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A resolvent estimate for operators
with finite spectrum

Rachid Zarouf

Abstract

Let T be a power bounded operator on a Banach space E : P (T ) = supk≥0

∥

∥T k
∥

∥

E→E
< ∞. The condition “P (T ) < ∞”

is called power boundedness condition. Then, setting ρ(T ) = sup|z|>1 (|z| − 1) ‖R(z, T )‖E→E , where R(z, T ) stands for

the resolvent of T at point z, the inequality ρ(T ) ≤ P (T ) is obvious and the condition “ρ(T ) < ∞ “ is known as the

classical resolvent condition.

Here, we suppose that n ≥ 1 is an integer and T is an algebraic operator acting on a Banach space E, which minimal
annihilating polynomial is of degree less or equal than n. We also suppose that the spectrum σ(T ) of T is included in the
unit disc D = {z ∈ C : |z| < 1}. Then, T is of course power bounded. But what happens to the inequality ρ(T ) ≤ P (T ) ?

We set ρ 1

2

(T ) = sup|z|>1

√

|z|2 − 1 ‖R(z, T )‖E→E , and show that under our hypothesis on T :

ρ 1

2

(T ) ≤ δ
n√
1− r

P (T ) and limn→∞
1

n

ρ 1

2

(T )

P (T )
≤ π

√
1 + r,

where δ = π
(

1 +
√
2
)

+ 1, and r = maxλ∈σ(T ) |λ| . This result is a consequence of a Bernstein-type inequality for

rational functions in D having at most n poles all outside of 1
r
D, involving the Hardy norms ‖.‖H1 and ‖.‖H2 . We show

this Bernstein-type inequality and its asymptotic sharpness as n → ∞ and r → 1−.

We also show the asymptotic sharpness of our upper bound δ n√
1−r

P (T ) as n → ∞ and r → 1− but this time in the

following sense : there exists a contraction Ar on the Hilbert space (Cn, |.|2) of spectrum {r} such that

limr→1(1 − r)
1

2
−βρ 1

2

(Ar) ≥ cot
( π

4n

)

= P (Ar).cot
( π

4n

)

,

for all β ∈ (0, 1
2 ) . We finally link our result to the well-known Kreiss Matrix Theorem which has been also proved using

a Bernstein-type inequality for the same class of rational functions but involving this time the Hardy norms ‖.‖H1 and

‖.‖H∞ .

Introduction

Let (E, ‖.‖) be a Banach space and T be an operator on E. Recall that T is algebraic if there exists a
polynomial p 6= 0 such that p(T ) = 0. We write the minimal annihilating polynomial in a monic form,

mT (z) = mσ(z) = Π1≤k≤n (λk − z) ,

where σ = {λ1, λ2, ..., λn} is the spectrum σ(T ) of T (σ(T ) consists of the eigenvalues of T , with possible
multiplicities as they occur in the minimal polynomial).

Recall also that T is power bounded if the following power boundedness condition is satisfied :

(PBC) P (T ) = supk≥0

∥

∥

∥
T k
∥

∥

∥

E→E
< ∞ .

In this case, by a power series expansion it is readily verified that T satisfies the well-known inequality

(1) ρ(T ) ≤ P (T ) ,

where ρ(T ) = sup|z|>1 (|z| − 1) ‖R(z, T )‖E→E , and R(z, T ) = (zI − T )−1 (I being the identity operator on
E). In particular the resolvent condition :

(RC) ρ(T ) < ∞,

1



2

implies the power boundedness one :

(PBC) =⇒ (RC) .

Now let us remark that for z in the corona {1 < |z| < 2}, we have
√

|z|2 − 1 ≫ |z| − 1 and then
√

|z|2 − 1 ‖R(z, T )‖E→E ≫ (|z| − 1) ‖R(z, T )‖E→E .

So how tall is the quantity
√

|z|2 − 1 ‖R(z, T )‖E→E? Here, we define

ρ 1

2

(T ) = sup|z|>1

√

|z|2 − 1 ‖R(z, T )‖E→E ,

and the condition :

(RC 1

2

) ρ 1

2

(T ) < ∞.

Now, what happens if we replace ρ(T ) by ρ 1

2

(T ) in inequality (1)? Recalling the following well-known inequality
:

(⋆) ‖R(z, T )‖E→E ≥ 1

dist (z, σ(T ))
, ∀z /∈ σ(T ),

we get that if P (T ) < ∞ and σ(T )∩T 6= ∅ , then ρ 1

2

(T ) = ∞. A natural question arises : under which hypothesis

on T could we hope the condition
(

RC 1

2

)

to be realised? It is necessary to suppose that σ(T ) ∩ T = ∅ . This

leads to define the following set Fn.
Definition. Let n ≥ 1 be an integer. We denote by Fn the set of all algebraic operators T acting on a

Banach space E such that deg(mT ) ≤ n , and the spectrum σ(T ) of T is included in the unit disc D.
We prove that if T ∈ Fn (that is to say if we add the condition that the spectrum σ(T ) of T is included in

the open unit disc D), then conditions

(RC 1

2

) and (PBC) ,

are both satisfied (the fact that (PBC) is satisfied is obvious). (Conversely using (⋆), if T is algebraic and
satisifies both (RC 1

2

) and (PBC), then σ(T ) ⊂ D). More precisely, we show in Section 2 that if T ∈ Fn, then

(2) ρ 1

2

(T ) ≤ δ
n√
1− r

P (T ) and limn→∞
1

n

ρ 1

2

(T )

P (T )
≤ π

√
1 + r,

where δ = π
(

1 +
√
2
)

+ 1, and r = maxλ∈σ(T ) |λ| . This result is a consequence of a Bernstein-type inequality

for rational functions in D having at most n poles all outside of 1
rD, involving the Hardy norms ‖.‖H1 and ‖.‖H2 .

In Section 1, we prove this Bernstein-type inequality and its asymptotic sharpness as n → ∞ and r → 1−.
Then in Section 2, we apply the inequality proved in Section 1 in order to get the statement (2) above.

Finally in Section 3, we link our result to Kreiss Matrix Theorem which has been recently proved by Leveque
and Trefethen [LeTr], and improved by Spijker [Sp], also as a consequence of a Bernstein-type inequality for
the same class of rational functions, but involving this time the Hardy norms ‖.‖H1 and ‖.‖H∞ .

1. Bernstein-type inequalities for rational functions

Let Pn =
{

p =
∑n

k=0 akz
k : ak ∈ C

}

, be the complex space of polynomials of degree less or equal than

n ≥ 1. Let D = {z ∈ C : |z| < 1} and D its closure. Given r ∈ (0, 1), we define

Rn, r =

{

p

q
, : p ∈ Pn−1, q ∈ Pn, q(ζ) = 0 =⇒ ζ /∈ 1

r
D

}

,

the set of all rational functions in D of degree less or equal than n ≥ 1, having at most n poles all outside of
1
rD .
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1.1 Statement of the problem. Given two Banach spaces (X, ‖.‖X) and (Y, ‖.‖Y ) of holomorphic functions
in D, we are searching for the “best possible” constant Cn, r(X, Y ) such that

∥

∥

∥f
′

∥

∥

∥

X
≤ Cn, r(X, Y ) ‖f‖Y ,

∀ f ∈ Rn, r .
The proper definition of Cn, r(X, Y ) is the following one. Let σ = {λ1, ..., λn} be a sequence in the unit disc

D, and Bσ = Πn
i=1bλi

be the corresponding finite Blaschke product, where bλ = λ−z
1−λz

is an elementary Blaschke

factor for λ ∈ D. Let also KBσ be the n-dimensional space defined by

KBσ = Lin (kλi
: i = 1...n) ,

where σ is a family of distincts elements of D, and where kλ = 1
1−λz

is the Szegö kernel associated to λ .

An obvious modification allows to generalize the definition of KBσ in the case where the sequence σ admits
multiplicities.

Notice that using the scalar product (., .)H2 on H2, an equivalent description of this space is :

KBσ =
(

BσH
2
)⊥

= H2ΘBσH
2,

where H2 stands for the standard Hardy space of the unit disc D,

H2 =







f =
∑

k≥0

f̂(k)zk : sup0≤r<1

∫

T

|f(rz)|2 dm(z) < ∞







,

m being the Lebesgue normalized measure on T. Let D be the operator of differentiation on (KBσ , ‖.‖Y ) :
D : (KBσ , ‖.‖Y ) → (X, ‖.‖X)

f 7→ f
′

.

For r ∈ [0, 1) and n ≥ 1 , we have

Cn, r(X, Y ) = sup
{

‖D‖KBσ→X : 1 ≤ #σ ≤ n, |λ| ≤ r ∀λ ∈ σ
}

.

1.2 The case X = H1, Y = H∞, known results.

1.2.1. Dolzhenko proved in [Dol] (see also [Pek], p.560 - inequality (11)) that

(1.2.1) Cn, r

(

H1, H∞) ≤ c1n,

where c1 is a numerical constant (c1 is not explicitely given in [Dol] ).
1.2.2. Leveque and Trefethen improved Dolzhenko’s result in [LeTr] :

(1.2.2) Cn, r

(

H1, H∞) ≤ 2en,

1.2.3. Spijker in its turn improved Leveque and Trefethen’s result in [Sp] :

(1.2.3) Cn, r

(

H1, H∞) ≤ en,

In fact Leveque, Trefethen [LeTr] and Spijker [Sp] proved and used the fact that

(1.2.4) P (T ) ≤ Cn, r

(

H1, H∞) ρ(T ),

in order to apply their Bernstein-type estimates to Kreiss Matrix Theorem, see Section 3 below.
In paragraph 1.3 below, we replace the algebra H∞ by the Hardy space H2 and we give an estimate for the

Bernstein-type constant Cn, r

(

H1, H2
)

in order to apply it (in Section 2) to our matricial problem.

1.3 The case X = H1, Y = H2.
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Theorem 1. Let r ∈ [0, 1) and n ≥ 1. Then,

(1.3.1) θn, r
n√
1− r

≤ Cn, r

(

H1, H2
)

≤ γn, r
n√
1− r

,

where γn, r =

(

r√
n(1+r)

+
√
1 + r

)

and θn, r =
1

π
√
1+r

(

(

1− 1
n

)

+ r
(

1− 1
2n

)

+ r2

3

)

. In particular,

(1.3.2)
1 + r + r2

3

π
√
1 + r

1√
1− r

≤ limn→∞
Cn, r

(

H1, H2
)

n
≤ limn→∞

Cn, r

(

H1, H2
)

n
≤

√
1 + r

1√
1− r

,

and

(1.3.3)
7

3π
√
2
≤ limr→1− limn→∞

√
1− r

n
Cn, r

(

H1, H2
)

≤ limr→1− limn→∞

√
1− r

n
Cn, r

(

H1, H2
)

≤
√
2 .

Proof. We first prove the right-hand side inequality from (1.3.1). Let PB be the orthogonal projection of the
Hardy space H2 onto its subspace KB = H2ΘBH2. Since f ∈ KB,

f = PBf =

n
∑

k=1

(f, ek)H2 ek,

where the family (ek)
n
k=1 (known as Malmquist basis associated to σ, see [N3] p.117) defined by,

e1 =
(

1− |λ1|2
)

1

2 f1, ek =
(

1− |λk|2
) 1

2

(

Πk−1
j=1bλj

)

fk = (fk/ ‖fk‖2)Πk−1
j=1bλj

, k ≥ 2,

where fk(z) =
1

1−λkz
. Noticing that

e
′

k =

k−1
∑

i=1

b
′

λi

bλi

ek + λk
1

(

1− λkz
)ek,

for all k = 2..n, we get

(PBf)
′

=

n
∑

i=1

b
′

λi

bλi

n−1
∑

k=i+1

(f, ek)H2 ek +

n
∑

k=1

(f, ek)H2 λk
1

(

1− λkz
)ek,

for all f ∈ KB . Now using both Cauchy-Schwarz inequality and the fact that family (ek)
n
k=1 is orthonormal in

H2, we get
∥

∥

∥

∥

∥

n
∑

k=1

λk (f, ek)H2

1
(

1− λkz
)ek

∥

∥

∥

∥

∥

H1

≤
n
∑

k=1

|(f, ek)H2 |
∥

∥

∥

∥

∥

λk
1

(

1− λkz
)

∥

∥

∥

∥

∥

H2

‖ek‖H2 ≤

≤
n
∑

k=1

|(f, ek)H2 | |λk|
√

1− |λk|2
≤
(

n
∑

k=1

|(f, ek)H2 |2
)

1

2

(

n
∑

k=1

|λk|2

1− |λk|2

)
1

2

≤ r√
1 + r

√

n

1− r
‖f‖H2 .

Finally,
∥

∥

∥

∥

∥

n−1
∑

i=1

b
′

λi

bλi

n
∑

k=i+1

(f, ek)H2 ek

∥

∥

∥

∥

∥

H1

≤
n−1
∑

i=1

∥

∥

∥

∥

∥

b
′

λi

bλi

∥

∥

∥

∥

∥

L2

(

n
∑

k=i+1

|(f, ek)H2 |2
)

1

2

.

Morever, since b
′

λi
/bλi

= 1/ (λi − z) + λi/
(

1− λiz
)

, we get that
∥

∥

∥b
′

λi
/bλi

∥

∥

∥

L2

≤ 1+|λi|√
1−|λi|2

, and

∥

∥

∥

∥

∥

n−1
∑

i=1

b
′

λi

bλi

n
∑

k=i+1

(f, ek)H2 ek

∥

∥

∥

∥

∥

H1

≤ (1 + r)
n−1
∑

i=1

1
(

1− |λi|2
)

1

2

‖f‖H2 ≤



5

≤ 1 + r√
1 + r

n− 1√
1− r

‖f‖H2 .

As a consequence,

∥

∥

∥(PBf)
′

∥

∥

∥

H1

≤ r√
1 + r

√

n

1− r
‖f‖H2 +

√
1 + r

n− 1√
1− r

‖f‖H2 ≤

≤
(

r
√

n(1 + r)
+

√
1 + r

)

n√
1− r

‖f‖H2 = γn, r
n√
1− r

‖f‖H2 ,

which completes the proof of the right-hand side inequality.

We now prove the left-hand side inequality from (1.3.1). Let en =
(1−r2)

1

2

1−rz bn−1
r . Then en ∈ Kbnr and

‖en‖H2 = 1, (see [N1], Malmquist-Walsh Lemma, p.116). Moreover,

e
′

n =
r
(

1− r2
) 1

2

(1− rz)2
bn−1
r + (n− 1)

(

1− r2
) 1

2

1− rz
b
′

rb
n−2
r =

= − r

(1− r2)
1

2

b
′

rb
n−1
r + (n− 1)

(

1− r2
)

1

2

1− rz
b
′

rb
n−2
r ,

since b
′

r =
r2−1

(1−rz)2
. Then,

e
′

n = b
′

r



− r

(1− r2)
1

2

bn−1
r + (n− 1)

(

1− r2
)

1

2

1− rz
bn−2
r



 ,

and
∥

∥

∥
e
′

n

∥

∥

∥

H1

=
1

2π

∫

T

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

(br(w))
n−1 + (n− 1)

(

1− r2
) 1

2

1− rw
(br(w))

n−2

∣

∣

∣

∣

∣

∣

dw =

=
1

2π

∫

T

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

br(w) + (n− 1)

(

1− r2
) 1

2

1− rw

∣

∣

∣

∣

∣

∣

dw,

which gives, using the variables u = br(w),

∥

∥

∥
e
′

n

∥

∥

∥

H1

=
1

2π

∫

T

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

u+ (n− 1)

(

1− r2
) 1

2

1− rbr(u)

∣

∣

∣

∣

∣

∣

du.

But 1− rbr =
1−rz−r(r−z)

1−rz = 1−r2

1−rz and b
′

r ◦ br = r2−1
(1−rbr)

2 = − (1−rz)2

1−r2
. This implies

∥

∥

∥
e
′

n

∥

∥

∥

H1

=
1

2π

∫

T

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

u+ (n− 1)

(

1− r2
) 1

2

1− r2
(1− ru)

∣

∣

∣

∣

∣

∣

du =

=
1

(1− r2)
1

2

1

2π

∫

T

|(1− ru) (−ru+ (n− 1)(1− ru))| du.

Without loss of generality we can replace r by −r, which gives
∥

∥

∥
e
′

n

∥

∥

∥

H1

=
1

(1− r2)
1

2

‖ϕn‖H1 ,

where ϕn = (1 + rz) (rz + (n − 1)(1 + rz)) . Expanding, we get

ϕn = (1 + rz)(nrz + (n− 1)) == (n− 1) + (2n− 1)rz + nr2z2 .

Taking Φn = (n− 1)z + (2n − 1)r z2

2 + nr2 z
3

3 , we have Φ
′

n = ϕn and Φn(0) = 0 . Now using Hardy’s inequality
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(1.3.4) ‖f‖W ≤ π
∥

∥f ′∥
∥

H1 + |f(0)| ,
(see N. Nikolski, [N2] p. 370 8.7.4 -(c)), W being the Wiener algebra of absolutely convergent Fourier series

(1.3.5) W =







f =
∑

k≥0

f̂(k)zk : ‖f‖W =
∑

k≥0

∣

∣

∣f̂(k)
∣

∣

∣ < ∞







,

we get

‖Φn‖W ≤ π
∥

∥

∥
Φ

′

n

∥

∥

∥

H1

+ |Φn(0)| = π ‖ϕn‖H1 .

As a result,

‖ϕn‖H1 ≥ 1

π

[

(n− 1) +
(2n− 1)r

2
+

nr2

3

]

,

and
∥

∥

∥
e
′

n

∥

∥

∥

H1

≥ 1

(1− r2)
1

2

1

π

[

(n− 1) +
(2n− 1)r

2
+

nr2

3

]

=
1

π

1

(1− r2)
1

2

[

n

(

1 + r +
r2

3

)

− 1− r

2

]

=

=
1

π

n

(1− r2)
1

2

[(

1− 1

n

)

+ r

(

1− 1

2n

)

+
r2

3

]

= θn, r
n√
1− r

,

which completes the proof. (1.3.2) and (1.3.3) follow. �

2. An upper bound for ρ 1

2

(T )

limn→∞
1
n

ρ 1

2

(T )

P (T ) ≤ π
√
1 + r

The aim of this section is to prove the Theorem 2 below. In point (i) of Theorem 2, we give an upper bound
for ρ 1

2

(T ) if T ∈ Fn. In point (ii) of the same theorem, we prove the asymptotic sharpness of this upper estimate

as n tends to infinity and the spectral radius r(T ) of T tends to 1−.

Theorem 2. (i) Let T ∈ Fn and σ(T ) be the spectrum of T . Then,

ρ 1

2

(T ) ≤
(

πCn, r

(

H1, H2
)

+ 1−Π
)

P (T ),

where Π = Πλ∈σ(T ) |λ|2 . In particular,

ρ 1

2

(T ) ≤ δ
n√
1− r

P (T ),

and

limn→∞
1

n

ρ 1

2

(T )

P (T )
≤ π

√
1 + r,

where δ = π
(

1 +
√
2
)

+ 1, and r = maxλ∈σ(T ) |λ| stands for the spectral radius of T .

(ii) Let |.| = |.|2 be the Hilbert norm of Cn and r ∈ (0, 1) . There exists a contraction Ar on the Hilbert space
(Cn, |.|2) of spectrum {r} such that

limr→1−(1 − r)
1

2
−βρ 1

2

(Ar) ≥ cot
( π

4n

)

≥ P (Ar)cot
( π

4n

)

,

for all β ∈ (0, 1
2 ) .

Remark. It may also be of interest to consider the quantity ρ 1

p
(T ) = sup|z|>1 (|z|p − 1)

1

p ‖R(z, T )‖E→E for

p ≥ 1. As for p = 2, if P (T ) < ∞ and σ(T ) ∩ T 6= ∅ , using (⋆) we get ρ 1

p
(T ) = ∞ for all p ≥ 1.
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Proof of Theorem 2. Proof of (i). We set σ = σ(T ) = {λ1, λ2, ..., λn} its spectrum (λj being taken with

their multiplicities). We define the Blaschke product B = Πn
k=1bλi

, where, bλi
= λi−z

1−λiz
, for all i = 1..n. First,

‖R(λ, T )‖ ≤ P (T )

∥

∥

∥

∥

1

λ− z

∥

∥

∥

∥

W/BW

,

(see [N1] Theorem 3.24, p.31), where the Wiener algebra W of absolutely convergent Fourier series is defined
in (1.3.5) above, and

∥

∥

∥

∥

1

λ− z

∥

∥

∥

∥

W/BW

= inf

{

‖f‖W : f (λj) =
1

λ− λj
, j = 1..n

}

.

Letλ ∈ C such that |λ| > 1. As before, if PB is the orthogonal projection of the Hardy space H2 onto its

subspace KB = H2ΘBH2, then the function f = PB

(

1
λk1/λ̄

)

satisfies f − 1
λ−z ∈ BW, ∀ j = 1..n. In particular,

∥

∥

∥

∥

1

λ− z

∥

∥

∥

∥

W/BW

≤
∥

∥

∥

∥

1

λ
PBk1/λ̄

∥

∥

∥

∥

W

.

We are now going to apply Hardy’s inequality (recalled in (1.3.4) above) to PBk1/λ̄ . Using both this
inequality and Theorem 1, we get

∥

∥

∥
PBk1/λ̄

∥

∥

∥

W
≤ π

∥

∥

∥

∥

(

PBk1/λ̄

)′
∥

∥

∥

∥

H1

+
∣

∣

∣

(

PBk1/λ̄

)

(0)
∣

∣

∣
≤

≤ πCn, r

(

H1, H2
)

∥

∥

∥
PBk1/λ̄

∥

∥

∥

H2

+
n
∑

k=1

∣

∣

∣

(

k1/λ̄, ek

)

H2

∣

∣

∣
|ek(0)| ≤

≤ πCn, r

(

H1, H2
)

∥

∥

∥PBk1/λ̄

∥

∥

∥

H2

+

(

n
∑

k=1

∣

∣

∣

(

k1/λ̄, ek

)

H2

∣

∣

∣

2
) 1

2

(

n
∑

k=1

|ek(0)|2
) 1

2

=

= πCn, r

(

H1, H2
)

∥

∥

∥
PBk1/λ̄

∥

∥

∥

H2

+
∥

∥

∥
PBk1/λ̄

∥

∥

∥

H2

(

n
∑

k=1

|ek(0)|2
)

1

2

≤

≤



πCn, r

(

H1, H2
)

+

(

n
∑

k=1

|ek(0)|2
) 1

2





∥

∥

∥k1/λ̄

∥

∥

∥

H2

=

=



πCn, r

(

H1, H2
)

+

(

n
∑

k=1

|ek(0)|2
) 1

2





|λ|
√

|λ|2 − 1
≤

≤
[

πCn, r

(

H1, H2
)

+ 1− |λ1|2 +
n
∑

k=2

(

1− |λk|2
)

Πk−1
i=1 |λi|2

]

|λ|
√

|λ|2 − 1
=

=

[

πCn, r

(

H1, H2
)

+ 1− |λ1|2 +
n
∑

k=2

(

Πk−1
i=1 |λi|2 −Πk

i=1 |λi|2
)

]

|λ|
√

|λ|2 − 1
=

=
(

πCn, r

(

H1, H2
)

+ 1− |λ1|2 + |λ1|2 −Πn
i=1 |λi|2

) |λ|
√

|λ|2 − 1
=

=
(

πCn, r

(

H1, H2
)

+ 1−Πn
i=1 |λi|2

) |λ|
√

|λ|2 − 1
=
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=
(

πCn, r

(

H1, H2
)

+ 1−Π
) |λ|
√

|λ|2 − 1
.

Finally,
∥

∥

∥

∥

1

λ
PBk1/λ̄

∥

∥

∥

∥

W

≤
(

πCn, r

(

H1, H2
)

+ 1−Π
) 1
√

|λ|2 − 1
,

and in particular,
√

|λ|2 − 1 ‖R(λ, T )‖ ≤
(

πCn, r

(

H1, H2
)

+ 1−Π
)

,

for all λ /∈ D, and it remains to use Theorem 1 and the right-hand side inequality from (1.3.1) to complete the
proof of (i).

Proof of (ii). Let Mn be the n× n nilpotent Toeplitz matrix defined by

Mn =













0 1 0 . 0
. 0 1 . .
. . . . 0
0 . . 0 1
0 . . . 0













.

Let also fr =
z+r
1+rz with r ∈ (0, 1). For every λ ∈ C,

λ− fr = λ− z + r

1 + rz
=

λ− r − z(1 − λr)

1 + rz
.

So if we set Ar = fr(Mn), then

(λIn −Ar)
−1 = (λIn − fr(Mn))

−1 = ((λ− fr)(Mn))
−1

= (λ− fr)
−1(Mn) =

(

1 + rz

λ− r − z(1− λr)

)

(Mn) =
1

λ− r

(

1 + rz

1 + z λr−1
λ−r

)

(Mn) .

We suppose λ ∈ R, λ > 1 and set ν = λr−1
λ−r , which means λ = 1−rν

r−ν . Then

λ− 1 =
(1− r)(1 + ν)

r − ν
and λ− r =

1− r2

r − ν
.

In particular,
√

|λ|2 − 1

|λ− r| =
√
λ+ 1

√
λ− 1

λ− r
=

√
λ+ 1

1 + r

√

(1− r)(1 + ν)√
r − ν

r − ν

1− r
=

=

√
λ+ 1

1 + r

√

1 + ν

1− r

√
r − ν.

Now let α ∈ (0, 1) and

λ = λ(r) =
1 + r − r(1− r)α

1 + r − (1− r)α
,

then λ > 1 and the corresponding ν = ν(r) is given (after calculation) by

ν(r) = (1− r)α − 1 .

As a consequence taking λ = λ(r) we get,

sup|λ|>1

√

|λ|2 − 1
∥

∥

∥
(λIn − fr(Mn))

−1
∥

∥

∥
≥

≥
√
λ+ 1

1 + r

√

1 + ν

1− r

√
r − ν

∥

∥

∥

∥

(

1 + rz

1 + νz

)

(Mn)

∥

∥

∥

∥

=

=

√

(λ+ 1)(r − ν)

1 + r
(1− r)

α
2
− 1

2

∥

∥

∥

∥

(

1 + rz

1 + νz

)

(Mn)

∥

∥

∥

∥

,
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and

(1− r)
1

2
−α

2 sup|λ|>1

√

|λ|2 − 1
∥

∥

∥(λIn − fr(Mn))
−1
∥

∥

∥ ≥

≥
√

(λ+ 1)(r − ν)

1 + r

∥

∥

∥

∥

(

1 + rz

1 + νz

)

(Mn)

∥

∥

∥

∥

,

and taking finally the limit as r tends to 1−, we get

limr→1(1− r)
1

2
−α

2 sup|λ|>1

√

|λ|2 − 1
∥

∥

∥(λIn − fr(Mn))
−1
∥

∥

∥ ≥

≥
√

(1 + 1)(1 + 1)

1 + 1

∥

∥

∥

∥

(

1 + z

1− z

)

(Mn)

∥

∥

∥

∥

=

=

∥

∥

∥

∥

(

1 + z

1− z

)

(Mn)

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













1 2 . . 2
1 2 . 2

. . .
1 2

1













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

= cot
( π

4n

)

,

see [DS] , Theorem 2 - p.4 for the last equality. �

3. The link with Kreiss Matrix Theorem

Recalling that the set of n× n matrices T which spectrum σ(T ) are included in D, is a subset of Fn, we link
our result to Kreiss Matrix Theorem. Indeed in this theorem, E is finite dimensional : it stands for Cn endowed
with the Hilbert norm |.|2.

A result of Leveque and Trefethen [LeTr] improved by Spijker [Sp], shows that we have

ρ(T ) ≤ P (T ) ≤ en.ρ(T ).

As it is recalled in the Introduction, the fact that ρ(T ) ≤ P (T ) (inequality (1)) is obvious whereas inequality
P (T ) ≤ en.ρ(T ) is called Kreiss Matrix Theorem. The two conditions “P (T ) < ∞” and “ρ(T ) < ∞ “ are
equivalent (but this is already not the case for infinite matrices).

The main tool used by Leveque, Trefethen [LeTr] and Spijker [Sp] is the same : a Bernstein-type inequality for
rational functions, (see Section 1). They show it and then apply it to their problem using (1.2.4). More
precisely, Leveque and Trefethen proved in [LeTr] that P (T ) ≤ 2en.ρ(T ) (using the fact that
Cn, r

(

H1, H∞) ≤ 2en, see Section 1 - 1.2.2), and later Spijker in [Sp] improved their result avoiding the

extra-factor 2 : P (T ) ≤ en.ρ(T ) (using and proving the fact that Cn, r

(

H1, H∞) ≤ en, see Section 1 - 1.2.3) .

An open question. Since we know that P (T ) ≤ e.nρ(T ), and that the constant e.n is sharp in this
inequality, a natural question arises looking at our Theorem 2 : conversely, is it possible to find the “best
possible” constant K such that

P (T ) ≤ Kρ 1

2

(T ) ,

for all T ∈ Fn?
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