The spectral measure τ is a non negative even measure on R
ν . We will

only consider absolutely continuous spectral measures, that is, measures that can be written as
dτ(x) := F (x)dµν(x). Here µν denotes the Lebesgue measure on R

ν (we skip the exponent for
ν = 1). The function F , called the spectral density of Y , is assumed to be a non-negative even
function of L1

(
R

ν , min
(
1, |x|2

)
dµν(x)

)
. A typical example of such random fields is given by

(3) Y (t) =

∫

Rν

(
e−it·x − 1

)
F (x)1/2dW̃ ν(x), t ∈ R

ν ,

where W̃ ν is a complex centered Gaussian measure on R
ν with Lebesgue control measure µν , such

that W̃ ν(−A) = W̃ ν(A) a.s. for any Borel set A of R
ν . In fact, if we are only interested by

finite distributions of the random field Y , we can always assume that Y is given by such a spectral
representation (3).

Centered Gaussian fields with stationary increments are widely used as models for real data, for
example to describe rough surfaces or porous media that possess some homogeneity properties. In
particular the fractional Brownian field (fBf), first defined in Dimension ν = 1 through a stochastic
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integral of moving-average type by Mandelbrot and Van Ness [20], admits such a representation with
spectral density given by

FH(x) =
c

|x|2H+ν
, with c > 0 and H ∈ (0, 1) called the Hurst parameter.

The homogeneity of FH implies a self-similarity property of the corresponding random field YH ,
namely

∀λ > 0, {YH(λt) ; t ∈ R
ν} fdd

= λH{YH(t) ; t ∈ R
ν}.

The choice of this power of the Euclidean norm for the spectral density is equivalent to the fact
that the variogram is vYH

(t) = cH |t|2H , for some positive constant cH . When ν ≥ 2, it induces the
isotropy of the field YH (its law is invariant under vectorial rotations). Such a model is not adapted
when anisotropic features are observed. Anisotropic but still self-similar generalizations are simply
obtained by considering a spectral density given by F (x) = Ω(x)FH(x) with Ω an homogeneous
function of degree 0 satisfying Ω(x) = Ω(x/|x|). Then the corresponding variogram is given in a
similar form

v(t) = ω(t/|t|)|t|2H , with ω(t) = cH,ν

∫

|x|=1
|t · x|2HΩ(x)dx,

where dx denotes the Lebesgue measure on Sν−1 := {x ∈ R
ν ; |x| = 1}. When using such a model,

a typical question is the identification of the Hurst parameter H from real data. Many estimators
for the Hurst parameter of a one-dimensional fBf (called fractional Brownian motion) have been
proposed, based for example on time domain methods or spectral methods (see [10] and [3] and
references therein). Quadratic variations are relevant estimators when considering H as the critical
index of Hölder regularity for the sample paths. Moreover in [18] the authors give precise bounds
of the bias of the variance and show that minimax rates are achieved for this kind of estimators.
Generalized quadratic variations also apply to more general Gaussian processes and fields with sta-
tionary increments with the same Hölder regularity (see [16, 17] or [8, 9] for instance), for which the
variogram satisfies

v(t) = ω(t/|t|)|t|2H + O
|t|→0

(
|t|2H+s

)

for H ∈ (0, 1) and s ∈ (0, 2 − 2H) with ω a positive function on the sphere Sν−1 (and additional
assumptions of regularity). This kind of assumption can be replaced by an assumption on the spectral
density F (which is a priori stronger but does not require any extra assumption of regularity). More
precisely, we will be interested in random fields for which

(4) F (x) =
Ω(x)

|x|2H+ν
+ O

|x|→+∞

(
1

|x|2H+ν+γ

)
,

with Ω an even function on the sphere Sν−1 (or a constant when ν = 1), H > 0 and γ > 0. Our
particular interest in this situation, where the self-similar spectral density is perturbed by a rest
that decreases more rapidly at infinity, may be understood from previous work [7, 5]. This arises in
particular when one considers a weighted projection of a self-similar random field. We develop here
methods that reveal to be stable when adding such a perturbation to the spectral density. A source
of inspiration for us has also been the paper of Chan and Wood [8], which deals with stationary
random Gaussian fields with asymptotic self-similar properties.

The estimation of Ω or H goes through the consideration of quadratic variations of Y , observed
on finer and finer grids. Typically, we assume to have observed values of the random field on a grid
with uniform mesh, that is, {Y (k/n); k = (k1, . . . , kν) ∈ Z

ν with 0 ≤ k1, . . . , kν ≤ n − 1}. We want
to have Central Limit Theorems for the quadratic variation of this sequence when n tends to ∞.
For fixed n, this quadratic variation is related to the means of a discrete time series, whose spectral
density is obtained by periodization of F . Moreover, a central idea used in this paper consists in a
change of scale, so that we can as well consider a fixed mesh, but for a different discrete time series
at each scale. Because of the fact that F is asymptotically homogeneous. The rest does not appear
in the limit, and acts only on the speed of convergence, which is in n−α, for some α > 0 depending in
particular on γ. Once we have Central Limit Theorems for finite distributions through this scaling
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argument, we can also recover asymptotic properties for continuous time quadratic variations, which
may be used when dealing with increments of non linear functionals of Y instead of increments of Y .

Let us come back to the theoretical part of this paper, which constitutes its core. We revisit Breuer
Major’s Theorem, which is our main tool to obtain Central Limit Theorems, and use the powerful
theory developed by Nourdin, Nualart, Ortiz-Latorre, Peccati, Tudor and others to do so. This is
described in the next section and we refer to it for more details. We would like to attract attention
to a remark, which has its own interest: under appropriate additional assumptions, the Malliavin

derivative of
1√
n

n−1∑

k=0

H(X)(k), where (X(k))k∈Z
is a stationary Gaussian time series and where the

Hermite expansion of H starts with terms of order 2, can be written in terms of the integrated
periodogram of the sequence H ′(X)(k). Recall that the periodogram of this time series is defined as

1

n

∣∣∣∣∣
n−1∑

k=0

H ′(X)(k)eikx

∣∣∣∣∣

2

.

Up to our knowledge, this link between two different theories had not been given before. As a conse-
quence, the techniques that we use for having the speed of convergence in Central Limit Theorems
may be used for consistency of estimators given in terms of integrated periodograms.

Section 2 is devoted to the theoretical aspects (Central Limit Theorems, integrated periodograms,
speed of convergence) in Dimension one. We chose to give the proofs in this context, so that the
reader can easily follow them. Once this done, we hope that it is not difficult to see how to adapt
them in higher dimension, which we do more rapidly in Section 3. We then apply this to generalized
quadratic variations in Section 4.

Acknowledgement. This work was mostly done independently of the paper of Nourdin, Peccati
and Podolskij [22], which has been posted on the web while we were finishing to write this one.
Compared to the results of [22], we deliberately restricted to simple cases, but have found better
bounds for the speeds of convergence. It would certainly be helpful to make a synthesis between the
two papers. We chose not to do it here, but to stick to our initial project and to the applications we
had in view, with assumptions given on spectral densities and not on variograms.

2. Breuer-Major Theorem revisited

In this section we will be interested in stationary centered Gaussian time series X = (X(k))k∈Z

as well as approximate ones. We will start from Breuer-Major Theorem and give a proof of it
which is based on the Malliavin Calculus, as exploited by Nourdin, Nualart, Ortiz-Latorre, Peccati,
among others, to develop Central Limit Theorems in the context of Wiener Chaos (see [26, 21] for
instance). This kind of proof is implicit in the work of these authors, and explicit in the last paper of
Nourdin, Peccati and Podolskij [22], where speeds of convergence are given in a very general context.
Our interest, here, is to see that assumptions are particularly simple and meaningful when they are
given on the spectral density of the time series. Meanwhile, we improve the estimates for the speed
of convergence to the best possible through this method under the assumption that the spectral
density is in some Sobolev space. Also, this study will lead us to asymptotic estimates on integrated
periodograms, which have their own interest and are particularly relevant when one interests to
spectral densities.

Let us first state the theorem of Breuer Major in the simplest one dimensional case. For l ≥ 1, we
consider the stationary centered time series Hl(X) = (Hl(X)(k))k∈Z

where Hl(X)(k) = Hl(X(k))
with Hl the l-th Hermite polynomial.

Theorem 2.1 (Breuer-Major). Let (X(k))k∈Z be a centered stationary Gaussian time series. Assume
that for l ≥ 1, the sequence r(k) = E(X(j)X(j + k)) satisfies the condition

(5)
∑

k∈Z

|r(k)|l < ∞.

Then we have the following asymptotic properties for n tending to infinity:
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(i)

Var

(
1√
n

n−1∑

k=0

H
l
(X)(k)

)
−→ σ2

l ,

(ii)

1√
n

n−1∑

k=0

H
l
(X)(k)

d→ N (0, σ2
l ),

with

(6) σ2
l = l!

∑

k∈Z

r(k)l.

For p ≥ 1, we introduce the Banach space ℓp(Z) of p-summable sequences equipped with the norm

‖u‖ℓp(Z) =

(∑

k∈Z

|u(k)|p
)1/p

for u = (u(k))k∈Z
∈ ℓp(Z). Then, Assumption (5) can be written as

r = (r(k))k∈Z
∈ ℓl(Z). We recall that the sequence r(k) can be seen as the Fourier coefficients of a

positive even periodic finite measure, called the spectral measure of the time series (see [12] or [28]
for instance). We will restrict to time series for which the spectral measure is absolutely continuous
with respect to the Lebesgue measure µ.

We identify 2π-periodic functions both with functions on the torus T := R/2πZ and functions on
[−π, +π). The spaces Lp(T) are spaces of measurable functions f on [−π, +π) such that

(7) ‖f‖p
p := ‖f‖p

Lp(T) :=
1

2π

∫

T

|g(x)|pdµ(x) =
1

2π

∫ +π

−π
|f(x)|pdµ(x).

Let us come back to our assumption on the spectral measure. We call fX its density with respect
to the measure µ, and speak of spectral density of the time series as it is classical. Moreover we pose
fX = |g|2. We could of course choose g non negative, but have some flexibility.

So, in the following we assume that there exists some function g ∈ L2(T) which satisfies the

assumption g(x) = g(−x), such that

(8) r(k) :=
1

2π

∫

T

e−ikx|g(x)|2dµ(x) =
1

2π

∫ +π

−π
e−ikx|g(x)|2dµ(x).

Remark that the absolute continuity is only an additional property under (5) when l > 2. Actually,
when the sequence r(k) is square summable, one can find fX = |g|2 ∈ L2(T) by Plancherel’s Theorem.

Remark 2.2. Recall that, for U and V two centered Gaussian variables such that E(UV ) = ρ, we
have E(Hl(U)Hl(V )) = l!ρl. So, whenever the time series X has the spectral density fX , the time
series Hl(X) has the density fHl(X) = l!f∗l

X , where the notation f∗l
X stands for l times the convolution

of fX by itself on the torus. Assumption (5) implies the absolute convergence of the Fourier series
of the spectral density of Hl(X). It also means that f∗l

X is continuous on T and that σ2
l = l!f∗l

X (0).
For all l ≥ 2, Assumption (5) is in particular implied by the stronger assumption

(9) fX ∈ L
l

l−1 (T),

since ‖r‖ℓl(Z) ≤ ‖fX‖ l
l−1

by Hausdorff-Young Inequality (see [19] for instance).

Remark 2.3. Note also that the assumption that the Gaussian time series X has a spectral density
fX implies in particular that the time series Hl(X) is a strictly stationary ergodic one, for any l ≥ 1,
(see [11] for instance).

We will give a new proof of the theorem of Breuer Major under Assumption (8). We will use
for instance Theorem 4 in [26], which asserts that the Central Limit Theorem is a consequence of
the convergence of the variance given in (i) on one side, then of a quantity related to the Malliavin
derivative on another side, so that one does not need to consider all moments as in the original proof
of Breuer and Major. In a first subsection we recall the main tools in our framework in the classical
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context of stochastic integrals of a Brownian Motion. Note however that we adopt here a spectral
point view and use harmonizable representation (see [12] for instance). This could be generalized to
isonormal Gaussian processes, as it is developed in the first chapter of [25] and used in [22], but we
preferred to restrict to the classical case for simplification, even if the general context is necessary in
the vectorial case.

2.1. Complex Wiener chaos and Malliavin calculus. Let W be a complex centered Gaussian
measure on [−π, +π) with Lebesgue control measure 1

2πµ such that, for any Borel set A of [−π, π)

W (−A) = W (A) almost surely. We consider complex-valued functions ψ defined on [−π, +π),
considered as periodic functions of the torus that satisfy, for almost every x ∈ T,

ψ(x) = ψ(−x).

We write L2
e(T) for the real vector space of such functions that are square integrable with respect to

the Lebesgue measure on T. Endowed with the scalar product of L2(T), which we also note

〈ψ, ϕ〉µ =
1

2π

∫

T

ψ(x)ϕ(x)dµ(x),

L2
e(T) is a real separable Hilbert space. Moreover, for any ψ ∈ L2

e(T), one can define its stochastic
integral with respect to W as

I1(ψ) =

∫ +π

−π
ψ(x)dW (x).

Then I1(ψ) is a real centered Gaussian variable with variance given by ‖ψ‖2
2, where ‖ · ‖2 is the norm

induced by the scalar product 〈·, ·〉µ. To introduce the k-th Itô-Wiener integral, with k ≥ 1, we
consider the complex functions belonging to

L2
e(T

k) = {ψ ∈ L2(Tk) : ψ(−x) = ψ(x)}.
The inner product in the real Hilbert space of complex functions of L2

e(T
k) is given by

〈ψ, ϕ〉µk =
1

(2π)k

∫

Tk

ψ(x)ϕ(x)dµk(x).

The space L2
s(T

k) denotes the subspace of functions of L2
e(T

k) a.e. invariant under permutations of
their arguments. By convention L2

s(T
k) = R for k = 0. Let us define H(W ) the subspace of random

variables in L2(Ω, P) measurable with respect to W . The k-Itô-Wiener integral Ik is defined in such

a way that (k!)−1/2Ik is an isometry between L2
s(T

k) and its range Hk ⊂ H(W ), so that we have the
orthogonal decomposition

H(W ) =
∞⊕

k=0

Hk,

where H0 is the space of real constants. Each Y ∈ H(W ) has an L2(Ω, P) convergent decomposition

Y =
∞∑

k=0

Ik(ψk), ψk ∈ L2
s(T

k).

When moreover

+∞∑

k=1

(k + 1)!‖ψk‖2
2 < +∞, with ‖ψk‖2

2 = 〈ψk, ψk〉µk , the Malliavin derivative of Y ,

denoted by DY , is defined as the complex valued random process given on T by

DtY =
+∞∑

k=1

kIk−1 (ψk (·, t)) , t ∈ T.

Furthermore if Hk is the k-th Hermite polynomial for the standard Gaussian measure and denoting
by ψ⊙k the k-tensor product of the function ψ ∈ L2

e(T) we have

Hk(I1(ψ)) = Ik(ψ
⊙k) :=

∫

[−π,+π)k

ψ(x1) . . . ψ(xk)dW (x1) . . . dW (xk),(10)
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so that its Malliavin derivative is given by DHk(I1(ψ)) = kHk−1(I1(ψ))ψ.

2.2. Proof of Breuer Major Theorem under Assumption (8). As far as finite distributions
are concerned, when the time series X admits a covariance function given by (8) for some function
g ∈ L2

e(T), we can assume, without loss of generality, that

(11) X(k) :=

∫ +π

−π
e−ikxg(x)dW (x).

Up to normalization, we can also assume that r(0) = 1, or equivalently that ‖g‖2
2 = 1

2π

∫
T
|g(x)|2dµ(x) =

1. For any k ∈ Z, we write gk(x) = e−ikxg(x) ∈ L2
e(T) so that X(k) may be written as the Itô-Wiener

integral I1(gk). Moreover Hl(X) is in the Wiener chaos of order l with

Hl(X)(k) = Il

(
g⊙l
k

)
, k ∈ Z.

Let us now proceed to the proof. The computation of the variance in (i) is direct. Let us write

Yn =
1√
n

n−1∑

k=0

Hl(X)(k).

Then,

Var(Yn) =
1

n

n−1∑

k=0

n−1∑

k′=0

Cov(H
l
(X)(k), H

l
(X)(k′))

=
l!

n

n−1∑

k=0

n−1∑

k′=0

r(k − k′)l

= l!
n−1∑

k=−(n−1)

(
1 − |k|

n

)
r(k)l,(12)

which tends to l!
∑

k∈Z

r(k)l = l!σ2
l . Recall that this last sum is absolutely convergent because of the

assumption on r. This concludes the proof when l = 1 since Yn is a Gaussian variable in this case.

When l ≥ 2 we write Yn = Il(Fn), with Fn =
1√
n

n−1∑

k=0

g⊙l
k . By Theorem 4 of [26], to prove Part (ii)

it is sufficient to prove that

‖DYn‖2
2 −→

n→+∞
lσ2

l in L2(Ω, P),

with DYn the Malliavin’s Derivative of Yn, which is given by

DYn =
1√
n

n−1∑

k=0

lHl−1(I1(gk))gk.

We first remark that

‖DYn‖2
2 =

l2

n

n−1∑

k,k′=0

Hl−1(I1(gk))Hl−1(I1(gk′))〈gk, gk′〉µ

=
l2

n

n−1∑

k,k′=0

H
l−1

(X)(k)H
l−1

(X)(k′)r(k − k′)

=
l2

2π

∫ π

−π
I(l−1)

n
(x)fX(x)dµ(x),
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where

I(l−1)
n

(x) =
1

n

n−1∑

k,k′=0

H
l−1

(X)(k)H
l−1

(X)(k′)ei(k′−k)x =
1

n

∣∣∣∣∣
n−1∑

k=0

H
l−1

(X)(k)eikx

∣∣∣∣∣

2

,

is the periodogram of order n of the stationary sequence
(
H

l−1
(X)(k)

)
k∈Z

(see [14] for instance).
The end of the proof is a direct consequence of the next subsection, which is devoted to the limit
of integrated periodograms. The fact that the Malliavin derivative may be written in terms of the
periodogram is an unexpected phenomenon.

Remark 2.4. The additional assumption is not necessary to be able to use the method above. Indeed,
there is always an isonormal Gaussian process {W (u) : u ∈ H}, where H is a separable Hilbert space,
such that X(k) may be seen as W (uk), with uk a sequence in H such that 〈uk, uk′〉H = r(k − k′).
This is in particular used in [22] and is sufficient to develop the same formulas as in the next sub-
section in order to deal with the Malliavin derivative. We will refer to isonormal Gaussian processes
for random vectors, since the analogue of the representation (11) is not available in general in the
vectorial case.

2.3. Integrated periodograms. We keep the notations of the last subsection, so that for l ≥ 1,

(13) I(l)
n

(x) :=
1

n

∣∣∣∣∣
n−1∑

k=0

H
l
(X)(k)eikx

∣∣∣∣∣

2

.

The periodogram I(l)
n

is used as an estimator of the spectral density of the stationary sequence

(H
l
(X)(k))k∈Z

, that is l!f∗l
X since its Fourier coefficients are equal to l!r(k)l. It is well known that

I(l)
n

(x) is not a consistent estimate of l!f∗l
X (x), even when well defined because of continuity (see [14]

for instance). However we can hope consistency results for

(14) I
(l)
φ,n :=

1

2π

∫ +π

−π
I(l)
n (x)φ(x)dµ(x).

Here φ is a test function, which is real, even, integrable and has some smoothness properties to be

stated later on. Such quantities I
(l)
φ,n are called integrated periodograms.

We have the following proposition, which gives in particular the asymptotic properties that are
required for the proof of Breuer Major Theorem. We introduce ck(φ) = 1

2π

∫
T

φ(x)e−ikxdµ(x) the
k-th Fourier coefficient of φ.

Proposition 2.5. Assume that (r(k))k∈Z
∈ ℓl+1(Z) and

∑

k∈Z

|ck(φ)|l+1 < ∞. Then, as n tends to ∞,

(i) E(I
(l)
φ,n) tends to l!

2π

∫
T

f∗l
X (x)φ(x)dµ(x).

(ii) I
(l)
φ,n − E(I

(l)
φ,n) tends to 0 in L2(Ω, P).

Remark that conditions on r and φ imply that the integral 1
2π

∫
f∗l

X (x)φ(x)dµ(x) may be given

meaning as
∑

k∈Z

r(k)l ck(φ), using the absolute convergence of the series. When φ = fX , as in the

proof of Breuer Major Theorem, the limit of the expectation is l!
∑

k∈Z

r(k)l+1 = σ2
l+1/(l + 1).

Proof. The first assertion follows from the fact that

E(I
(l)
φ,n) = l!

n−1∑

k=−n+1

(
1 − |k|

n

)
r(k)l ck(φ).
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Next, in view of the second assertion, we consider the components of ‖DYn‖2
2 in the Wiener chaos

and use for this the multiplication formula (see [15] for instance), which we recall now:

H
l
(X)(k)H

l
(X)(k′) =

l∑

p=0

p!(2(l − p))!

(
l
p

)2

I2l−2p(g
⊙l
k ⊗p g⊙l

k′ ),

with
g⊙l
k ⊗p g⊙l

k′ = 〈gk, gk′〉pµ
(
g
⊙l−p

k ⊗ g
⊙l−p

k′

)
s
.

Here, as usual, if ψ ∈ L2
e(T

k), we note (ψ)s its symmetrization in L2
s(T

k), for k ≥ 2. For simplification,
we note s(k) := ck(φ). Then we have

Iφ,n − E(Iφ,n) =
l−1∑

p=0

p!(2(l − p))!

(
l
p

)2

Up,n,

with

Up,n =
1

n

n−1∑

k,k′=0

s(k − k′)I2l−2p(g
⊙l
k ⊗p g⊙l

k′ )

=
1

n

n−1∑

k,k′=0

s(k − k′)r(k − k′)pI2l−2p((g
⊙l−p

k ⊗ g
⊙l−p

k′ )s).

Using orthogonality between components, it is sufficient to consider each of them separately. The
next lemma gives the convergence in L2(Ω, P) of each term.

Lemma 2.6. Assume that
∑

k∈Z

|r(k)|l+1 < ∞ and
∑

k∈Z

|s(k)|l+1 < ∞. Let p < l. Then E(|Up,n|2)

tends to 0 for n tending to ∞.

Proof. We can write Up,n as I2(l−p)(Fp,n), with

Fp,n :=
1

n

n−1∑

k,k′=0

s(k − k′)r(k − k′)p(g
⊙l−p

k ⊗ g
⊙l−p

k′ )s.

By isometry, the L2(Ω, P) norm of Up,n is equal, up to the constant (2(l−p))!1/2, to the L2
s

(
T

2(l−p),
)

norm of Fp,n. Now Fp,n may be written as the mean of (2(l−p))! terms, corresponding to permutations

of the 2(l− p) variables. It is easy to see that all terms have the same norm, so that the L2
s

(
T

2(l−p)
)

norm of Fp,n is bounded by the L2
e

(
T

2(l−p)
)

norm of one of the terms, that is
∥∥∥∥∥∥

1

n

n−1∑

k,k′=0

s(k − k′)r(k − k′)pg
⊙l−p

k ⊗ g
⊙l−p

k′

∥∥∥∥∥∥
2

.

Finally, E(|Up,n|2) is bounded by

(2(l − p))!

(2π)2l−2p

∫

(−π,+π)l−p×(−π,+π)l−p

Kp,n(x, y)fX(x1) · · · fX(xl−p)fX(y1) · · · fX(yl−p)dµl−p(x)dµl−p(y),

with

Kp,n(x, y) :=

∣∣∣∣∣∣
1

n

n−1∑

k,k′=0

r(k − k′)ps(k − k′)e−ik(x1+···+xl−p)eik′(y1+···+yl−p)

∣∣∣∣∣∣

2

=
1

n2

n−1∑

j,j′,k,k′=0

r(k − k′)ps(k − k′)r(j − j′)
p
s(j − j′)e−i(k−j)(x1+···+xl−p)ei(k′−j′)(y1+···+yl−p).

We pose ρ1(k) := |r(k)|p|s(k)| and ρ2(k) = |r(k)|l−p, for k ∈ Z and denote by ρ1,n(k), (resp. ρ2,n(k))
the truncated sequence ρ1,n(k) = ρ1(k) (resp. ρ2,n(k) = ρ2(k)) when |k| ≤ n − 1 and 0 otherwise.
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Assumption on r implies that ρ2 ∈ ℓ
l+1
l−p (Z) and, together with Assumption on s and Hölder Inequality,

that ρ1 ∈ ℓ
l+1
p+1 (Z) , with ‖ρ1‖

ℓ
l+1
p+1 (Z)

≤ ‖r‖p
ℓl+1(Z)

‖s‖ℓl+1(Z). Therefore the convolution product of ρ1

and ρ2 is well defined and is uniformly bounded:

ρ1 ∗ ρ2(k) =
∑

k′∈Z

ρ1(k − k′)ρ2(k
′) ≤ ‖ρ1‖

ℓ
l+1
p+1 (Z)

‖ρ2‖
ℓ

l+1
l−p (Z)

.

Then, the same bound holds for ρ1,n ∗ ρ2,n(k) and

E
(
|Up,n|2

)
≤ (2(l − p))!

n2

n−1∑

j,j′,k,k′=0

ρ1,n(k − k′)ρ1,n(j − j′)ρ2,n(k − j)ρ2,n(j′ − k′)

≤ (2(l − p))!

n2

n−1∑

k,j′=0

(
ρ1,n ∗ ρ2,n(k − j′)

)2
.

It follows that

E
(
|Up,n|2

)
≤ (2(l − p))!

n

∑

|j|≤n−1

(
1 − |j|

n

)
(ρ1,n ∗ ρ2,n(j))2 ,

so that E
(
|Up,n|2

)
is uniformly bounded with

E(|Up,n|2) ≤ (2(l − p))!‖r‖2l
ℓl+1(Z)‖s‖2

ℓl+1(Z).

Let us now prove that E(|Up,n|2) tends to 0. We will use a density argument. For s̃ a sequence
with finite support, the quantity

1

n2
E

∣∣∣∣∣∣

n−1∑

k,k′=0

s̃(k − k′)I2l−2p(g
⊙l−1

k ⊗p g
⊙l−1

k′ )(k′)

∣∣∣∣∣∣

2

tends to 0. To prove the same with s in place of s̃, for a given ε > 0 we write s as the sum of some

s̃ with finite support such that
∑

k∈Z

|s̃(k) − s(k)|l < ε. We conclude by a standard argument. ¤

We have completed the proof of Proposition 2.5, and in the same time the proof of Breuer Major
Theorem under the assumption that the spectral measure has a density. ¤

In the present context, this proposition on periodograms seems new. Actually Part (i) proves the

asymptotic unbiasedness of the estimator I
(l)
φ,n, while Part (ii) implies its consistency.

Remark 2.7. If we are only interested in asymptotic unbiasedness, continuity of the function f∗l ∗φ
at 0 is sufficient, see [13]. Remark that the assumptions given here imply that its Fourier series
is absolutely convergent. Note also that consistency is proved through asymptotic normality under
stronger assumptions of integrability in [13]. This proposition may also be compared with [2], where
Central Limit Theorems are developed for integrated periodograms when the test functions are in the
Sobolev space Hα for α > 1/2.

Recall that Hα := Hα(T) is the space of functions ψ ∈ L2(T) such that
∑

k∈Z

|ck(ψ)|2(1 + |k|)2α < ∞.

We now give a bound for the speed of convergence in Proposition 2.5 when φ is a test function that
satisfies a condition of Sobolev type. More precisely, we have the following proposition.

Proposition 2.8. Assume that r ∈ ℓl+1(Z) and
∑

k∈Z

|ck(φ)|l+1(1 + |k|)α(l+1) < ∞, for some α > 0.

Then, for some constant Cα and for all n ≥ 1, we have

Var
(
I

(l)
φ,n

)
≤ Cα

{
max(n−1, n−2α) if α 6= 1

2
n−1 log(n) if α = 1

2
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Proof. Going back to the last proof and its notations, it is sufficient to prove that

∑

|j|≤n−1

(ρ1,n ∗ ρ2,n(j))2 ≤ Cα

{
max(1, n1−2α) if α 6= 1

2
log(n) if α = 1

2

We will only consider the case p = 0 and leave the reader see that the proof is the same for the

other terms. In this case, ρ2,n is uniformly in ℓ
l+1

l (Z). By Hausdorff-Young Inequality, one has the

inclusion ℓ
l+1

l (Z) ∗ ℓq(Z) ⊂ ℓ2(Z) when 1
q = 1

2 + 1
l+1 , with the corresponding norm inequality. So it is

sufficient to compute the norm of ρ1,n in ℓq(Z), which is elementary by Hölder Inequality. For this,
we use the fact that

∑

|k|≤n

(1 + |k|)−2α ≤ Cα max(n1−2α, 1) when α 6= 1

2
and

∑

|k|≤n

(1 + |k|)−1 ≤ C 1
2
log(n).

¤

This kind of proof can be generalized to other assumptions on data. We give now one computation
that leads to a bound for the speed of convergence in Breuer major Theorem.

Proposition 2.9. Assume that
∑

k∈Z

|r(k)|l+1(1 + |k|)α(l+1) < ∞ for some α > 0. Then, when l = 1,

for some Cα > 0 and for all n ≥ 1 we have the uniform estimate

Var
(
I

(1)
fX ,n

)
≤ Cα max(n−1, n−4α).

For l ≥ 2, for some Cα > 0 and for all n ≥ 1 we have

Var
(
I

(l)
fX ,n

)
≤ Cα





n−2α(l+1) : α < 1
l(l+1)

n−2α− 2
l+1 : 1

l(l+1) < α < 1
2 − 1

l+1

n−1 : α > 1
2 − 1

l+1

.

Proof. Again, we go back to the previous notations and estimate
∑

|j|≤n−1

(ρ1,n ∗ ρ2,n(j))2. Let us first

consider l = 1. The only case to consider is p = 0, and we want to prove the estimate
∑

|j|≤n−1

(ρ1,n ∗ ρ2,n(j))2 ≤ C max(1, n1−4α).

Here ρ1,n = ρ2,n coincides with |r| for |k| ≤ n− 1. Assume first that α < 1/4. It follows from Hölder

inequality that ‖ρ1,n‖ℓ4/3(Z) ≤ Cαn1/4−α. Now the convolution of two sequences in ℓ4/3(Z) is in ℓ2(Z),

which allows to conclude in this case. For α > 1/4, the sequence ρ1 is in ℓ4/3(Z) and we conclude in
the same way.

It remains to conclude for α = 1/4. We want to prove that
∑

|j|≤n−1

(ρ1,n∗ρ2,n(j))2 is uniformly bounded

under the assumption that
∑

k∈Z

|r(k)|2(1 + |k|)1/2 < ∞. Let hn be the trigonometric polynomial with

ρ1,n as Fourier coefficients. Then ρ1,n ∗ ρ2,n = ρ1,n ∗ ρ1,n are the Fourier coefficients of the function

h2
n. The function hn is uniformly in the Sobolev space H1/4. Now it follows from Sobolev Theorem

(see [19] for instance) that such functions are uniformly in L4(T). By Plancherel Identity,

(15)
∑

j∈Z

(ρ1,n ∗ ρ1,n(j))2 =
1

2π

∫

T

|hn(x)|4dµ(x) ≤ C.

Let us now consider l ≥ 2 and estimate again the norm of ρ1,n ∗ ρ2,n in ℓ2(Z). The worst case is

obtained for p = 0. Then ρ1,n coincides with |r| while ρ2 is equal to |r|l. Then

‖ρ1,n ∗ ρ2,n‖ℓ2(Z) ≤ ‖ρ1,n‖ℓ2(Z)‖ρ2,n‖ℓ1(Z).
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The first estimate is obtained by taking the norm of ρ1,n in ℓ2(Z) and the norm of ρ2,n in ℓ1(Z), as
long as this last one is not uniformly bounded. For larger values of α, ρ2 is in ℓ1(Z) and the bound
is given by the the norm of ρ1,n in ℓ2(Z), as long as this last one is not uniformly bounded. ¤

2.4. Variable spectral densities. In practice, the spectral density may change at each step of
computation of the mean. This is what happens for instance when we look at increments of a
Gaussian process at different scales. It is important to have still Central Limit Theorems in this
context, as well as methods to compute the speed of convergence. Let us first state a CLT in this
framework, which may also be seen as a CLT for particular triangular arrays.

Theorem 2.10. Let Xn = (Xn(k))k∈Z
be centered stationary Gaussian time series with spectral

densities fXn. Let l ≥ 2. We assume that the functions fXn belong uniformly to the space L
l

l−1 (T)
and converge in this space to a function fX . We call r(k) := 1

2π

∫
T

e−ikxfX(x)dµ(x) and assume,
without loss of generality, that r(0) = 1. Then we have the following asymptotic properties for n
tending to infinity:

(i)

Var

(
1√
n

n−1∑

k=0

H
l
(Xn)(k)

)
−→ σ2

l ,

(ii)

1√
n

n−1∑

k=0

H
l
(Xn)(k)

d→ N (0, σ2
l ),

with

(16) σ2
l = l!

∑

k∈Z

r(k)l.

Proof. Let X be a centered stationary Gaussian time series with spectral density fX . We define Yn

as before. Let us define

Zn :=
1√
n

n−1∑

k=0

H
l
(Xn)(k).

Similar computations as for Yn imply that

Var(Zn) = l!
n−1∑

k=−(n−1)

(
1 − |k|

n

)
rn(k)l.

It follows from the assumption and Hausdorff-Young Inequality that the sequence rn tends to r in
ℓl(Z). This implies that Var(Yn) and Var(Zn) have the same limit.

We then have to prove that Var(‖DZn‖2
2) tends to 0 in place of Var(‖DYn‖2

2), with a variable
spectral density in place of a fixed one. For this, it is sufficient to revisit the proof of Lemma 2.6,
where we consider rn in place of r and s, and so, later on, ρ̃1,n and ρ̃2,n instead of ρ1,n and ρ2,n,
which are obtained when replacing r by rn. We write rn = r + r − rn and develop the corresponding
formulas by multi-linearity. When all rn’s are replaced by r, we have the limit 0 by Lemma 2.6. Now,
when one rn is replaced by r − rn somewhere, the proof goes the same way, except for the fact that
r − rn has an arbitrarily small norm in ℓl(Z). So the limit is 0.

¤

Remark that one has the inequalities

|Var(Yn) − Var(Zn)| = l!

∣∣∣∣∣∣

n−1∑

k=−(n−1)

(
1 − |k|

n

) (
r(k)l − rn(k)l

)
∣∣∣∣∣∣

≤ Cℓ‖r − rn‖ℓl(Z)

≤ Cℓ‖fX − fXn‖ l
l−1

,(17)
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according to Hausdorff-Young Inequality.

Remark 2.11. The conclusion of Theorem 2.10 holds true under the weaker assumption that rn

tends to r in ℓl(Z). Moreover, one does not need to have spectral densities, according to Remark 2.4.

2.5. Speed of convergence in Breuer Major Central Limit Theorem. We are now able to
bound the speed of convergence in Theorem 2.1 under the assumption that

∑ |r(k)|l(1 + |k|)lα is
finite for some α > 0, as well as in Theorem 2.10. We recall that the distance of Kolmogorov between
the random variables Y and Z is defined as

(18) dKol(Y, Z) = sup
z∈R

|P (Y < z) − P (Z < z)|.

We will be particularly interested by the distance of Kolomogorov to some normal random variable
σN , where N ∼ N (0, 1). We recall that (see [21] for instance), for Z a centered random variable
with variance 1 in the l-th Wiener chaos,

(19) dKol(Z, N) ≤
√(

Var

(
1

l
‖DZ‖2

2

))
.

The following lemma will be used to compute the required Kolmogorov distances.

Lemma 2.12. For Y a centered random variable in the l-th Wiener chaos we have the inequality

dKol(Y, σN) ≤ 2

σ2
|Var(Y )) − σ2| +

√(
Var

(
1

lσ2
‖DY ‖2

2

))
.

Proof. When |Var(Y )−σ2|
σ2 > 1

2 there is nothing to prove. Otherwise we write

dKol(Y, σN) ≤ dKol(Y,
√

Var(Y )N) + dKol(
√

Var(Y )N, σN).

We use the Malliavin derivative for the first distance, then a direct computation of the distance
between N and a multiple of N . More precisely, for example for z > 0 and σ > 1, one has the

inequality P (z ≤ N ≤ σz) ≤ (σ − 1)ze−z2/2 ≤ σ − 1. ¤

We can now state the first theorem of this subsection, which gives the speed of convergence in
Breuer Major Theorem.

Theorem 2.13. Let (X(k))k∈Z be a centered stationary Gaussian time series with an absolutely
continuous spectral measure. Assume that r satisfies r(0) = 1 and the assumption

(20)
∑

k∈Z

|r(k)|l(1 + |k|)lα < ∞

for some α > 0. Then, for l = 2, for some constant Cα > 0 and for all n ≥ 1,

(21) dKol

(
1√
n

n−1∑

k=0

H2(X)(k), σ2N

)
≤ Cα max(n−2α, n−1/2),

while, for l ≥ 3, for some constant Cα > 0 and for all n ≥ 1,

(22) dKol

(
1√
n

n−1∑

k=0

H
l
(X)(k), σlN

)
≤ Cα





n−αl : α < 1
l(l−1)

n−α− 1
l : 1

l(l−1) < α < 1
2 − 1

l

n− 1
2 : α > 1

2 − 1
l

.

with σ2
l = l!

∑
k∈Z

r(k)l.

Proof. Let us first prove that

(23) |σ2
l − Var(Yn)| ≤ C max(n−αl, n−1).
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From the expression of Var(Yn) given in (12) we deduce that

l!−1
∣∣σ2

l − Var(Yn)
∣∣ ≤ 1

n

n−1∑

k=−(n−1)

|k||r(k)|l +
∑

|k|≥n

|r(k)|l.

We conclude directly using the fact that
∑

k∈Z

|r(k)|l(1 + |k|)lα < ∞. Now the required estimate for

the Malliavin derivative is given by Proposition 2.9. ¤

This bound for the speed of convergence can be compared to the ones given in [22], which it
improves. In particular, the speed of convergence for the fractional Brownian Noise given in Example
2.7 in [22] can be improved by using the proof of Proposition 2.9. This is a particular case of the
following example.

Remark 2.14. Assume that r(k) = O(|k|−a). Then, for a > 1
2 , l = 2 and a 6= 3

4 ,

(24) dKol

(
1√
n

n−1∑

k=0

H2(X)(k), σ2N

)
≤ C max(n1−2a, n−1/2),

while, for l ≥ 2 and a > 1
l

(25) dKol

(
1√
n

n−1∑

k=0

H
l
(X)(k), σlN

)
≤ C





n−la+1 : a < 1
l−1

n−a : 1
l−1 < a < 1

2

n− 1
2 : a > 1

2

.

These estimates seem the best possible that one can obtain by this use of the Malliavin derivative.
Let us consider the case l = 2 and a = 3/4 and prove that one cannot then have the rate n−1/2 in

general. Indeed, assume that fX is given by the Riesz potential, whose behavior at 0 is ≃ |x|−1/4

and whose Fourier coefficients behave like |k|−3/4. Then fX is not square integrable, which proves
that one cannot have a uniform bound in (15).

For a = 1/2, one can also improve the logarithmic rate given in [22].

Next we give the speed of convergence in Theorem 2.10, which depends on the speed of convergence
of fXn to fX .

Theorem 2.15. Let Xn = (Xn(k))k∈Z
be centered stationary Gaussian time series with spectral

densities fXn which satisfy the assumptions of Theorem 2.10 with r(k) := 1
2π

∫
T

e−ikxfX(x)dµ(x).
We assume moreover that the two following properties are satisfied.

∑

k∈Z

|r(k)|l(1 + |k|)αl < ∞.(26)

‖fXn − fX‖ l
l−1

≤ Cn−β.(27)

Then, for l = 2, for some constant Cα,β and for all n ≥ 1, we have

(28) dKol

(
1√
n

n−1∑

k=0

H2(Xn)(k), σ2N

)
≤ Cα,β max(n−β , n−2α, n−1/2),

while, for l ≥ 3, for some constant Cα,β and for all n ≥ 1, we have

(29) dKol

(
1√
n

n−1∑

k=0

H
l
(Xn)(k), σlN

)
≤ Cα,β





max(n−β, n−αl) : α < 1
l(l−1)

max(n−β, n−α− 1
l ) : 1

l(l−1) < α < 1
2 − 1

l

max(n−β, n− 1
2 ) : α > 1

2 − 1
l

.

Proof. We go back to the notations used in the proof of Theorem 2.10. We will use Lemma 2.12 with
Zn in place of Y . We first want to have the speed of convergence of Var(Zn)− σ2

l to 0. This is given
by (17) and (23). We then have to bound Var(‖DZn‖2

2) in place of Var(‖DYn‖2
2), with a variable

spectral density in place of a fixed one. So we have to consider ρ̃1,n and ρ̃2,n instead of ρ1,n and ρ2,n,
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with r replaced by rn.
When l = 2 we use the fact that ‖ρ̃1,n‖ℓ4/3(Z) ≤ ‖ρ̃1,n − ρ1,n‖ℓ4/3(Z) + ‖ρ1,n‖ℓ4/3(Z), with

‖ρ̃1,n − ρ1,n‖4
ℓ4/3(Z)

≤ n‖rn − r‖4
ℓ2(Z) ≤ Cn1−4β .

So ‖ρ̃1,n‖ℓ4/3(Z) ≤ Cn1/4−α∧β . When l ≥ 3, similarly we use the fact that

‖ρ̃1,n‖2
ℓ2(Z) ≤ C

(
n

l−2
l ‖rn − r‖2

ℓl(Z) + ‖ρ1,n‖2
ℓ2(Z)

)
, and ‖ρ̃2,n‖2

ℓ1(Z) ≤ C
(
n

2
l ‖rn − r‖2

ℓl(Z) + ‖ρ2,n‖2
ℓ1(Z)

)
.

¤

3. Vector-valued central limit theorem and generalizations

3.1. Vector-valued central limit theorem. We now describe a very useful extension of Theorem
2.10 to the vectorial case. Our main tool is [27] where it is proved that vectorial Central Limit
Theorems follow from Central Limit Theorems for marginals and convergence of covariance matrix.

For d ≥ 2 we consider a vector-valued centered stationary Gaussian time series defined by
−→
X (k) =

(X1(k), X2(k), · · · , Xd(k)). We assume that the covariance matrix of
−→
X is given by

ri,j(k) = Cov(Xi(k
′ + k), Xj(k

′)) :=
1

2π

∫ +π

−π
e−ikx

(
f−→

X

)
i,j

(x)dµ(x).

With a little abuse we say that the Hermitian d times d matrix f−→
X

is the spectral density of
−→
X .

Then we can consider the stationary vector-valued processes

−−−−→
Hl(X)(k) = (Hl(X1)(k), . . . , Hl(Xd)(k)), k ∈ Z, l ≥ 1.

In fact we are interested in the more general case of variable spectral densities.

Theorem 3.1. Let
(−→
Xn(k)

)
k∈Z

be centered stationary time series with values in R
d. We call f−→

Xn

the spectral density matrix of
−→
Xn Let l ≥ 2. We assume that f−→

Xn
belongs uniformly to the space

L
l

l−1 (T) and converges in this space to a function f−→
X

(in the sense that ‖
(
f−→

Xn

)
i,j

−
(
f−→

X

)
i,j

‖ l
l−1

tends to 0 as n tends to infinity for all 1 ≤ i, j ≤ d). We call ri,j(k) := 1
2π

∫
T

e−ikx
(
f−→

X

)
i,j

(x)dµ(x)

and assume, without loss of generality, that ri,i(0) = 1. Then we have the following vectorial CLT
for n tending to infinity:

1√
n

n−1∑

k=0

−−−−−−−→
H

l
(Xn)(k)

d→ N (0, Σl),

with (Σl)i,j = l!
∑

k∈Z

ri,j(k)l.

Proof. It is no more possible in general to write
−→
Xn as a Brownian stochastic integral, but we can

still use an isonormal Gaussian process (see Remark 2.4 and [22]), which allows us to use the results
of [27]. Let us introduce as before

−→
Zn =

1√
n

n−1∑

k=0

−−−−−→
H

l
(Xn)(k).

Once we have a one dimensional CLT for each coordinate of
−→
Zn, then it is sufficient to prove that

the covariance matrix of
−→
Zn tends to the matrix Σl (that is, Assumption 6 of Proposition 2 of

[27]). First, let us remark that for any 1 ≤ i ≤ d, Xn,i admits
(
f−→

Xn

)
i,i

for spectral density. Since
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‖
(
f−→

Xn

)
i,i

−
(
f−→

X

)
i,i
‖ l

l−1
tends to 0 as n tends to infinity, we already know by Theorem 2.10 that

the random variable Zn,i converges in distribution to N (0, (Σl)i,i). Now, for 1 ≤ i, j ≤ d, we have

Cov(Zn,i, Zn,j) =
1

n

n−1∑

k=0

n−1∑

k′=0

E(H
l
(Xn,i)(k)H

l
(Xn,j)(k

′))

=
l!

n

n−1∑

k=0

n−1∑

k′=0

rn,i,j(k − k′)l

= l!

n−1∑

k=−(n−1)

(
1 − |k|

n

)
rn,i,j(k)l.

From this point, the proof that this quantity tends to (Σl)i,j is the same as for a scalar valued time
series. ¤

Remark 3.1. One can also have a bound for the speed of convergence as in Section 2, based on
results of [24, 23]. One considers now the distance of Wasserstein

dW (
−→
Y ,

−→
Z ) = sup |E(Φ(

−→
Y ) − E(Φ(

−→
Z ))|,

where the supremum is taken on all Lipschitz functions with Lipschitz constant bounded by 1, under
the assumption that the matrix Σl is positive definite. When it is not the case, the function Φ is
taken of class C2, with bounded second derivatives. Mutatis mutandis, the bounds obtained for the
speed of convergence are the same as in the last section, see Theorem 2.15.

3.2. Extension to stationary centered Gaussian fields. Until now, we have chosen to restrict
our study to stationary centered Gaussian processes, essentially for notational sake of simplicity.
However, all previous results have their counterpart in the framework of Gaussian random fields that
are indexed by Z

ν for some integer ν ≥ 2 instead of Z. Then Theorems 2.10 and 3.1 are generalized
in the following setting.

Theorem 3.2. Let ν, d ≥ 1 integers. Let
−→
Xn =

(−→
Xn(k)

)
k∈Zν

be centered stationary Gaussian

fields with values in R
d. Let l ≥ 2. We call f−→

Xn
the spectral density matrix of

−→
Xn and assume

that f−→
Xn

belongs to the space L
l

l−1 (Tν) and converges in this space to a function f−→
X

. We call

ri,j(k) := 1
(2π)ν

∫
Tν e−ik·x

(
f−→

X

)
i,j

(x)dµν(x) and assume that ri,i(0) = 1 for 1 ≤ i ≤ d. Then, for n

tending to infinity,

(i)

Var


 1

nν/2

n−1∑

k1,...,kd=0

H
l
(Xn,i)(k)


 −→ (Σl)i,i,

(ii)

1

nν/2

n−1∑

k1,...,kd=0

H
l
(
−→
Xn)(k)

d−→ N (0, Σl),

with

(30) (Σl)i,j = l!
∑

k∈Zν

ri,j(k)l.

In the case where
−→
Xn =

−→
X , this result is a particular consequence of Theorem 4 of Arcones [1].

Remark 3.3. One can also have a bound for the speed of convergence (written in terms of the
distance of Wasserstein if d > 1) as in the last subsection, but with different exponents coming from
the generalization of Proposition 2.9. In this proposition, the new bound is max(n−ν , n−4α) when
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l = 1, due to the fact that the Sobolev space Hα is contained in L4(Tν) for α = ν/4. When l ≥ 2,
the new bound is, up to a constant,

max(n−2(l+1)α, n−2α− 2ν
l+1 , n−ν).

In Theorem 3.2, whenever ‖f−→
Xn

−f−→
Xn

‖ l
l−1

≤ Cn−β, the speed of convergence is O(max(n−β, n−2α, n−1/2))

for l = 2. Whenever l > 2, it is bounded, up to a constant, by




max(n−β , n−αl) : α
ν < 1

l(l−1)

max(n−β , n−α− ν
l ) : 1

l(l−1) < α
ν < 1

2 − 1
l

max(n−β , n− ν
2 ) : α

ν > 1
2 − 1

l

.

4. Application to generalized quadratic variations

In this section we consider a continuous time real-valued centered Gaussian field with stationary
increments, defined through a spectral representation

(31) Y (t) =

∫

Rν

(
e−it·x − 1

)
F (x)1/2dW̃ ν(x), t ∈ R

ν ,

where W̃ ν is a complex centered Gaussian measure on R
ν with Lebesgue control measure µν , such

that W̃ ν(−A) = W̃ ν(A) a.s. for any Borel set A of R
ν . The function F satisfies the integrability

condition ∫

Rν

min(1, |x|2)dµν(x) < ∞.

Remark that this condition could be relaxed when only higher order increments are stationary (see
[28]). We refer to the introduction for more notations and comments.

We assume that only {Y (k/n); k = (k1, . . . , kν) ∈ Z
ν with 0 ≤ k1, . . . , kν ≤ n − 1} are known for

some large n.
Let us first describe our method in the simplest possible example, that is, the Fractional Brownian

Motion in one dimension. So, for a moment we assume that ν = 1 and F (x) := |x|−2H−1, with
0 < H < 1. We are interested in first increments Xn(k) := Y ((k + 1)/n)− Y (k/n) and want to have
a CLT for the means

1

n

n−1∑

k=0

|Xn(k)|2

which are also the quadratic variations of the sequence Y (k/n). We remark that

Cov(Xn(k), Xn(k′)) =

∫

R

e−i
(k−k′)x

n

∣∣∣e−i x
n − 1

∣∣∣
2
F (x)dµ(x).

We use the homogeneity of F to write this covariance as

Cov(Xn(k), Xn(k′)) = n−2H

∫

R

e−i(k−k′)x
∣∣e−ix − 1

∣∣2 F (x)dµ(x).

Then, by a standard argument (which may be seen as an elementary version of Poisson’s Formula),
the spectral density of this time series is given by a periodization of F , that is,

Cov(Xn(k), Xn(k′)) = n−2H

∫ +π

−π
e−i(k−k′)·x

∣∣e−ix − 1
∣∣2 ∑

j

1

|x + 2πj|2H+1
dµ(x).

So, if we consider asymptotic properties of normalized increments nHXn(k), they are the same as
the ones of a unique time series, whose spectral density is the periodic function

fX(x) :=
∣∣e−ix − 1

∣∣2 ∑

j

1

|x + 2πj|2H+1
.

In particular, one observes a Central Limit Theorem for the quadratic variations 1
n

∑n−1
k=0 |X(k)|2

(once centralized and reduced) if one has the same for the means of H2(X). This can be deduced
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from Section 2 as soon as the function fX is in L2(T), which is the case for H < 3/4 (we give the
proof of this fact in the general case).

If F is only asymptotically homogeneous, we will still be able to use the same argument, but with
a variable spectral density.

We now consider the general case ν ≥ 1 and define generalized quadratic variations (recall that
one has to deal with higher increments for H ≥ 3/4 in Dimension one). We first define generalized
increments. More precisely, our first step is to consider a stationary field induced by these observa-
tions. This is obtained through a filtering of this sequence. In particular we consider the discrete
time stationary field

Zn,a(k) =

p∑

m1,...,mν=0

a1(m1) . . . aν(mν)Y

(
k1 + m1

n
, . . . ,

kν + mν

n

)
, for k = (k1, . . . , kν) ∈ Z

ν

and a = (a1, . . . ,aν) with aj = (aj(0), . . . , aj(p)) ∈ R
p+1 a discrete filter of length p + 1 and of order

Kj (p, Kj ∈ N with p ≥ Kj), which means that

p∑

mj=0

aj(mj) 6= 0 when Kj = 0 and otherwise

p∑

mj=0

aj(mj)m
r
j = 0 for 0 ≤ r ≤ Kj − 1 and

p∑

mj=0

aj(mj)m
Kj

j 6= 0.

For ν = 1, examples are given

• the increments of Y : Zn,a(k) = Y
(

k+1
n

)
− Y

(
k
n

)
for a = (−1, 1), which is a filter of order 1.

• the second order increments of Y : Zn,a(k) = Y
(

k+2
n

)
− 2Y

(
k+1
n

)
+ Y

(
k
n

)
for a = (1,−2, 1),

which is a filter of order 2.

In Dimension ν = 2, following the works of Chan & Wood [8] and Zu & Stein [29] we can also consider
the following types of increments:

• Vertical Zn,a(k) = Y
(

k1
n , k2+2

n

)
− 2Y

(
k1
n , k2+1

n

)
+ Y

(
k1
n , k2

n

)
for a1 = (1) filter of order 0

and a2 = (1,−2, 1) filter of order 2.

• Horizontal Zn,a(k) = Y
(

k1+2
n , k2

n

)
− 2Y

(
k1+1

n , k2
n

)
+ Y

(
k1
n , k2

n

)
for a1 = (1,−2, 1) filter of

order 2 and a2 = (1) filter of order 0.

• Superficial Zn,a(k) := ¤
n
k1,k2

(Y ) = Y
(

k1+1
n , k2+1

n

)
−Y

(
k1+1

n , k2
n

)
−Y

(
k1
n , k2+1

n

)
+Y

(
k1
n , k2

n

)

for a1 = a2 = (−1, 1) filter of order 1.

Coming back to the general case, let us associate to the filter aj the real polynomial

Paj
(xj) =

p∑

mj=0

aj(mj)x
mj

j , for xj ∈ R.

Then aj is a filter of order Kj ≥ 1 if and only if P
(r)
aj

(1) = 0, for 0 ≤ r ≤ Kj − 1 and P
(Kj)
aj

(1) 6= 0.
By Taylor formula, this implies that there exists cj > 0 such that

(32)
∣∣Paj

(
e−ixj

)∣∣ ≤ cj min
(
|xj |Kj , 1

)
, xj ∈ R.

Moreover using the spectral representation of Y , one has

Zn,a(k)=

∫

Rν

e−i k·x
n

ν∏

j=1

Paj

(
e−i

xj
n

)
F (x)1/2dW̃ ν(x).

We will note Pa(x) :=
ν∏

j=1

Paj
(xj). The only assumption that we will use is the fact that Pa has a

zero of order K := K1 + K2 + · · ·Kν at (1, · · · , 1). We say that the filter a has order K. Then we
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have

Cov(Zn,a(k), Zn,a(k
′)) =

∫

Rν

e−i
(k−k′)·x

n

∣∣∣Pa

(
e−i

x1
n , · · · , e−i xν

n

)∣∣∣
2
F (x)dµν(x)

=
1

(2π)ν

∫

[−π,π)ν

e−i(k−k′)·x
∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣2 ∑

k∈Zν

(2πn)νF (nx + 2nπk)dµν(x).

So the spectral density of Zn,a is given by

(33) fn,a(x) =
∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣2 ∑

k∈Zν

(2πn)νF (nx + 2nπk), x ∈ [−π, π)ν .

Because of the assumption on a, one can find a positive constant c > 0 such that

(34)
∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣ ≤ c|x|K , x = (x1, . . . , xν) ∈ [−π, π)ν ,

Then, the generalized quadratic variations of Y are defined as

(35) Vn,a =
1

(n − p + 1)ν

n−p∑

k1,...,kν=0

(Zn,a(k))2 .

Such quantities are very helpful to estimate the H parameter as explained below.

4.1. Central Limit Theorem for quadratic variations. We now consider random fields Y for
which Assumption 4 is valid. More precisely, let Ω be a strictly positive homogeneous function of
degree 0 that is continuous on the sphere Sν−1. We assume that

(36) F (x) =
Ω(x)

|x|2H+ν
+ R(x),

where the rest R satisfies the estimate

(37) |R(x)| ≤ κ

|x|2H+ν+γ
for |x| > A.

We will prove a Central Limit Theorem for the generalized quadratic variations related to H. We
will see that the limit does not depend on the rest. We use the notations given above.

Theorem 4.1. Let us assume that F , the spectral density of Y satisfies (36) and (37) for some
H > 0 and γ > 0. Let a be a filter of order K. Moreover, we assume that |x|4KF (x)2 is integrable
on compact sets. If K > H + ν

4 , then for n tending to infinity,

(i) (n − p + 1)νVar
(

Vn,a

E(Vn,a) − 1
)
−→ σ2

a(H)

(ii) (n − p + 1)ν/2
(

Vn,a

E(Vn,a) − 1
)

d−→ N (0, σ2
a(H)),

with

(38) σ2
a(H) =

2(2π)ν

Ca(H)2

∫

[−π,π)ν

∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣4
∣∣∣∣∣
∑

k∈Zν

Ω(x + 2πk)

|x + 2πk|2H+ν

∣∣∣∣∣

2

dµν(x),

where

(39) Ca(H) =

∫

Rν

∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣2 Ω(x)

|x|2H+ν
dµν(x).

Proof. This will be a direct consequence of the previous sections. We can write

(n − p + 1)ν/2

(
Vn,a

E (Vn,a)
− 1

)
=

1

(n − p + 1)ν/2

n−p∑

k1,...,kν=0

H2(Xn,a(k)),

with {Xn,a(k), k ∈ Z
ν} a stationary Gaussian time series, given by

Xn,a(k) :=
Zn,a(k)√

Var (Zn,a(k))
.
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The spectral density of Xn,a is easily deduced from the one of Zn,a given in (33), using the fact that

Cn,a := Var (Zn,a(k)) =

∫

Rν

∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣2 nνF (nx)dµν(x).

This means that fXn,a is given by

(40) fXn,a(x) :=
(2πn)ν

Cn,a
|Pa

(
e−ix1 , · · · , e−ixν

)
|2

∑

k∈Zν

F (nx + 2nπk).

We are in position to apply Theorem 2.10 or Theorem 3.2 depending on the dimension. It is sufficient
to prove that fXn,a is uniformly in L2(T) and converges to fXa

, with

(41) fXa
(x) =

(2πn)ν

Ca(H)
|Pa

(
e−ix1 , · · · , e−ixν

)
|2

∑

k∈Zν

Ω(x + 2πk)

|x + 2πk|2H+ν

and Ca(H) given by (39). The required convergence properties are contained in the following lemma.

Lemma 4.2. We have the following.

n2H
E (Vn,a) − Ca(H) =





O
n→+∞

(
n−2(K−H)

)
if K − H < γ/2

O
n→+∞

(n−γ log n) if K − H = γ/2

O
n→+∞

(n−γ) if K − H > γ/2

.

Moreover fXn,a and fXa
are in L2(T) and

‖fXn,a − fXa
‖2 =





O
n→+∞

(
n−(2K−2H−ν/2)

)
if K − H < γ + ν/4

O
n→+∞

(
n−2γ log n

)
if K − H = γ + ν/4

O
n→+∞

(
n−2γ

)
if K − H > γ + ν/4

.

Proof. For the first estimates, we have to bound∫

Rν

min(|x|2K , 1)n2H+ν |R(nx)|dx =

∫

|x|<A/n
+

∫

A/n<|x|<1
+

∫

|x|>1
.

For the first term, since we have no assumption on R except for the fact that it is the difference

between F and Ω(x)
|x|2H+ν , we consider each quantity separately. For the integral in F , we change of

variable and use the assumption of integrability on F to conclude that it is a term in n−2(K−H). The
other estimates are straightforward.

Next, let us prove that fXa
is in L2(T). We write that

∫

Tν

(fXa
(x))2dµν(x) = c

∫

[−π,π)ν

∣∣Pa

(
e−ix1 , · · · , e−ixν

)∣∣4
( ∑

k∈Zν

Ω(x + 2πk)

|x + 2πk|2H+ν

)2

dµν(x)

≤ c

∫

[−π,π)ν

|x|4K Ω(x)2

|x|4H+2ν
dµν(x) + C

< +∞.

We have used the fact that, for |x| ≤ π, the sum
∑

k 6=0

1

|x + 2πk|2H+ν
is uniformly bounded since

K > H + ν
4 . Next, in order to bound the norm of fXn,a − fXa

, we have to consider the quantity

∆n(x) := nν+2H
∑

k∈Zν

R(n(x + 2kπ)).

From Assumptions (36) and (37) and from the fact that Ω is bounded below on the unit sphere, we
deduce that, for |x| > A/n (with some constant C that varies from line to line)

|R(x)| ≤ C

|x|γ
Ω(x)

|x|2H+ν
.
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It follows that, for |x| > 2C
n , we have the inequality

∆n(x) ≤ C

nγ |x|2H+ν+γ
.

Using this inequality, we estimate easily
∫

|x|> 2C
n

(fXn,a(x) − fXa
(x))2dµν(x).

To conclude, it is sufficient, after a change of variables, to bound

n4H+ν−4K

∫

|x|≤2C
|x|4KF (x)2dµν(x),

which is direct upon the local integrability assumption on F . ¤

This finishes the proof of the theorem. ¤

4.2. Remark on the speed of convergence. We keep the notations of the last subsection and
interest ourselves to the speed of convergence towards a Gaussian law. We want to give a bound for

the Kolmogorov distance in one variable, or the distance of Wasserstein in general, between
Vn,a

E(Vn,a)

and a Gaussian random variable of law N (0, σ2
a(H)). By Lemma 4.2, we have a bound for the speed

of convergence of fXn,a towards fXa
. So we can use Theorem 2.15 or Remark 3.3 as soon as fXa

belongs to some Sobolev space Hα. Or, if the Fourier coefficients of fXa
behave like a power |k|−a,

then we can also use Remark 2.14 to have a bound for the speed of convergence. This is what we
discuss now.

Let us start with Dimension one, where Ω is a constant. Then the Fourier coefficients of fXa
,

which we note ra, are also, up to a constant, the values of the Fourier transform of the function

|Pa(e
−ix)|2

|x|2H+ν
.

It is classical that these last ones may be written as

ra(k) :=

p∑

m=−p

bm|k + m|2H ,

where bm are coefficients of the polynomial Q := |P |2. Using the fact that Q vanishes at order 2K
and Taylor’s Formula, one sees that

(42) ra(k) = O(|k|2H−2K),

In higher dimension, we will show that we can conclude with some regularity assumption on Ω.
Specifically, if we assume that Ω is of class C1 on the unit sphere, then the first partial derivatives of

ha(x) :=
|Pa(e

−ix)|2Ω(x)

|x|2H+ν

satisfy the same kind of estimates as the function itself, apart from the loss of 1 in the power of
|x| in one term, and the fact that P or P has been replaced by its derivative in another one. If
again ra(k) :=

∫
Rν e−ik·xha(x)dµν(x), then kjra(k) appears as the Fourier coefficients of the jth

partial derivative of ha. Remark first that we have proved in Lemma 4.2 that the sequence ra(k)
is in ℓ2(Zν) by proving that the periodization of ha is in L2(Tν), which is equivalent by Plancherel
Theorem. For the same reason, to prove that kjra(k) is a sequence in ℓ2(Zν), it is equivalent to prove
that the periodization of the jth derivative of ha is in L2(Tν). Under the assumption that Ω is of
class C1 on the unit sphere, we do this by the same method, but on the stronger assumption that
K − 1 − H > ν/4. The necessity of a stronger assumption is linked to the loss of 1 in the power of

|x|. Finally, under these two assumptions, we conclude that
∑

k∈Zν

|k|2|ra(k)|2 < ∞ and one can apply

Theorem 3.3.
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One can weaken or strengthen these assumptions on Ω to obtain the full range of Sobolev spaces.
In all cases we have a speed of convergence towards a Gaussian law in |n|−δ with δ depending on γ,
K, H, and the regularity of Ω.

4.3. Application to the identification of H. As we said before, a central question is the estima-
tion of H from real data. As an application of generalized quadratic variations, we obtain Proposition
1.3 of [5] without additional assumption of regularity on the spectral density. Actually, let us fix the
dimension ν = 1 and, following [17], let us consider the filtered process of Y with a dilated filter.
More precisely, let U ≥ 2 an integer. For an integer u ∈ {1, . . . , U}, the dilation au of a is defined
by, for 0 ≤ m ≤ pu,

au
m =

{
am′ if m′ = mu
0 otherwise.

Since
pu∑

m=0
mrau

m = ur
p∑

m=0
mram, the filter au has the same order than a but length pu. Then,

{Xn,au(k) ; k ∈ Z
ν , u ∈ {1, . . . , U}} fdd

=

{
Zn,au(k)√

Var (Zn,au(k))
; k ∈ Z

ν , u ∈ {1, . . . , U}
}

,

so that

(
Vn,au

E(Vn,au)
,

Vn,av

E(Vn,av)

)
−→

n→+∞
(1, 1) almost surely with asymptotic normality for K > H + 1

4 ,

according to Theorems 3.2 and 4.1, for any u, v ∈ {1, . . . , U}. According to Proposition 1.1 of [5]
(see also Lemma 4.2 above), Assumption (4) implies that

n2H
E (Vn,au) = u2HCa(H) +





O
n→+∞

(
n−2(K−H)

)
if K − H < γ/2

O
n→+∞

(n−γ log n) if K − H = γ/2

O
n→+∞

(n−γ) if K − H > γ/2

,

so that for u, v ∈ {1, . . . , U},

Ĥn,a(u, v) :=
1

2 log(u/v)
log

(
Vn,au

Vn,av

)
−→

n→+∞
H a.s.

with asymptotic normality when K > H + 1/4 and γ > 1/2. We refer to [5] for details. The main
difference here is the fact that we only need an assumption on the behavior of the rest, not on its
derivatives, due to the use of Theorem 3.2.

4.4. Functional Central Limit Theorem for Quadratic variations of a stationary Gaussian

random process. Up to now, we have only considered finite distributions. In this last subsection we
want to prove that one can have convergence for continuous time processes as well. We will restrict
our study to the case ν = 1. So let us consider the random process Y given by (3) in Dimension one.
Then Assumption (4) on the spectral density F of Y can be written as

(43) F (x) =
c

|x|2H+1
+ O

|x|→+∞

(
1

|x|2H+1+γ

)
.

We keep the notations of the previous section and consider for a discrete filter a of length p + 1 and
order K ≥ 1 the filtered process of discrete observations of Y defined for n ≥ p by

Zn,a(k) =

p∑

m=0

amY

(
k + m

n

)
, for k ∈ Z.

Following Donsker’s Theorem we consider a functional version of the Central Limit Theorem obtained
in Theorem 4.1. For this purpose let us introduce the continuous time random process defined for
t ∈ [ p

n , 1] by

Sn,a(t) =
1√

n − p + 1

[nt]−p∑

k=0

(
Zn,a(k)2

Cn,a
− 1

)
,
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and Sn,a(t) = 0 for 0 ≤ t < p
n , where Cn,a = E

(
Zn,a(k)2

)
. Then Sn,a(1) =

√
n − p + 1

(
Vn,a

E(Vn,a) − 1
)
.

Moreover, Sn,a is a.s. a càdlàg process on [0, 1] and we denote as usual D([0, 1]) the set of such

processes. We also introduce the càdlàg random process defined on [0, 1] by Yn(t) = Y
(

[nt]
n

)
. Let

us recall that according to (43) and Proposition 1 of [7] we can assume that Y is a.s. continuous on
[0, 1]. It follows that Yn converges in law to Y in the space D([0, 1]) equipped with the Skorohod
topology. Then, Theorem 6 of [4] has the following counterpart in our setting.

Theorem 4.3. We keep notations introduced in the previous section. Let us assume that F , the
spectral density of Y satisfies (43) for some H > 0 and γ > 0. Let a be a filter of order K. Moreover,
we assume that |x|4KF (x)2 is integrable on compact sets. If K > H+ 1

4 , then for n tending to infinity,

we obtain the weak convergence (in the space D([0, 1])2 equipped with the Skorohod topology)

(Yn(t), Sn,a(t))−→ (Y (t), σa(H)B(t)) ,

where B is a standard Brownian motion on [0, 1] that is defined on the same probability space than
Y , independent of Y and

(44) σ2
a(H) =

4π

Ca(H)2

∫

[−π,π)

∣∣Pa

(
e−ix

)∣∣4
∣∣∣∣∣
∑

k∈Z

c

|x + 2πk|2H+1

∣∣∣∣∣

2

dµ(x),

where

(45) Ca(H) =

∫

R

∣∣Pa

(
e−ix

)∣∣2 c

|x|2H+1
dµ(x).

Proof. Let us first consider the convergence of Sn,a(t). For fixed t, this is a small modification of the
data of the previous section, and we immediately have

Sn,a(t)
d−→

n→+∞
N

(
0, tσ2

a(H)
)

= σa(H)B(t).

Next, we want to deal with a finite vector (Sn,a(t1), · · · , Sn,a(td)). We are not exactly in the same
setting as in Theorem 3.2 since for the computation of each coordinate we use the same discrete time
series, but modify the mean that we are taking depending on the coordinate. But it is easy to see
that the same strategy is available, that is, it is sufficient to have the convergence of the covariance
matrix according to Proposition 2 of [27]. Therefore, we are linked to prove, for any fixed 0 < t < s,
that

Cov (Sn,a(t), Sn,a(s)) −→
n→+∞

σ2
a(H)t,

or, which is equivalent, to prove the convergence to 0 of Cov (Sn,a(t), Sn,a(s) − Sn,a(t)). As previously
we introduce the function

fa(x) =
1

Ca(H)2
|Pa

(
e−ix

)
|2

∑

k∈Z

2πc

|x + 2πk|2H+1

and denote by ra the Fourier coefficients of fa. We consider the centered stationary discrete Gaussian
time series Xa which admits fa for spectral density, and therefore ra as covariance sequence. Then,
let us define the random process

S̃n,a(t) =
1√

n − p + 1

[nt]−p∑

k=0

H2(Xa)(k),
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for t ∈ [ p
n , 1] and S̃n,a(t) = 0 otherwise. It is easily seen, as in the proof of Theorem 2.10, that limits

are the same for S̃n,a or Sn,a. So, let us compute

Cov
(
S̃n,a(t), S̃n,a(s) − S̃n,a(t)

)
=

2

n − p + 1

[nt]−p∑

k=0

[ns]−p∑

l=[nt]−p+1

r2
a(l − k)

≤ 2

n − p + 1

[ns]∑

j=1

jr2
a(j) +

[ns]∑

j=min([nt]−p,[ns]−[nt]−1)

r2
a(j).

The second term tends to zero as a rest of a convergent series, since t < s. For the first term, recall
that, by (42),

|ra(k)| ≤ C(1 + |k|)−2(K−H),

so that for α ∈ (0, min(2 (K − H − 1/4) , 1/2))

2

n − p + 1

[ns]∑

j=1

jr2
a(j) ≤ Cn−2αs1−2α,

which tends to zero as n tends to infinity. This ends the proof of the convergence in finite dimensional

distributions of S̃n,a and thus Sn,a to σa(H)B.
Let us prove the tightness. We clearly have for 0 < t ≤ s

E

(
(Sn,a(t) − Sn,a(s))

2
)

≤ C‖fXn,a‖2
2

(
[ns] − [nt]

n

)

≤ C ′

(
[ns] − [nt]

n

)
.

Finally for t ≤ s ≤ r, by Hölder inequality and using the equivalence of Lp(Ω, P) norms in the second
chaos,

E

(
(Sn,a(t) − Sn,a(s))

2 (Sn,a(r) − Sn,a(s))
2
)

≤ E

(
(Sn,a(t) − Sn,a(s))

4
)1/2

E

(
(Sn,a(r) − Sn,a(s))

4
)1/2

≤ CE

(
(Sn,a(t) − Sn,a(s))

2
)

E

(
(Sn,a(r) − Sn,a(s))

2
)

≤ C

(
[ns] − [nt]

n

) (
[nr] − [ns]

n

)
.

This quantity is bounded by (r−t)2. Indeed, it is clearly the case when r−t ≥ 1/n. When r−t < 1/n,
either [ns] = [nt] or [nt] = [nr], so that it vanishes. The tightness of Sn,a follows from Theorem 13.5
of [6].
Now, let us consider the sequence of vectorial processes (Yn, Sn,a), which belong to D([0, 1])2. Each
coordinate is tight, thus (Yn, Sn,a) is also tight. It remains to study the finite dimensional convergence.
Any linear combination of the coordinates of the above vector belongs to the order one and order
two Chaos respectively. Moreover they have both a Gaussian limit. Thus Theorem 1 (item (iv))
of [27] allows to conclude of the vector itself and that the two Gaussian limits are independent.
Summarizing we have

(Yn, Sn,a)
d→ (Y, σaB),

where the convergence is in distribution in the space D2([0, 1]) and the two processes coordinates are
Gaussian and independent. This also implies that the convergence is stable in law. ¤

Such a result is a fundamental tool when one deals with a non linear function of a Gaussian field,
see [9] for instance. In applications to porous media for instance, it is natural to consider that the
observed field is U(t) = g(Y (t)), t ∈ R, where g is a non-linear function g with extra assumptions
of smoothness and integrability. In this context we are interested in the asymptotic behavior of the
quadratic variations of U instead of Y . A Central Limit Theorem can still be obtained, using a Taylor
expansion of g and similar methods to the ones that have been developed in the proof of Theorem
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7 in [4]. In this case the limit variable is no more Gaussian. It is given by the stochastic integral

σa(H)
∫ 1
0 (g′(Y (t))2 dB(t). We intend to develop this, in connection with applications, in another

work.
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Hermine BIERMÉ, MAP5 UMR 8145 Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris

France

E-mail address: hermine.bierme@mi.parisdescartes.fr

Aline BONAMI, MAPMO UMR 6628, Université d’Orleans, 45067 Orléans Cedex 2, France
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