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Observer based actuator fault tolerant control for nonlinear
Takagi-Sugeno systems : an LMI approach

Dalil Ichalal, Benoit Marx, Jośe Ragot, Didier Maquin

Abstract— A new actuator fault tolerant control strategy
is proposed in this paper for nonlinear Takagi-Sugeno (T-S)
systems. The control law aims to compensate the actuator
faults and allows the system states to track a reference
states corresponding to the output of the system in the fault
free situation. The design of such a control law requires
the knowledge of the faults, this task is achieved with a
proportional integral observer (PIO). The robust stability of
the system with the fault tolerant control law is analyzed
with Lyapunov theory and L2 optimization. Sufficient stability
conditions are obtained in terms of linear matrix inequalities
(LMIs). The gains of the FTC are obtained by solving these
LMIs. A simulation example is finally proposed.

Index Terms— Takagi-Sugeno systems, state and fault esti-
mation, PI observer, Lyapunov stability analysis, linear matrix
inequality.

I. INTRODUCTION

It is well known that the classical control strategies cannot
take into account faults affecting a system. Then, if a fault
occurs in any component of the system, the stability and
the performances of the system cannot be ensured with
such control laws. These last years, the problem of fault
tolerant control design has been treated and many significant
results have been proposed in [14], [2], [16], [17]. These
works follow two different ideas. The first one, called passive
FTC, considers possible fault situations and take them into
account in the step of control design which is similar to
the robust control design. It is pointed out in many works
that this strategy is usually restrictive. The second approach
is the active FTC, which requires a fault diagnosis block
providing on line informations on fault detection, isolation
and estimation. The reconfigurable control block uses these
informations in order to deal with unforeseen faults, to
maintain the system stability and to provide an acceptable
system trajectory even in faulty situations.

The active fault tolerant control has been developed essen-
tially for linear systems [6], [19], [17], [14] and descriptor
linear systems [12]. Clearly, linear models do not often
represent accurately physical systems due to the presence
of nonlinear behavior. A new representation that combines
simplicity and accuracy of nonlinear behaviors was intro-
duced, initially, in [20] and known under the nameTakagi-
Sugeno (T-S) models. The idea is to consider a set of
linear sub-systems. An interpolation of all these sub-models
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with nonlinear functions satisfying the sum convex property
allows to obtain the global behavior of the system described
in a large operating range. One can cite some works in the
FTC field for nonlinear systems, for example, in [5], the
authors gave a method for actuator faults by using their
estimations, for nonlinear descriptor systems with Lipschitz
nonlinearities. In [18], a method which requires only the fault
isolation was proposed for T-S systems. It was based on a
bank of observer based controllers. A switching mechanism
is then designed depending on the obtained residuals. More
recently, Witczak proposed in [23] an FTC strategy based on
a reference model for open-loop T-S systems.

This paper is dedicated to the design of a fault tolerant
control strategy for nonlinear systems described by Takagi-
Sugeno models. This approach is an extension, the work pro-
posed in [23], to T-S systems where the weighting functions
of the T-S system are affected by faults. Thus, the premise
variables of the reference model are not the same as those
of the faulty system. The main idea is to re-use the nominal
control input developed in fault-free case for which two
terms, related to the occurred fault and the tracking error
trajectory between the system and a reference model, are
added. The reference trajectory is provided from a reference
model representing the system without faults. In addition,the
control law requires the knowledge of the state of the system
and the faults affecting it. For that purpose, a PI observer is
used to estimate simultaneously these signals.

A. Takagi-Sugeno structure for modeling

Let us consider a nonlinear system described by a T-S
structure















ẋ(t) =
r
∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) =
r
∑

i=1

µi(ξ(t))Cix(t)
(1)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

m is the input
vector, andy(t) ∈ R

p represents the output vector.Ai ∈
R

n×n, Bi ∈ R
n×m, Ci ∈ R

p×n andDi ∈ R
p×m are known

matrices. The functionsµi(ξ(t)) are the weighting functions
depending on the variablesξ(t) which can be measurable
(as the input or the output of the system) or non measurable
variables (as the state of the system). These functions verify
the following properties







r
∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀i ∈ {1, 2, ..., r}
(2)



Obtaining a T-S model (1) can be performed from dif-
ferent methods such as linearization of a nonlinear model
around some operating points and using adequate weighting
functions. It can be also obtained by black-box approaches
which allow to identify the parameters of the model from
input-output data. Finally, an interesting approach to obtain
a model in the form (1) is the well-known nonlinear sector
transformations [21], [15]. Indeed, this transformation allows
to obtain an exact T-S representation of a general nonlinear
model with no information loss, in a compact state space.

Thanks to the convex sum property of the weighing
functions (2), it is possible to generalize some tools de-
veloped in the linear domain to the nonlinear systems.
This representation is very interesting in the sense that it
simplifies the stability study of nonlinear systems and the
design of control laws and observers. In [3], [7], [10], the
stability and stabilization tools are inspired from the study
of linear systems. In [1], [13], the authors worked on the
problem of state estimation and diagnosis of T-S fuzzy
systems. The proposed approaches in these last papers rely
on the generalization of the classical observers (Luenberger
Observer [11] and Unknown Input Observer (UIO) [4]) to
the nonlinear domain.

B. Notations and preliminaries

Let us consider the matrixYij with appropriate dimension,
and µi(.) nonlinear functions satisfying the convex sum
property. The following notation is defined

Yξξ =
r

∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))Yij (3)

Lemma 1: ([22]) The inequality
r

∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))Yij < 0 (4)

holds if

Yii < 0, i = 1, ..., r (5)
2

r − 1
Yii + Yij + Yji < 0, i, j = 1, ..., r, i 6= j (6)

Lemma 2: (Congruence) Let two matricesP andQ, if P
is positive definite and ifQ is a full column rank matrix,
than the matrixQPQT is positive definite.

Notation 1: For any square matrixM , S(M) is defined
by :

S = M + MT (7)

II. FAULT TOLERANT CONTROL OFT-S FUZZY SYSTEMS

A. FTC strategy

Let us consider the T-S reference model without faults
described by (1). The faulty system is given by














ẋf (t) =
r
∑

i=1

µi(ξf (t)) (Aixf (t) + Bi(uf (t) + f(t)))

yf (t) =
r
∑

i=1

µi(ξ(t))Cixf (t)

(8)

Note that, the weighting functions depend on a faulty premise
variable ξf (t). Indeed, if these last are the input of the
system, which can depend on the statexf (t) in closed-
loop, or the outputyf (t), necessarily the fault affects these
variables.

The goal is to design the control lawuf (t) such that the
system statexf (t) converges toward the reference statex(t)
given by the reference model (1). The control strategy is
illustrated in the figure 1.
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Fig. 1. Fault tolerant control scheme

We propose the following structure for the control law

uf (t) = −f̂(t) + K(x(t) − x̂f (t)) + u(t) (9)

The matricesK is determined in order to ensure the stability
of the system even if faults occur and to minimize the state
error betweenxf (t) andx(t). By analyzing the structure of
uf (t) given in equation (9), the estimation of the state vector
xf (t) and faultsf(t) are required. This task is performed via
a Proportional-Integral observer simultaneously estimating
the state and the faults of the system.

Let us consider the PI observer

˙̂xf (t) =

r
∑

i=1

µi(ξf (t))(Aix̂f (t) + Bi(uf (t) + f̂(t))

+ H1i(yf (t) − ŷf (t))) (10)

˙̂
f(t) =

r
∑

i=1

µi(ξf (t)) (H2i(yf (t) − ŷf (t)))

ŷf (t) =
r

∑

i=1

µi(ξf (t))Cix̂f (t)

(11)

In fact if ξf (t) is assumed to be known, the observer
weighting functions depend on the same premise variable
as the system (8).

The output error between the system (8) and the observer
(10) is written by

yf (t) − ŷf (t) =
r

∑

i=1

µi(ξf (t))C̃iea(t) (12)

where

C̃i =
[

Ci 0
]

(13)



ea(t) = xa(t) − x̂a(t), xa(t) =

[

xf (t)
f(t)

]

(14)

The dynamic of the trajectory tracking error
e(t) = x(t) − xf (t), obeys to the differential equation

ė(t) =

r
∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

− µi(ξf (t))(Aixf (t) + Bi(uf (t) − f(t))) (15)

ė(t) =

r
∑

i=1

µi(ξf (t))(Aie(t) − Bi(f(t) + f̂(t))

− BiK(xf (t) − x̂f (t))) + δ(t) (16)

=

r
∑

i=1

µi(ξf (t))((Ai − BiK)e(t)

− L̃iea(t)) + δ(t) (17)

where

L̃i =
(

BiK Bi

)

, ea = xa(t) − x̂a(t) (18)

δ(t) =

r
∑

i=1

(µi(ξ(t)) − µi(ξf (t)))(Aix(t) + Biu(t)) (19)

Assume thatḟ(t) = 0, the system (8) can be written in
augmented form















ẋa(t) =
r
∑

i=1

µi(ξf (t))
(

Ãixa(t) + B̃iuf (t)
)

yf (t) =
r
∑

i=1

µi(ξf (t))C̃ixa(t)
(20)

where

Ãi =

(

Ai Bi

0 0

)

, B̃i =

(

Bi

0

)

, (21)

The pairs(Ãi, C̃j), i, j = 1, ..., r are assumed to be observ-
able (or at least detectable). The state and fault estimation
errorea(t) = xa(t)− x̂a(t) between the system (20) and the
observer (10)-(11) evolves following the equation

ėa(t) =

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))
(

(Ãi − HiC̃j)ea(t)
)

(22)
The concatenation of the state tracking trajectory error and

the state and faults estimation errors allows to write, from
(16) and (22), a new augmented system written by

˙̃e(t) =

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))Ãij ẽ(t) + Γ̃δ(t) (23)

where

ẽ(t) =

(

x(t) − xf (t)
xa(t) − x̂a(t)

)

, Γ̃ =

(

In

0

)

(24)

Ãij =

(

Ai − BiK −L̃i

0 Ãi − HiC̃j

)

(25)

Remark 1:One can note that in the previous section, the
weighting functions depend on the premise variableξf (t).

It can be external known variable which is not affected by
faults. Indeed, in [23], the authors proposed a method for
this case with application to the three tank system in open-
loop control. In this case,ξ(t) = ξf (t) and the equation (23)
becomes

˙̃e(t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))Ãij ẽ(t) (26)

In Takagi-Sugeno modeling, it is often considered that the
premise variableξ(t) is the input, the output or the state
of the system, which are necessarily affected by faults.
Consequently,ξ(t) 6= ξf (t). In addition if ξf (t) is measur-
able the state estimation error and the state tracking error
are expressed by (23). Now, with this considerations, when
ξ(t) = u(t) and ξf (t) = uf (t), the term δ(t) does not
converge to zero ifxf (t) converges to the reference state
x(t) but if ξ(t) = y(t) andξf (t) = yf (t), the tolerant control
allows the convergence ofxf (t) to x(t) and yf (t) to y(t),
then the termδ(t) converges also to zero which gives better
results compared to the case whereξ(t) = u(t). The same
problem can appear if the output is also affected by faults. In
these cases, the fault tolerant control design aims to minimize
the difference betweenxf (t) andx(t) and to minimize the
L2 gain of the transfer fromδ(t) to the state tracking error.

B. Fault tolerant control design

The gainsK, H1i and H2i are determined by solving
the optimization problem under LMI constraints given in
theorem 1.

Theorem 1:Let be µ a positive scalar. The system (23)
that generates the state tracking errore(t) and the state and
fault estimation errorsea(t) is stable and theL2−gain of
the transfer fromδ(t) to ea(t) is bounded if there exists
symmetric and positive definite matricesX1, X2, P2 and
P3, matricesH̄i andK̄ and positive scalars̄γ solution to the
following optimization problem

min
X1,X2,P2,K̄i,H̄i,

γ̄ s.t. (5)− (6) (27)

where

Yij =













Ψi −BiM 0 In X1

∗ −2µX µI 0 0
∗ ∗ ∆ij 0 0
∗ ∗ ∗ −γ̄In 0
∗ ∗ ∗ ∗ −In













< 0 (28)

Ψi = AiX1 + X1A
T
i − BiK̄ − K̄T BT

i (29)

∆ij = P2Ãi + ÃT
i P2 − H̄iC̃j − C̃T

j H̄T
i (30)

M =
(

K̄ X2

)

(31)

X =

(

X1 0
0 X2

)

(32)

The controller gains and those of the observer are computed
from

Hi =

(

H1i

H2i

)

= P−1
2 H̄i (33)

K = K̄X−1
1 (34)



and the attenuation level of the transfer fromδ(t) to e(t) is
obtained by

γ =
√

γ̄ (35)

Proof: The gainsHi and K are obtained by stability
analysis of the system described by the differential equation
(23) by using Lyapunov theory with a quadratic function.

Let us chose the following quadratic Lyapunov function

V (ẽ(t)) = ẽ(t)T P ẽ(t), P = PT > 0 (36)

whereP is chosen as follows

P =

(

P1 0
0 P2

)

(37)

The time derivative of the functionV (ẽ(t)) is given by

V̇ (ẽ(t)) =

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))ẽ(t)TMij ẽ(t)

+ 2ẽ(t)T P Γ̃δ(t) (38)

where

Mij = S

((

Λi −P1L̃i

0 P2Ãi − P2HiC̃j

))

(39)

where
Λi = P1Ai − P1BiK (40)

andS is a function defined in the notation 1.
In addition, the termδ(t) depends onx(t), u(t) which

are bounded, then it is also bounded. So, the objective is to
minimize theL2-gain of the transfer fromδ(t) to the state
tracking errore(t), this is formulated by

‖e(t)‖2

‖δ(t)‖2

< γ, ‖δ(t)‖2 6= 0 (41)

Then, we are seeking to ensure asymptotic convergence
toward zero ifδ(t) = 0 and to guarantee a boundedL2-gain
if δ(t) 6= 0. This problem can be formulated as follows

V̇ (ẽ(t)) + e(t)T e(t) − γ2δ(t)T δ(t) < 0 (42)

After some calculation, the inequality (42) is negative if the
following conditions hold

Nξξ =
r

∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))Nij < 0 (43)

where

Nij =

0B� S (Λi) + In −P1Li P1

0 S

�
P2Ãi − P2HiC̃j

�
0

P1 0 −γ2I

1CA (44)

with the congruence lemma, we obtain

Nξξ < 0 ⇔ WNξξW
T < 0 (45)

where

W =





P−1
1 0 0
0 X 0
0 0 I



 , X =

(

P−1
1 0
0 X2

)

(46)

X2 is symetric and positive definite matrix. The following is
then obtained

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))





Ξi −LiX In

∗ X∆ijX 0
∗ ∗ −γ2I



 < 0

(47)
where

Ξi = AiP
−1

1 + P
−1

1 A
T
i − BiKP

−1

1

− P
−1

1 K
T
B

T
i + P

−1

1 P
−1

1 (48)

∆ij = P2Ãi + Ã
T
i P2 − P2HiC̃j − C̃

T
j H

T
i P2 (49)

The negativity of (47) imposes the negativity of∆ij which
allows to use the following property

(

X + µ∆−1
ij

)T
∆ij

(

X + µ∆−1
ij

)

≤ 0

⇔ X∆ijX ≤ −µ
(

X + XT
)

− µ2∆−1
ij (50)

(47) can then be bounded in the following way

Yξξ =
r

∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t))Yij < 0 (51)

where

Yij =









Ξi −LiX 0 In

∗ −2µX µI 0
∗ ∗ ∆ij 0
∗ ∗ ∗ −γ2I









(52)

After the use of the lemma 1, in order to express the
inequalities in linear form with respect toP−1

1 , P2, K, and
Hi, the following change of variables are used

X1 = P−1
1 , K̄ = KX1, H̄i = P2Hi, γ̄ = γ2 (53)

In addition

L̃iX = Bi

(

K I
)

X = Bi

(

K̄ X2

)

(54)

Then, the relaxed stability conditions satisfying the attenua-
tion level of theL2 gain of the transfer fromδ(t) to the state
tracking errore(t), given in theorem 1, are obtained.

Remark 2:The assumption that the fault signal is constant
over the time is restrictive, but in many practical situations
where the faults are slowly time-varying signals, the estima-
tion of the faults is correct, and the proposed FTC scheme
can be applied. In the case where the faults are not slowly
time-varying or constant, the Proportional Integral Observer
(PIO) can be replaced by a Proportional Multiple Integral
Observer (PMIO) (see [8]). Such is able to estimate a large
class of time-varying signals which satisfies the following
assumption

f (q+1) = 0 (55)

The principle of this observer is based on the estimation of
all the qth derivatives of the signalf(t). This observer can
also be extended to the case wheref (q+1) is bounded.

III. S IMULATION EXAMPLE

To illustrate the proposed actuator fault tolerant control
strategy for T-S systems with measurable premise variables
affected by the faults, we proposed two academic examples.



A. First case :ξ(t) = u(t)

Consider a T-S system described by







ẋf (t) =
r
∑

i=1

µi(u(t)) (Aixf (t) + Biuf (t) + Bif(t))

yf (t) = Cxf (t)
(56)

where

A1 =





−2 1 1
1 −3 0
2 1 −8



 , A2 =





−3 2 −2
0 −3 0
5 2 −4



 ,

B1 =





0
1
1



 , B2 =





1
1
0



 , C =

[

1 1 1
1 0 1

]

The weighting functions depend on the inputu(t) which is
the nominal control of the system in the fault-free case ; they
are defined byµ1(u(t)) = (1− u(t))/2 andµ2(u(t)) = 1−
µ1(u(t)). To apply the proposed FTC strategy, the following
reference model is considered

ẋ(t) =
r

∑

i=1

µi(u(t)) (Aix(t) + Biu(t)), y(t) = Cx(t)

(57)
The faultf(t) is time varying and defined as follows

f(t) =

{

−u(t) t ≥ 10
0 t < 10

(58)

To increase the observer performances, a pole assignment
is performed in{z|ℜ(z) < −14, |z| < 20} in order to
enhance the convergence speed of the state estimation errors
toward zero and to reduce the oscillatory phenomenon.

Solving the optimization problem under LMI constraints
in theorem 1 withµ = 20, results in the following matrices

H11 =





−24.84 59.47
30.05 −29.75
31.54 −43.02



 , H12 =





−11.03 45.34
31.58 −33.25
17.80 −26.25



 ,

H21 =
[

337.82 −356.67
]

, H21 =
[

338.57 −353.93
]

K =
[

6.5179 4.9204 1.2659
]

, γ = 0.4721

The proportional-integral observer provides the state and
fault estimation which errors are depicted in the figures 3
(top) and fault estimation in the figure 2 (top). The figure 3
(bottom) shows the state trajectory tracking errors between
the state of the system and those of the reference model
with the FTC control lawuf (t) depicted in the figure 2
(bottom). Finally, the figure 4 compares, in the one hand,
the nominal control input (in fault-free case) and the new
control input when fault occurs, and in the other hand the
states of the system controlled by the FTC control law,
those of the reference model and those of the system with
faults but without FTC control law. Even if a fault occurs,
the system trajectory follows the trajectory of the reference
model which represents the trajectory of the system in the
fault-free situation. Thus, the FTC control law compensates
the fault and allows a normal functioning of the system in
the presence of faults.
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Fig. 2. Fault and its estimates (top) Nominal control and FTC (bottom)
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Fig. 4. Comparsion between states of the system without fault, states with
fault and nominal control and states with fault and FTC

B. Second case :ξ(t) = y(t)

In this subsection, the previous system is considered, but
with weighting functions depending on the first component
of the system output vector. The figure 5 illustrates the state
estimation errors (top) and the state tracking errors (bottom).
It is clear that the use of weighting functions depending
on the output of the system provides better results than



the case where they are depending on the control input.
This is due to the fact that the system is only affected by
actuator faults and the perturbation termδ(t) converges to
zero whenyf (t) converges to the referencey(t). But in the
previous simulation, the termδ(t) did not converge to zero,
in the presence of fault, becauseu(t) 6= uf (t) which leads
to µi(u(t)) 6= µi(uf (t)). As a conclusion, considering the
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Fig. 5. State estimation errors (top) State tracking errors (bottom)

problem of fault tolerant control of T-S systems with actuator
faults, it is more interesting to use the output of the systemas
a premise variable. However, in the simultaneously occurring
actuator and sensor faults, better results are obtained by using
the state of the system as a premise variable, this is more
difficult and general case but the obtained state error tracking
is less than ones obtained above, first results on this point
are submitted in [9].

IV. CONCLUSION

This paper is dedicated to the design of an active fault tol-
erant control law for nonlinear Takagi-Sugeno fuzzy systems.
A reference model is used and the proposed control law is
then designed for guaranteeing the convergence of the states
of the system to the states of the reference model even if
fault occurs. This control law uses the nominal control input
developed for the system in fault-free case and two additional
terms related to the estimated fault and the trajectory tracking
error. The stability is studied with the Lyapunov theory and
L2 optimization. The LMI formalism is used in order express
stability conditions in term of linear matrix inequalities.
Future works will be devoted to the study of the case when
the weighting functions depend on unmeasurable variable
as the system state. Indeed, the interest of this case is the
possibility to deal with simultaneous actuator and sensor
faults. In addition, it is interesting to develop the FTC control
law by taking into account modeling uncertainties and some
external perturbations.
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