
HAL Id: hal-00497775
https://hal.science/hal-00497775

Submitted on 31 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel implementation of a spatio-temporal visual
saliency model

Anis Rahman, Dominique Houzet, Denis Pellerin, Sophie Marat, Nathalie
Guyader

To cite this version:
Anis Rahman, Dominique Houzet, Denis Pellerin, Sophie Marat, Nathalie Guyader. Parallel imple-
mentation of a spatio-temporal visual saliency model. Journal of Real-Time Image Processing, 2010,
6 special issue (1), pp.3-14. �10.1007/s11554-010-0164-7�. �hal-00497775�

https://hal.science/hal-00497775
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Parallel Implementation of a Spatio-temporal Visual Saliency Model

A. Rahman · D. Houzet · D. Pellerin · S. Marat · N. Guyader

Received: date / Accepted: date

Abstract The human vision has been studied deeply in the
past years, and several different models have been proposed
to simulate it on computer. Some of these models concerns
visual saliency which is potentially very interesting in a lot
of applications like robotics, image analysis, compression,
video indexing. Unfortunately they are compute intensive
with tight real-time requirements. Among all the existing
models, we have chosen a spatio-temporal one combining
static and dynamic information. We propose in this paper
a very efficient implementation of this model with multi-
GPU reaching real-time. We present the algorithms of the
model as well as several parallel optimizations on GPU with
higher precision and execution time results. The real-time
execution of this multi-path model on multi-GPU makes it a
powerful tool to facilitate many vision related applications.

Keywords visual saliency · spatio-temporal model ·
parallel implementation · graphics processors

1 Introduction

Visual attention models mimic the capacity of a primate’s
visual system to focus on particular places in a visual scene.

A. Rahman · D. Houzet · D. Pellerin · S. Marat · N. Guyader
GIPSA-lab
Grenoble, France.
E-mail: anis.rahman@gipsa-lab.grenoble-inp.fr

D. Houzet
E-mail: dominique.houzet@gipsa-lab.grenoble-inp.fr

D. Pellerin
E-mail: denis.pellerin@gipsa-lab.grenoble-inp.fr

S. Marat
E-mail: sophie.marat@gipsa-lab.grenoble-inp.fr

N. Guyader
E-mail: nathalie.guyader@gipsa-lab.grenoble-inp.fr

These models tend to reduce the spotlight of focus to a single
object or a portion of the visual scene called the salient re-
gions that guide the attention by locating the spatial discon-
tinuities using different channels like intensity, color, orien-
tation, motion, and many others.
The bottom-up spatio-temporal visual saliency model [14]
discussed here is inspired from the primate’s visual system,
and is modeled all the way from the retina to visual cor-
tex cells. This visual saliency model is used to determine
where the source of attention lies and the amount of concen-
tration used to contribute or initiate other tasks. This model
is interesting because: firstly, the model is linearly modeled
all the way from the retina to cortical cells. Secondly, the
retinal output causes the separation of useful information
into two distinct signals that are more efficient to process.
Thirdly, motion compensation used in dynamic pathway that
extracts only the moving parts against its background, and
motion estimation is used to carry out the motion contrast
map. Lastly, the saliency outputs from both static and dy-
namic pathways are fused together to get the final saliency
map. This fusion is done using several adaptive coefficients
like maximum and skewness. All these points contribute a
step to mimic the human visual system. The model has been
analyzed against a large number of images, and then the pro-
duced results have been compared against the behavior of
human visual system. As an experiment, an eye tracker has
been used to evaluate the model as a good predictor of eye
movements, and to demonstrate the efficiency of the model.
The resulting saliency map can be used to predict such ar-
eas, finding its applications in robotics, video content anal-
ysis, video reframing process to deliver comforting viewing
experience on mobile devices, in video compression, video
synthesis.
The motivation behind designing biologically-inspired mod-
els is to build robust and versatile vision systems that can
adapt to various environmental conditions, users, and tasks.

Revised manuscript after responding to reviewers comments.
Click here to download Manuscript: Parallel implementation of spatio-temporal visual saliency model.pdfClick here to view linked References

http://www.editorialmanager.com/jrtip/download.aspx?id=16365&guid=ad133a48-d5a1-485f-aff4-646fc1d330e3&scheme=1
http://www.editorialmanager.com/jrtip/viewRCResults.aspx?pdf=1&docID=429&rev=1&fileID=16365&msid={1CCCD819-E387-4FA9-A60F-3B7BC8664303}

2

Mostly, visual saliency models involve many computation-
ally intensive tasks, making its implementation in real-time
environments on a single processor impossible. This limit-
ing factor also restricts the inclusion of other complex pro-
cesses into the existing model. Hence, real-time solution is
achievable only by the simplification of the entire pathway,
as demonstrated by Itti [8] and Nabil et al. [16]. Over the
years, computer graphics hardware has evolved into com-
pletely programmable shader architecture from fixed func-
tion architecture. Together with a programming model like
CUDA [1] makes it a desirable choice to leverage the com-
putational power of graphics hardware for general-purpose
computations. These devices are also cheap, accessible to
everyone, and easier to program. Thus, graphics devices may
be a suitable platform to accelerate many visual attention al-
gorithms.
This model presented above [14] mimics human visual per-
ception from retina to cortex using both static and dynamic
information and hence compute-intensive. In this article, we
propose parallel adaptation of this visual saliency model onto
GPU. After this transformation, we apply several optimiza-
tions to leverage the raw computational power of graphics
hardware. Subsequently, proposing a real-time solution on
multi-GPU, and demonstrating the performance gains. In the
end, we also evaluate the effects of lower precision on the re-
sulting saliency map of our model.
The article is organized as follows: in section 2, we present

a brief overview of the prior work for accelerating visual
saliency models using parallel platforms. In section 3, the
main steps of the visual saliency model implemented are de-
scribed. In section 4, the architecture of NVIDIA graphics
cards is presented, and its programming model is detailed.
In section 5, we describe our GPU implementation, and dif-
ferent optimizations to improve speedups. Section 6 reports
the achieved speedups, and also validity of these results is
evaluated. In the end, conclusion of the article and its future
prospects are discussed.

2 Related Work

In the past few decades, different approaches have been de-
veloped to model human visual perception, which find their
application in computer vision systems. One of the famous
saliency model proposed by Itti and Koch [9] decomposes
the visual input into multiple feature maps, which are af-
terwards combined to form a saliency map. Depending on
the application, various improvements and optimizations are
made into the existing model that makes it more compute-
intensive with larger execution times. This limiting factor
restricts its use for real-time systems like robotic vision. As
a result, a few attempts of parallelization [18,5] are made by
using high performance systems like cluster of computers to
achieve real-time capability, but these systems are complex

Fig. 1 The spatio-temporal visual saliency model

to develop and manage.
With the introduction of inexpensive graphics devices with
enormous computational power, more attempts are made to
parallelize the visual saliency models, for example Longhurst
et al. [12] used the saliency map for selective rendering;
Mantiuk et al. [13] combined real-time rendering, MPEG4
video compression and visual attention to deliver real-time
low-bandwidth computer animation. All these parallel im-
plementations use channels for the static information only,
and also use simplified versions of the static model to get
real-time capability. Peters [17] used a visual attention for
animating virtual characters. The saliency model is partially
implemented on the GPU, as feature map calculation time
for color and intensity is faster on CPU than on GPU. Re-
cently, CUDA programming model for general-purpose com-
putations on the graphics hardware is introduced by NVIDIA;
making the programming completely independent of graph-
ics pipeline. Implementations using the newer programming

3

model by Xu et al. [20] implements visual attention for static
information only. A complete parallel implementation of the
model including the static and dynamic modalities using
CUDA by Lee et al. [10] for tracking of visually attended
objects in the virtual environment resulted in real-time pro-
cessing for image sizes of 256×256 pixels. But, this imple-
mentation does not use real visual scenes that make the cal-
culation of feature maps complex.

3 Visual Saliency Model

The bottom-up model [14] illustrated in figure 1, is inspired
from the primate’s visual system. This model is sub-divided
into two distinct pathways: static and dynamic pathways.

3.1 Static pathway

Retina model is primarily based on the primate’s retina,
which imitates the photoreceptor, horizontal, bipolar, and
ganglion cells. To begin with, the photoreceptor cells carry
out luminance extraction by removing high frequency noise
using a low-pass retinal gaussian filter. Subsequently, the
output of photoreceptor cells is passed on as input to the hor-
izontal cells; also a function of low-pass filter. The response
from these cells is twice than the previous retinal low-pass
filter. Down the line are the bipolar cells acting as a high-
pass filter, which simply calculates the difference between
outputs ’y’ and ’h’ from photoreceptor and horizontal cells
respectively. The bipolar output can be designed to consist
of two modes: if ’ON’ than positive part of the difference is
kept, otherwise the absolute value when ’OFF’.

p = ON−OFF

where , on = |y−h|
o f f = |h− y|

The model produces two types of outputs: the parvo-
cellular output that enforces equalization of the visual by
increasing its contrast, consequently, increasing the lumi-
nance of low intensity parts in the visual. Next in the order,
the magnocellular output responds to higher temporal and
lower spatial frequencies. Analogous to primate’s retina, the
ganglion cells respond to high contrast and the parvocellu-
lar output highlights the borders among the homogeneous
regions, thus exposing more detail in the visual.

Cortical-like filters is a model of simple cell receptive fields
that are sensitive to visual signal orientations and spatial fre-
quencies. This can be imitated using a bank of gabor filters
organized in two dimensions, that is closely related to the

processes in the primary visual cortex. A Gabor function is
defined as:

G(u,v) = exp
{
−
(
(u′− f0)

2

2θ2
u

+
v′2

2θ2
v

)}
where, u′= ucosθ+ vsinθ

v′= vcosθ−usinθ

The retinal output is filtered using gabor filters imple-
mented in frequency domain, after applying a mask. The
mask is similar to a Hanning function to produce non-uniform
illumination approaching zero at the edges. The visual infor-
mation is processed in different frequencies and orientations
in the primary cortex i.e. the model use 6 orientations and 4
frequencies to obtain 24 partial maps. These filters demon-
strate optimal localization properties and good compromise
of resolution between frequency and spatial domains.

Interactions In primate visual system, the response of cell
is dependent on its neuronal environment; its lateral con-
nections. Therefore, this activity can be modeled as linear
combination of simple cells interacting with its neighbors.
This interaction may be inhibitory or excitory depending on
the orientation or the frequency: excitory when in the same
direction, otherwise inhibitory.

Eint(fi,θ j) = E(fi,θ j).w

where, w =

0.0 −0.5 0.0
0.5 1.0 0.5
0.0 −0.5 0.0

The produced maps are the image’s energy in function
of the spatial frequency and orientation; after taking into ac-
count the interactions among different orientation maps.

Normalizations The intermediate energy maps from the vi-
sual cortical filters and interaction phase are normalized.
This model uses a technique proposed by Itti et al. [9] for
strengthening the intermediate results.

Summation Ultimately, a saliency map for the static path-
way is extracted for the input visual, simply by summing up
all the energy maps. It is significant that the resulting map
has salient regions; one’s with highest energy, which can be
observed in the figure 3(d) by energy located on objects ap-
pearing to be salient.

Esalient = |Eint(fi,θ j)|

3.2 Dynamic pathway

On the other hand, the dynamic pathway finds salient re-
gions from a moving scene.

is the compensation of the background motion to esti-
mate the relative motion of regions against background

4

Pre-processing The dynamic pathway performs camera mo-
tion compensation [15] of regions with relative motion against
their background. This compensation is immediately followed
by retinal filtering to illuminate the frame before passing it
to the next stage of the pathway.

Motion estimation [3] is used to find local motion with re-
spect to the background. The algorithm is based on gabor fil-
ters to decompose the image into its sub-bands. These equa-
tions are then used to estimate the optical flow between two
images. We use a bank of N gabor filters, with the same
radial frequency and the same spatial support σ, we can
then adjust the parameter θ as a function of ith sub-band
as θ = iπ/N. After gabor filtering, we calculate a system of
N equations for each pixel at each time t using spatial and
temporal gradients to get an oversized system as following:

Ωx
2 Ω

y
1

Ωx
2 Ω

y
2

...

Ωx
n Ω

y
n

 ·(vx
vy

)
=

Ωt

2
Ωt

2
...

Ωt
n

To resolve this oversized system, which is fairly noisy

having some errors that are relatively low, but others com-
pletely absurd making the entire system unstable. To mini-
mize these squared residuals, we use the method of iterated
weighted least squares within the motion estimator.

Temporal filtering is the process of modifying the sequence
of images based on its temporal information. Usually, such
filtering is used to remove excessive noise and extraneous
information. In the model, the motion vectors are calculated
using modalities like speed, orientation, and direction. To
remove noise from these motion vectors, we use temporal
median filtering between current image’s motion vector and
its 4 predecessors to eliminate the noise added. Finally, we
get the dynamic saliency map.

3.3 Fusion

The saliency maps from both the static and dynamic path-
ways exhibit different characteristics i.e. static saliency map
has larger salient regions based on textures, whereas dy-
namic saliency map has smaller salient regions depending
on the moving objects. Based on these features the two saliency
maps Ms and Md from static and dynamic pathways are
fused together using:

Saliency map = αMs +βMd + γ(Ms×Md)

where,

α = max(Ms)

β = skewness(Md)

γ = max(Ms) · skewness(Md)

where static and dynamic maps are modulated using max-
imum and skewness respectively. On the other hand, the
reinforcement parameter γ is used to include the regions
that have low motion, but has large salient regions in static
saliency map. In the end, we get a final saliency map for the
attention model.

4 NVIDIA GPUs

The newer graphics cards like NVIDIA’s Geforce GTX 480 [11]
implement massively parallel architecture, comprising of 480
scalar processors (SPs) running at 1.35 GHz each. It achieves
the maximum utilization of the hardware computing units
by launching and executing massive number of threads. The
graphics hardware comprises of numerous stream proces-
sors that when grouped together provide huge computing
power doing parallel processing. A single instruction is ex-
ecuted across all the processors in the group that are asso-
ciated to specialized hardware for texture filtering, texture
addressing, cache units and fast on-chip shared memory. All
these grouped processors can communicate using the shared
memory space. The new design delivers impressive compu-
tational power, which is made possible by the management
of numerous threads on fly along with high memory band-
width.
A major breakthrough was the introduction of BrookGPU [4],
that is, a compiler for stream programming language an ex-
tension to C that hid the graphics API. It facilitated the par-
allel programmers to use the GPU as a co-processor. This
attempt steered the market towards GPU-assisted parallel
computing bypassing the need for graphics APIs. This new
model is not linear like the traditional pipeline model, but
here the data circulates during its processing. The same team
developing BrookGPU at NVIDIA came up with CUDA
(Compute unified device architecture) [1]. CUDA provides
a platform that is more suitable and efficient for GPGPU
computing. The language used is an extension to familiar
C; making the learning curve easier. The process of trans-
formation of algorithm is further eased by the use of GPU-
specialized libraries. On the whole, all these contribute to-
wards the maximum utilization of powerful execution units,
as well as, alleviation of memory wall problem.
Recently, a new open cross-platform standard OpenCL [7] is
brought to light to get more out of multicore processors in-
cluding GPUs. It not only allows to take advantage of task-
level parallelism and data-level parallelism, but also allows
the flexibility to support CPU-optimized as well as GPU-
optimized code. Hence, it is a giant stride towards general-
purpose parallel programming of heterogeneous systems.

5

5 GPU Implementation

The code is composed of host (CPU) and kernel (GPU) code.
The host code is responsible for transferring the data to and
from the GPU’s global memory and afterwards initiates the
kernel code through a function call. The kernel code is com-
piled by the nvcc compiler supplied by NVIDIA. The struc-
ture of parallel code for every single thread is clear and flex-
ible. On the whole, the threading model exploits fine-grain
data and thread parallelism across the threads nested within
coarse-grain data and task parallelism across the thread blocks.
This granularity makes the compiled CUDA code scalable,
executable on large number of processors.
The only way to achieve high performance is to exploit the
multi-core architecture using parallelism. The CPUs pro-
vide task-level parallelism, whereas GPUs implement data-
parallelism. This makes many computer vision algorithms
well-suited to port onto GPUs that are intrinsically data par-
allel, and require interactivity. The previous graphics-centric
programming environments made this porting quite com-
plex, whereas newer CUDA programming model hides all
the details; the programmer no longer need to worry about
the pipeline, pixels, or textures.

Fig. 2 GPU implementation of the visual saliency model

5.1 The static pathway

To start with the mapping of the algorithm 1 onto GPU, it
is partitioned into data-parallel portions of code that are iso-
lated into separate kernels. Then, the input data is transferred

and stored on the device memory, which is afterwards used
by the synchronous kernels. After all the memory declara-
tions on device, the host sequentially initiates all the data-
parallel kernels. First, some preprocessing using retinal filter
and hanning mask is done to give more detail to the visual
input. Second, the visual data in frequency domain is treated
with a 2D gabor filter bank using 6 orientations and 4 fre-
quency bands; resulting in 24 partial maps. Third, the path-
way is moved back to spatial domain before doing the inter-
actions among the different partial maps. These interactions
inhibit or excite the data values depending on the orientation
and frequency band of a partial map. Fourth, the resulting
values are normalized between a dynamic range before ap-
plying Itti’s method for normalization, and suppressing the
values lower than the threshold. Finally, all the partial maps
are accumulated into a single map that is the saliency map
of static pathway.

input : An image Im of size w× l
output: A saliency map

1 map← RetinalFilter(Im);
2 map← FFT(map);
3 for i← 1 to orientations do
4 for j← 1 to f requencies do
5 maps[i, j]← GaborFilter(map, i, j);
6 maps[i, j]← IFFT(maps[i, j]);
7 maps[i, j]← Interactions(maps[i, j]);
8 maps[i, j]← Normalizations(maps[i, j]);
9 end

10 end
11 saliency← Fusion (maps);

Algorithm 1: Static pathway of visual saliency
model

5.2 The dynamic pathway

Similar to the implementation of static pathway, we first
perform task distribution of the algorithm and realize a se-
quential version. Some of the functional units are: recursive
gaussian filter, gabor filter bank to break image into sub-
bands of different orientations, biweight tukey motion esti-
mator, Gaussian prefiltering for pyramids, spatial and tem-
poral gradient maps for estimation, and bilinear interpola-
tion. After testing these functional units separately, they are
put together to give a complete sequential code. The algo-
rithm being intrinsically parallel allows it to be easily ported
to CUDA parallel code.
The algorithm 2 describes the dynamic pathway, where first
camera motion compensation and retinal filtering is done
as a preprocessing on the visual input. Afterwards, the pre-
processed input is passed onto the motion estimator imple-
mented using 3rd order gabor filter banks. The resulting mo-

6

tion vector are normalized using temporal information at the
end to get a dynamic saliency map.

input : An image Im of size w× l
output: A dynamic saliency map

1 map← MotionCompensation(Im);
2 map← RetinalFilter(map);
3 map← MotionEstimation(map);

4 saliency← TemporalFilter(map);

Algorithm 2: Dynamic pathway of visual saliency
model

The saliency maps from both the static and dynamic path-
ways are copied back onto the host CPU, where they are
fused together outputting a saliency map. The two saliency
maps from different pathways, and the final output saliency
map is shown in the figure 3.

(a) Visual input (b) Static saliency map

(c) Dynamic saliency map (d) Master saliency map

Fig. 3 Results of the visual saliency model

5.3 Memory optimizations

One of the biggest challenges in optimizing GPU code for
data dominated applications is the management of the mem-
ory accesses, which is a key performance bottleneck. Mem-
ory latency can be several hundreds even thousands of clock
cycles. This can be improved first by memory coalescing
when memory accesses of different threads are consecutive
in memory addresses. This allows the external memory con-
trollers to execute burst memory accesses. The second opti-
mization is to avoid external memory accesses through the

use of a cache memory, internal shared memories, or regis-
ters. The knowledge of the memory access patterns is fun-
damental to optimize and reduce memory accesses through
prefetching and overlapping of memory transfers with com-
putation. This overlapping is naturally performed by the mul-
tithreading mechanism of today’s GPU. With newer hard-
ware and drivers the memory access model is less restrained,
and in future easier programming will be possible without
worrying about memory coalescing.

input : Data values from Gabor filter bank in complex
format

output: Converted data values to be used for interactions

1 x← blockIdx.x×blockDim.x+ threadIdx.x/2;
2 y← blockIdx.y×blockDim.y+ threadIdx.y;
3 mod← threadIdx.x % 2;
4 pt← threadIdx.x/2+40×mod;

5 shared f loat maps smem[orientations×
f requencies][32], bu f [72];

6 for i← 1 to orientations× f requencies do
7 bu f [pt]← maps[i][y×w+ x][mod];
8 bu f [pt +16]← maps[i][y×w+ x+16][mod];

9 maps smem[i][threadIdx.x]← abs(
bu f [threadIdx.x]×bu f [threadIdx.x] +
bu f [threadIdx.x+40]×bu f [threadIdx.x+40])
/(w× l);

10 end
11 Interactions(maps smem);

Algorithm 3: The interactions kernel

5.3.1 Coalesced global memory accesses

One of the global memory optimization is coalesced mem-
ory accesses to increase the memory bandwidth, and to min-
imize the bus transactions. Coalescing means that adjacent
threads cooperate to load a contiguous segment of global
memory in a single read operation. The best case is when
one bus transaction is issued for all the threads in a half-
wrap. The requirement is that all the threads in the wrap
access memory in a sequence i.e. kth word in global mem-
ory is accessed by kth thread in the wrap. Thus, the starting
address and alignment is important.

5.3.2 Shared memory

Shared memory is an on-chip high bandwidth memory shared
among all the threads on a single SM. It provides high per-
formance and communication among the threads of a thread
block. Such memory can be implemented effectively in hard-
ware translating to faster memory accesses. Here are differ-
ent shared memory usages:

– registers extension, to avoid swapping of registers to global
memory

7

– stack, for sub-programs calls and parameters
– arrays, for intermediate results to avoid global memory

accesses
– fast communications between threads (on locks, arrays,

...)
– preload of coalesced global memory data followed by

uncoalesced shared memory access
– prefetch of data in shared memory used as a data cache

managed by software to benefit from spatial and tempo-
ral locality of data

Coalescing A method to avoid non-coalesced memory ac-
cesses is by re-ordering the data in shared memory. To demon-
strate the uses of shared memory, we take an example kernel
as shown in algorithm 3, and is illustrated using block dia-
gram shown in figure 4. Here, the data values in complex for-
mat consisting of two floats for real and imaginary parts. The
very first step is fetching the values into the shared mem-
ory, where each float is read by a separate thread i.e. two
threads for every complex number as shown in line 3. These
global memory accesses are coalesced as contiguous floats
are read. Furthermore, we use two shared buffers; one for
real part, and the other for imaginary part in line 7, 8. This
arrangement gives coalesced shared memory accesses dur-
ing computation in line 9 to convert the complex numbers
into real, and also to scale down the output from the unnor-
malized Fourier transforms done using CUFFT library.

Bank conflicts Shared memory is similar to a local scratch-
pad that is 16 KB with 16×1 KB banks, and these banks can
service only one address at a time. There are two cases when
there is no bank conflict:

– If all the threads of a half-wrap access different banks
– If all the threads of a half-wrap access the same address

In case if multiple threads access the same bank causes con-
flicts. These conflicting accesses are required to be serialized
either using an explicit stride based on thread’s ID or by al-
locating more shared memory. In our case, when thread’s
ID is used to access shared memory then a conflict occurs,
as thread 0 and 1 access the same bank. Thus, we use a stride
of 8 to avoid any conflicts as shown in the line 4. Although,
a multiprocessor takes only 4 clock cycles doing a shared
memory transaction for the entire half wrap, but bank con-
flicts in the shared memory can degrade the overall perfor-
mance.

Prefetching Another use of shared memory is to prefetch
data from the global memory, and cache it in shared mem-
ory. In the example kernel, the data after the conversion and
rescaling is cached, and this prefetched data is used for the
next phase of applying the interactions, as shown in line 11of
the example kernel.

Fig. 4 Block diagram of data-parallel interaction kernel

Reducing device memory accesses In MCPI Prefetch ker-
nel, we use spatial and temporal gradient values to get N(2N−
1) solutions that are used to perform the iterative weighted
least square estimates. These numerous intermediate values
are stored as arrays variables because the register count is
already high. Unfortunately, this leads to costly global mem-
ory accesses that can be avoided by placing some values in
shared memory. Consequently, we get a solution with less
number of global memory access, and efficient use of lim-
ited resources on the device. We achieved performance gains
by carefully selecting the amount of shared memory without
compromising the optimal number of active block residing
on each SM.

Reducing register count In MCPI kernel there is a limita-
tion of higher register count due to the complexity of the al-
gorithm, hence, resulting in reduced number of active thread
blocks per SM. In our nave solution, the register count is
22 that can be considerably reduced reduced to 15 regis-
ters per block using shared memory for some local vari-
ables. Consequently, the occupancy increased from .33 to
.67 with optimal number of thread block residing on each
SM. These variables to be placed in shared memory are care-
fully selected to reduce the number of synchronization bar-
riers needed.

5.3.3 Texture memory

Texture memory provides an alternative path to device mem-
ory, which is faster. This is because of specialized on-chip
texture units with internal memory to allow buffering of data
from device memory. It can be very useful to reduce the
penalty incurred for nearly coalesced accesses. In our imple-
mentation, the main motion estimationMCPI kernel exhibits

8

a pattern that requires the data to be loaded from device
memory multiple times. This leads to performance degra-
dation because of high device memory latency. As a solu-
tion, we employed texture memory’s caching mechanism to
prefetch data to reduce global memory latency, hence lead-
ing to 10% performance improvement of the problematic
kernel.

5.4 Real-time streaming solution

OpenVIDIA [6] and GpuCV [2] are open source libraries
that provide an interface for video input, display and pro-
gramming on GPU using a bunch of high-level implementa-
tions of various image processing and computer vision algo-
rithms. Some example implementations include feature de-
tection and tracking, skin tone tracking, projective panora-
mas, and many more.
After the parallel implementation of the visual saliency al-
gorithm, we used OpenVIDIA to demonstrate the real-time
processing. The demonstration is done on a single core ma-
chine with a graphics card installed, and the library is used
to interface with the webcam. This resulted in execution of
the visual saliency model with frame size of 320×240 pix-
els at 22 fps on a 2-GPU GTX 285 shared device platform as
shown in figure 5. Hence, making evident the use of GPUs
for real-time processing.

Fig. 5 Platform for real-time solution

6 Results

All implementations are tested on a 2.67 GHz quad-core
system with 10GB of main memory, and Windows 7 run-
ning on it. On the other hand, the parallel version is imple-
mented using latest CUDA v3.0 programming environment

on NVIDIA Geforce GTX 480. The static pathway is eval-
uated with image sizes of 640×480 and 512×512 pixels,
whereas the dynamic pathway uses several datasets of image
sequences with sizes ranging from 150×150 to 316×252
pixels.

6.1 Speedup of static pathway

In the algorithm, a saliency map is produced at the end of
static pathway, which identifies the salient regions in the vi-
sual input. These stages include a Hanning mask, Retinal fil-
ter, Gabor filter bank, interaction, normalization and fusion.
All these stages show a great potential to be parallelized,
and are isolated within separate kernels. Initially, the entire
pathway is implemented using MATLAB that happens to be
extremely slow because it involves a number of compute-
intensive operations; for example: 2D-convolutions, conver-
sions between frequency and spatial domains, and Gabor
banks producing 24 partial maps that are further processed.
As a result, a single image would take about 18s to pass
through the entire pathway; making it unfeasible for real-
time applications.
The target of the second implementation in C is to identify

Fig. 6 Speedups for static pathway of the model

the data-parallel portions after writing it in a familiar lan-
guage. It includes many optimizations and also the use of
highly optimized FFTW library for Fourier transforms, but
the speedup witnessed is only 2.17x.
At first, the porting of the data-parallel portions into separate
kernels for the GPU can be simple. But, the code requires
many tweaks to achieve the promised speedup, which hap-
pens to be the most complex maneuver. Although, the very
first implementation involves partitioning into data-parallel
portions, which results in speedup about 396x, as shown in
the figure 6. The peak performance topped over to 440x af-

9

Fig. 7 Timings for different image sizes

Table 1 Timings for the dynamic pathway after optimizations

treetran treediv yosemite
Matlab 13.3s 12.86s 46.61s
C 1.75s 1.76s 6.28s
CUDA 54ms 54ms 76ms

ter making various optimizations on GTX 480. Also, the fig-
ure 7 shows the timings for the different implementations.

6.2 Speedup of dynamic pathway

To evaluate the performance gains of the dynamic pathway,
we compare the timings on GTX 480 device against the se-
quential C and MATLAB code as shown in table 1. We used
three datasets of images treetran, treediv and yosemite for
comparison, the first two with resolution of 150×150 pix-
els, while 316×252 pixels for the last one.

6.3 Evaluating the estimator

To evaluate the correctness of the motion estimator, we cal-
culate error between estimated and real optical flows using
the equation below:

αe = arccos

(
uur + vvr +1√

u2 + v2 +1
√

u2
r + v2

r +1

)

where ae is the angular error for a given pixel with (u,v)
the estimated and (ur,vr) the real motion vectors. We used
”treetran” and ”treediv” image sequences for the evaluation,
showing translational and divergent motion respectively [3].
The results obtained using ”treetran” and ”treediv” image
sequences are shown in table 2.

Table 2 Evaluating the M-estimator

Angular error
treetran treediv

x̄ σ x̄ σ

Matlab 1.63 5.27 6.06 8.22
C 1.10 0.99 4.15 2.69
CUDA 1.19 1.00 5.73 3.91

6.4 Precision

Most of the complex scientific applications developed for
high performance computing desire more precision to get
more accurate results. But, the GPUs are specialized to per-
form many single-precision floating-point operations, though
newer cards like NVIDIA Geforce GTX 480 consists of 480
cores capable of both single and double-precision opera-
tions.
The vision algorithm implemented in CUDA is ported from
MATLAB code, where all the computations are done en-
tirely in double-precision; fortunately, the effects of low-
precision in parallel implementation are not obvious. The
main reason is the type of algorithm whether it can produce
acceptable results, or ones that are usable. Here the resulting
saliency map may be inaccurate, but visually fine with uni-
versal image quality index [19] of 99.66% and 2-digit preci-
sion among the 24-bits of float mantissa. The figure 8 shows
the mean error with respect to the reference during differ-
ent stages of the pathway. We observe that the accuracy of
the results increases along the progressing stages because
of the reduction of information, more evident during Gabor
filtering and normalization phases until finally ending up in
regions that are salient.

Fig. 8 The effect of lower precision support on the result

6.5 Other Optimizations

In our implementation, the use of constant memory cache
shows almost negligible effect on overall performance. With
access speed similar to registers, it can help to save reg-
isters that can be used for other optimizations. Here, tex-

10

Table 3 Speedups after optimizations to static pathway

Case Over Over MPixels/sec
C First CUDA

First Implementation 396x 1.00x 4.11
Textures used 421x 1.06x 5.93
No bank conflicts 429x 1.08x 6.08
Fast math used 440x 1.11x 6.25

Table 4 Computational cost of each step in static pathway

Kernel Geforce GTX 480
(ms)

Retina 9.74
Mask 0.12
FFT 0.45
Shift 0.09
24×Gabor 1.58
24×Inverse shift 0.99
24×IFFT 10.85
24×Interaction 3.45
24×Normalize 3.08
24×Normalize Itti 3.10
24×Normalize Fusion 2.66
Memory transfers 7.64
Total 43.75

ture cache is used to store predefined readonly masks, re-
sulting in a speedup of 1.06x over first CUDA implementa-
tion and 421x over CPU implementation. Also, the use of
shared memory without bank conflicts resulted in speedup
of 429x over C and 1.08x over first CUDA implementa-
tion. As a last optimization is the use of compiler option
-use fast math to CUDA math library instead of standard
math library. The option worked after few tweaks, and re-
sulted in 440x speedup over C implementation and 1.11x
over first CUDA implementation. The results of the differ-
ent optimizations are presented in table 3.

6.6 Using different graphics cards

The CUDA implementation is tested against on the newest
Geforce GTX 480. The device has 15 streaming multipro-
cessor with total 480 cores of clock rates 1.48 GHz each,
providing 1.35 TFLOPS of single-precision and 168 GFLOPS
of double precision computational power with memory band-
width 177.4 GB/sec.

In tables 4 and 5, the computational cost for each step
of static and dynamic pathways of the visual saliency model
with image sizes of 512×512 and 256×256 pixels respec-
tively. Furthermore, the figure 9 presents a plot of execution
times for different image sizes on 8800 GTS and GTX 260,
and clearly the execution speedups with increasing image
sizes on the faster Geforce GTX 260 because of more exe-
cution units to use.

Table 5 Computational cost of each step in dynamic pathway

Kernel Geforce GTX 480
(ms)

MCPI 22.68
Ver. Gaussian recursive 21.90
Hor. Gaussian recursive 11.06
Demodulation 1.4
Modulation 0.39
Retinal Filtering 9.74
Gradients 1.17
Misc. 0,25
Memory transfers 0,56
Total 69.16

Fig. 9 Timings for different image sizes from different cards

7 Conclusion

In the article, we have implemented in real-time a very re-
cent visual saliency model that is based on the human visual
system. This real-time processing for such models would
create an opportunity of inclusion of many other complex
processes or pathways into the existing model, for exam-
ple: color, face recognition, audio, and many more. Also,
the real-time capability enables it to be used as a powerful
tool in many other applications like robotics vision.
The CUDA programming model for general-purpose com-
putations on graphics device is well-suited for almost all al-
gorithms that exhibit data-parallelism. The new model launches
a large number of threads, and does very fast context switch-
ing among them to hide the memory latency. Also, this is
facilitated by the inclusion of new hardware shared memory
that reduces the number of memory accesses to the global
memory. The motivation of this project is to implement such
algorithms on modern graphic devices to use their raw com-
putational power; ending up with enormous speedups. Our
implementation of visual saliency model confirmed that the
algorithm effectively maps onto the graphics architecture.
Thus, efficiently utilizing the highly data-parallel processing
capabilities of the graphics hardware; resulting in tremen-
dous speedups of more than 440x. Despite, using reduced
precision that somewhat affected the overall accuracy dur-
ing different phases of the algorithm but the final result is
adequate, and visually these differences are undetectable.

11

Moreover, the implementation is demonstrated using a typ-
ical webcam interfaced using OpenVIDIA [6] library on an
ordinary computer system. Real-time processing is achieved
for an image of size 320×240 pixels running at 22fps.
Discussion: The programming model for graphics devices
is scalable, and can be easily upgraded rather than when us-
ing specialized hardware, SIMD systems, or supercomput-
ers. According to the Moore’s law, the peak performance of
GPUs is increasing by a factor of two and a half times per
year. The new Tesla 20 series devices are targeting a double-
precision peak performance ranging from 520-620 GFLOPS
, and more interestingly single-precision floating-point com-
putations will top into TFLOPS. This development along-
side a flexible programming model will interest the GPGPU
community.
A number of attempts have been made to design a special-
ized system using multiple GPUs as clusters, where multiple
vision algorithms are computed on separate cards or work is
assigned explicitly to each. Although, parallel GPU process-
ing is difficult to implement using current CUDA program-
ming model, where multiple graphics devices can not share
data and the overhead of copying back partial results to host
CPU is very high. The newer versions of the programming
models are expected to handle multi-GPUs more easily, and
will open a new era in high performance computing. Con-
sequently, GPUs will find their application in areas like bi-
ological engineering, oil and gas exploration, and financial
analysis. In future, the introduction of devices with more ex-
ecution units accompanied by more flexible programming
model will help to put away the doubts in GPGPU commu-
nity.

References

1. NVIDIA CUDA Compute Unified Device Architecture - Program-
ming Guide (2007)

2. Allusse, Y., Horain, P., Agarwal, A., Saipriyadarshan, C.: Gpucv:
an opensource gpu-accelerated framework forimage processing
and computer vision. In: MM ’08: Proceeding of the 16th ACM in-
ternational conference on Multimedia, pp. 1089–1092. ACM, New
York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1459359.
1459578

3. Bruno, E., Pellerin, D.: Robust motion estimation using spatial
gabor-like filters. Signal Process 82, 297–309 (2002)

4. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Hous-
ton, M., Hanrahan, P.: Brook for gpus: stream computing on
graphics hardware. ACM Trans. Graph. 23, 777–786 (2004)

5. Chalmers, A., Debattista, K., Sundstedt, V., Longhurst, P., Gilli-
brand, R.: Rendering on demand. In: Eurographics Symposium
on Parallel Graphics and Visualization (2006)

6. Fung, J., Mann, S., Aimone, C.: Openvidia: Parallel gpu computer
vision. In: MULTIMEDIA ’05: Proceedings of the 13th annual
ACM international conference on Multimedia (2005)

7. Group, K.: Opencl - the open standard for parallel programming
of heterogeneous systems. URL http://www.khronos.org/
opencl/

8. Itti, L.: Real-time high-performance attention focusing in outdoors
color video streams. In: Rogowitz, B., Pappas, T.N. (eds.) Proc.

SPIE Human Vision and Electronic Imaging VII (HVEI’02), San
Jose, CA, pp. 235–243. SPIE Press (2002)

9. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual at-
tention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 20, 1254–1259 (1998)

10. Lee, S., Kim, G.J., Choi, S.: Real-time tracking of visually at-
tended objects in interactive virtual environments. In: VRST ’07:
Proceedings of the 2007 ACM symposium on Virtual reality soft-
ware and technology (2007)

11. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia
tesla: A unified graphics and computing architecture. IEEE Mi-
cro 28, 39–55 (2008)

12. Longhurst, P., Debattista, K., Chalmers, A.: A gpu based saliency
map for high-fidelity selective rendering. In: AFRIGRAPH 2006
4th International Conference on Computer Graphics, Virtual Re-
ality, Visualisation and Interaction in Africa (2006)

13. Mantiuk, R., Myszkowski, K., Pattanaik, S.: Attention guided
mpeg compression for computer animations. In: SCCG ’03: Pro-
ceedings of the 19th spring conference on Computer graphics
(2003)

14. Marat, S., Ho Phuoc, T., Granjon, L., Guyader, N., Pellerin, D.,
Guérin-Dugué, A.: Modelling spatio-temporal saliency to predict
gaze direction for short videos. Int. J. Comput. Vision 82, 231–243
(2009)

15. Odobez, J.M., Bouthemy, P.: Robust multiresolution estimation of
parametric motion models applied to complex scenes. Journal
of Visual Communication and Image Representation 6, 348–365
(1994)

16. Ouerhani, N., Hgli, H.: Real-time visual attention on a massively
parallel simd architecture. Real-Time Imaging 9, 189–196 (2003)

17. Peters, C.: Toward 3D selection and skeleton construction by
sketching. In: Eurographics Ireland 2007 (2007)

18. Pichon, E., Itti, L.: Real-time high-performance attention focusing
for outdoors mobile beobots. In: Proc. AAAI Spring Symposium,
Stanford, CA (AAAI-TR-SS-02-04) (2002)

19. Wang, Z., Bovik, A.C.: A universal image quality index. Signal
Processing Letters, IEEE 9, 81–84 (2002)

20. Xu, T., Muhlbauer, Q., Sosnowski, S., Kühnlenz, K., Buss, M.:
Looking at the surprise: Bottom-up attentional control of an active
camera system. In: ICARCV (2008)

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

