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Adaptive observer for fault estimation in nonlinear systems described
by a Takagi-Sugeno model

Atef Khedher, Kamel Benothman, Mohamed Benrejeb and DidierMaquin

Abstract— This paper deals with the problem of fault
estimation for linear and nonlinear systems. An adaptive
proportional integral observer is designed to estimate both
the system state and sensor and actuator faults which can
affect the system. The model of the system is first augmented
in such a manner that the original sensor faults appear
as actuator faults in this new model. The faults are then
considered as unknown inputs and are estimated using a
classical proportional-integral observer. The proposed method
is first developed for linear systems and is then extended to
nonlinear ones that can be represented by a Takagi-Sugeno
model. In the two cases, examples of low dimensions illustrate
the effectiveness of the proposed method.

Index Terms— fault diagnosis, fault estimation, adaptive ob-
server, proportional-integral observer, state estimation, Takagi-
Sugeno model

I. I NTRODUCTION

State estimation is an important field of research with
numerous applications in control and diagnosis. Generally
the whole system state is not always measurable and the
recourse to its estimation is a necessity.

An observer is generally a dynamical system allowing
the state reconstruction from the system model and the
measurements of its inputs and outputs [15]. For linear
models, state estimation methods are very efficient [5],
[13], [14]. However for many real systems, the linearity
hypothesis cannot be assumed. In that case, the synthesis
of a nonlinear observer allows the reconstruction of the
system state. For example, let us cite sliding mode observers
[4], the Thau-Luenberger observers [21] and observer for
nonlinear systems described by Takagi-Sugeno models [2].

Approaches using Takagi-Sugeno model (also known
as multiple model [17]) are the object of many works
in different contexts including the taking into account of
unknown inputs or parameter uncertainties [1], [7], [8].
Various studies dealing with the presence of unknown inputs
acting on the system were published [1], [5], [20]. Some
of them tried to reconstruct the system state in spite of the
unknown input existence. This reconstruction is assured via
the elimination of unknown inputs [6], [20]. Other works
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choose to estimate, simultaneously, the unknown inputs and
system state [1], [5], [18]. Among the techniques that do
not require the elimination of the unknown inputs, Wang
[23] proposes an observer able to entirely reconstruct the
state of a linear system in the presence of unknown inputs
and in [16], to estimate the state, a model inversion method
is used. Using the Walcott and Zak structure observer [22]
Edwards et al. [3], [4] have also designed a convergent
observer using the Lyapunov approach.

Observers with unknown inputs are used to estimate
actuator faults which can be considered as unknown inputs.
This estimation can be obtained using a proportional integral
observer [12], [19]. In most cases, a physical process can
be subjected to disturbances which have as origin the noises
due to its environment, uncertainty of measurements, sensor
and/or actuator faults. These disturbances have harmful
effects on the normal behavior of the process and their
estimation can be used to conceive a control strategy able to
minimize their effects. In the case of sensor faults, Edwards
[5] proposes, for linear systems, to use a new state which is
a filtered version of the output, to conceive an augmented
system in which the sensor faults appear as unknown inputs.
This formulation was also used by [9]–[11], [24] to be able
to estimate the faults.

In many cases, systems are affected by faults of different
nature such as sensor or actuator faults, so, in this paper,
a proportional integral observer is conceived to estimate,
simultaneously, the state and theses two kind of faults. The
extension of this method to nonlinear systems described by
Takagi-Sugeno models is proposed thereafter.

The paper is organised as follows. Section II presents
the proposed method of faults estimation for linear systems.
In section III the extension of the proposed method for
nonlinear systems described by Takagi-Sugeno models is
made. Two simulations examples are proposed to validate
the method for linear and nonlinear systems.

II. L INEAR SYSTEM CASE

The objective of this part is to estimate a fault affecting
a linear system via an adaptive proportional integral state
observer.



A. Problem formulation

Consider the linear model affected by a sensor fault, an
actuator fault and a measurement noise described by:

ẋ(t) = Ax(t) +Bu(t) + Efa(t) (1a)

y(t) = Cx(t) + Ffs(t) +Dw(t) (1b)

wherex(t) ∈ IRn represents the system state,y(t) ∈ IRm is
the measured output,u(t) ∈ IRr is the known system input,
fa(t) and fs(t) represent respectively actuator and sensor
faults andw(t) is the measurement noise.A, B andC are
known constant matrices with appropriate dimensions.E, F
andD are respectively the actuator fault, the sensor fault
and the noise distribution matrices which are assumed to be
known. Consider also the statez(t) ∈ IRp that is a filtered
version of the outputy(t) [5]. This state is given by:

ż(t) = −Āz(t) + ĀCx(t) + ĀFfs(t) + ĀDw(t) (2)

where −Ā ∈ IRp×p is a stable matrix. Let us introduce
the augmented stateX(t) =

[

xT (t) zT (t)
]T

and the cor-
responding augmented system given by:

Ẋ(t) = AaX(t) +Bau(t) + Eaf(t) + Faw(t) (3a)

Y (t) = CaX(t) (3b)

with:

Aa =

[

A 0
ĀC −Ā

]

, Ba =

[

B

0

]

, Ea =

[

E 0
0 ĀF

]

Fa =

[

0
ĀD

]

, Ca =
[

0 I
]

, f(t) =

[

fa(t)
fs(t)

]

(4)

The structure of the chosen observer is as follows:










˙̂
X(t) = AaX̂(t) +Bau(t) + Eaf̂(t) +KỸ (t)
˙̂
f(t) = LỸ (t)

Ŷ (t) = CaX̂(t)

(5)

whereX̂(t) is the estimated augmented state,f̂(t) represents
the estimated fault,̂Y (t) is the estimated output,K is the
proportional observer gain andL is the integral gain to be
computed.Ỹ (t) = Y (t) − Ŷ (t). Let us define the state
estimation error̃x(t) and the fault estimation error̃f(t):

x̃(t) = X(t)− X̂(t) and f̃(t) = f(t)− f̂(t) (6)

The dynamics of the state estimation error is given by the
computation of ˙̃x(t) which can be written:

˙̃x(t) = Ẋ(t)− ˙̂
X(t)

= (Aa −KCa)x̃(t) + Eaf̃(t) + Faw(t) (7)

The dynamics of the fault estimation error is:

˙̃
f(t) = ḟ(t)− ˙̂

f(t)

= ḟ(t)− LCax̃(t) (8)

Let us introduce:

ϕ(t) =

[

x̃(t)

f̃(t)

]

and ε(t) =

[

w(t)

ḟ(t)

]

(9)

From (7) and (8), one can obtain:

ϕ̇(t) = A0ϕ(t) +B0ε(t) (10)

with:

A0 =

[

Aa −KCa Ea

−LCa 0

]

and B0 =

[

Fa 0
0 I

]

(11)

In order to analyse the convergence of the generalized
estimation errorϕ(t), let us consider the following quadratic
Lyapunov candidate functionV (t):

V (t) = ϕT (t)Pϕ(t) (12)

whereP denotes a positive definite matrix.

The problem of robust state and fault estimation reduces
to finding the gainsK andL of the observer to ensure an
asymptotic convergence ofϕ(t) toward zero ifε(t) = 0 and
to ensure a bounded error whenε(t) 6= 0, i.e.:

lim
t→∞

ϕ(t) = 0 for ε(t) = 0

‖ϕ(t)‖Qϕ
≤ λ‖ε(t)‖Qε

for ε(t) 6= 0
(13)

whereλ > 0 is the attenuation level. To satisfy the con-
straints (13), it is sufficient to find a Lyapunov functionV (t)
such that:

V̇ (t) + ϕT (t)Qϕϕ(t) − λ2εT (t)Qεε(t) < 0 (14)

whereQϕ andQε are two positive definite matrices.

The inequality (14) can also be written as:

ψ(t)TΩψ(t) < 0 (15)

with:

ψ(t) =

[

ϕ(t)
ε(t)

]

,Ω =

[

AT
0
P + PA0 +Qϕ PB0

BT
0
P −λ2Qε

]

(16)

The quadratic form in (15) is negative ifΩ < 0. The
matrix A0 can be expressed as:

A0 = Ã− K̃C̃ (17)

with:

Ã =

[

Aa Ea

0 0

]

, K̃ =

[

K

L

]

, C̃ =
[

Ca 0
]

(18)

The presence of the termsPK̃ andλ2 let the inequality
Ω < 0 nonlinear, to linearize it, let us define the following
changes of variablesG = PK̃ andm = λ2. The matrixΩ
can then be written as:

Ω =

[

PÃ+ ÃTP −GC̃ − C̃TGT +Qϕ PB0

BT
0
P −mQε

]

(19)
The resolution of the inequalityΩ < 0, that is now linear

with regard to the different unknowns, leads to find the
matricesP and G and the scalarm. The gain matrixK̃
is determined via the resolution of̃K = P−1G and the
attenuation levelλ is given byλ =

√
m.



B. Example

Let us consider the linear system described by the follow-
ing matrices:

A =







−0.3 −3 −0.5 0.1
−0.7 −5 2 4
2 −0.5 −5 −0.9

−0.7 −2 1 −0.9






, B =







1 2
5 1
4 −3
1 2






,

D =







0.5 0.5
0.2 0.2
0.1 0.1
0 0.1






, F =







4 6
0 0
−4 2
7 6







C = I andE = B. The system inputu(t) is defined by
u(t) =

[

uT
1
(t) uT

2
(t)

]T
, whereu1(t) is a telegraph type

signal varying between zero and one andu2(t) is defined by
u2(t) = 0.4 + 0.25 sin(πt). The actuator faultfa(t) is made
up of two components

fa(t) =
[

fT
a1(t) fT

a2(t)
]T

(20)

with:

fa1(t) =

{

0.4 sin(πt), 15 s < t < 75 s
0, otherwise

,

fa2(t) =







0, t < 20 s
0.3, 20 s < t < 80 s
0.5, t > 80 s

and the sensor faultfs(t) is defined as follows:

fs(t) =
[

fT
s1(t) fT

s2(t)
]T

(21)

with:

fs1(t) =

{

0, t ≤ 35 s
0.6, t > 35 s

, fs2(t) =

{

0, t ≤ 25 s
sin(0.6πt), t > 25 s

To define the statez, one choosēA = 25× I, whereI is
the identity matrix.

Using the previously described method withQϕ = Qǫ = I
leads to the obtention of the observer gainK andL. The
resulting attenuation level isλ = 0.3162 and:

K =





















116.0253 −40.0901 −23.0977 −37.0989
−16.9977 78.3129 30.9322 56.9434
−161.4062 149.2055 4.9692 135.7089
112.4707 −74.5075 34.8011 −91.8975
12.0452 18.2418 −3.6436 25.1209
−2.9528 22.0100 6.1366 22.9357
6.0123 −2.7081 5.2831 −1.9449
0.5412 −3.6433 2.3397 8.0328





















L =







−76.7558 122.3517 22.1039 125.0592
185.6710 −104.5700 −37.2061 −17.9442
6.9387 −25.9424 −107.0508 152.6953
49.4870 −71.5776 56.8719 108.1356







The simulation results are shown in the figures 1 and 2. This
method allows to estimate well the faults affecting the system
even in the case of time-varying faults.
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Fig. 1. Actuator faults and their estimation
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Fig. 2. Sensor faults and their estimation

III. E XTENSION TO MULTIPLE MODEL REPRESENTATION

The objective of this part is to extend the previous pro-
posed method to nonlinear systems represented by a Takagi-
Sugeno model.

A. Problem formulation

Consider the following nonlinear Takagi-Sugeno system
affected by sensor faults, actuator faults and a measurement
noise described by:

ẋ(t) =
M
∑

i=1

µi(ξ(t))(Aix(t) +Biu(t) + Eifa(t))(22a)

y(t) = Cx(t) + Ffs(t) +Dw(t) (22b)

wherex(t) ∈ IRn represents the system state,y(t) ∈ Rm

is the measured output,u(t) ∈ IRr is the system input,
fa(t) and fs(t) represents respectively actuator and sensor
faults andw(t) is the measurement noise.Ai, Bi and C
are known constant matrices with appropriate dimensions.
Ei, F andD are respectively the actuator faults, the sensor



faults and the noise distribution matrices which are assumed
to be known. The scalarM represents the number of local
models. The weighting functionsµi are nonlinear and depend
on the decision variableξ(t) which must be measurable.
The weighting functions satisfy the convex sum property
expressed in the following equations:

0 ≤ µi(ξ(t)) ≤ 1,

M
∑

i=1

µi(ξ(t)) = 1 (23)

Let us consider the statez ∈ IRp given by:

ż(t) =
M
∑

i=1

µi(ξ(t))(−Āiz(t)+ ĀiCx(t)+ ĀiFfs(t)+ ĀiDw(t))

(24)
where−Āi, i ∈ 1, ..,M are stable matrices. The dynamics
of the augmented stateX(t) =

[

xT (t) zT (t)
]T

is
governed by:

Ẋ(t) =

M
∑

i=1

µi(ξ(t))(AaiX(t) +Baiu(t) + Eaif(t) + Faiw(t))

(25a)

Y (t) = CaX(t) (25b)

with:

Aai =

[

Ai 0
ĀiC −Āi

]

, Bai =

[

Bi

0

]

, (26)

Eai =

[

E 0
0 ĀiF

]

, Fai =

[

0
ĀiD

]

(27)

The matricesCa andf are given by the equation (4). The
structure of the proportional integral observer is chosen as
follows:

˙̂
X(t) =

M
∑

i=1

µi(ξ(t))(AaiX̂(t) +Baiu(t) + Eaif̂(t) +KiỸ (t))

(28)

f̂(t) =
M
∑

i=1

µi(ξ(t))LiỸ (t) (29)

Ŷ (t) = CaX̂(t) (30)

where X̂(t) is the estimated system state,f̂(t) represents
the estimated fault,̂Y (t) is the estimated output,Ki are the
local model proportional observer gains andLi are the local
model integral gains to be computed andỸ (t) = Y (t)−Ŷ (t).

Using the expressions of̃x(t) and f̃(t) given by the
equation (6), the dynamics of the state reconstruction error
is given by:

˙̃x(t) =
M
∑

i=1

µi(ξ(t))((Aai −KiCa)x̃(t) + Eaif̃(t) + Faiw(t))

(31)
The fault estimation error can be expressed as:

˙̃
f(t) = ḟ(t)−

M
∑

i=1

µi(ξ(t))LiCax̃(t) (32)

Using the definitions ofϕ andε given in (9) and omitting
to denote the dependance with regard to the timet, the
equations (31) and (32) can be written:

ϕ̇ = Amϕ+Bmε (33)

with:

Am =

M
∑

i=1

µi(ξ)Ã0i andBm =

M
∑

i=1

µi(ξ)B̃0i (34)

where:

Ã0i =

[

Aai −KiCa Eai

−LiCa 0

]

, B̃0i =

[

Fai 0
0 I

]

(35)

By considering the Lyapunov functionV (t) given in (12),
and following the same reasoning as for linear systems,
convergence of state and fault estimation errors as well as
attenuation level are guaranteed if:

ψ(t)TΩmψ(t) < 0 (36)

with:

ψ =

[

ϕ

ε

]

,Ωm =

[

AT
mP + PAm +Qϕ PBm

BT
mP −λ2Qε

]

(37)

The inequality (36) holds ifΩm < 0. Following the same
steps as for the linear case, let us define:

A0i = Ãi − K̃iC̃ (38)

with:

Ãi =

[

Aai Eai

0 0

]

, K̃i =

[

Ki

Li

]

, C̃ =
[

Ca 0
]

(39)

Using the changes of variablesGi = PK̃i andm = λ2,
the matrixΩm can be written as:

Ωm =

M
∑

i=1

µi(ξ(t))Ωi (40)

with:

Ωi =

[

PÃi + ÃT
i P −GiC̃ − C̃TGT

i +Qϕ PBm

BT
mP −mQε

]

(41)

Sufficient conditions ensuring the negativity ofΩm can be
expressed as:

Ωi < 0, ∀i ∈ {1, . . . ,M} (42)

Solving LMI’s (42) leads to the determination of the
matricesP andGi and the scalarm. The gain matrices are
then deduced:̃Ki = P−1Gi.

B. Example
Consider the nonlinear system described by a the Takagi-

Sugeno model given by the equation (22) with:

A1 =







−0.3 −3 −0.5 0.1
−0.7 −5 2 4
2 −0.5 −5 −0.9

−0.7 −2 1 −0.9






, B1 =







1 2
5 1
4 −3
1 0







A2 =







−0.7 −7 −1.5 −7
−0.2 −2 0.6 1.3
5 −1.5 −9 −3.9

−0.4 −1 −0.3 −1






, B2 =







1 1
2 1
0 2
−1 −2







D =







0.5 0.5
0.2 0.2
0.1 0.1
0 0.1






, F =







3.25 5
0 0.5

−3.25 1.75
5.75 5







E1 = B1, E2 = B2, M = 2, ξ(t) = u(t), C = I



Consideringu(t) = [u1(t) u2(t)]
T , the signalu1(t)

is a telegraph type signal whose amplitude belongs
to the interval [0, 0.5]. The signal u2(t) is defined by
u2(t) = 0.4 + 0.25 sin(πt). The fault signalsfa(t) and
fs(t) are given by the equations (20) and (21).

ChoosingQϕ = Qǫ = I, Ā1 = 5×I andĀ2 = 10×I, the
set of LMI (42) can be solved, leading to the determination
of the different gains of the proposed observer:λ = 3.3166
and

K1 =





















21.7261 −5.3236 −16.5771 −43.8763
−6.4652 53.0576 −2.8775 2.0534
−30.8514 56.1659 −10.6775 46.8992
−18.6032 −8.8603 10.1258 −24.4917
17.1705 −2.4699 −8.9768 −8.2040
3.0258 10.0009 −1.7346 2.1461
2.9950 −0.0968 3.4689 −0.2700
−0.3535 −0.4946 −0.0403 4.6610





















K2 =





















25.7725 −48.4503 −10.4671 −33.1388
−41.2285 139.0493 3.4662 10.8503
−61.0689 183.0421 19.4017 36.0392
−3.8613 −25.6660 9.6924 −4.3148
15.4687 −23.0853 −7.4343 −11.5565
−0.8234 22.9419 1.1660 1.3886
2.3609 0.8733 −2.5571 0.0073
−0.7383 0.4161 1.0880 0.5716





















L1 =







9.4356 55.9749 −0.3767 29.5858
65.1988 −19.9203 0.8819 −35.5076
5.0431 5.9123 −32.3952 75.0141
22.6533 −19.8043 32.9891 57.6045







L2 =







−38.0795 158.8227 4.1724 16.5804
62.4301 −113.0505 −19.4454 −43.9582
−4.2585 33.6689 −33.0954 46.4728
19.5100 −47.1125 9.7380 27.7166







The simulation results are shown in the figures 3 to 5. As
for the previous linear case, the proposed method provides
good estimates of the system state (Figure 3 shows the four
state estimation errors), and the faults affecting the system
(Figure 4 presents the actuators faults and their estimation
while Figure 5 depicts the sensor faults).

IV. CONCLUSION

This communication has presented an adaptive propor-
tional integral observer able to estimate simultaneously actu-
ator and sensor faults. Initially developed for linear models
(simple case), the design has been extended to nonlinear
models through the use of Takagi-Sugeno model. Small
size examples have illustrated the efficiency of the proposed
approach either for constant and time-varying faults. For the
considered examples, the matrices which filter the output of
the actual system has been chosen on an empirical manner.
Further research work would include the analysis of the
influence of this extra dynamics with regard to the noise
acting on the system and the specifications of fault detection
problem. Clearly, the obtained fault estimates could also be
used through a fault tolerant control law.
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Fig. 3. State estimation errors
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Fig. 4. Actuator faults and their estimation
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Fig. 5. Sensor faults and their estimation
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