
HAL Id: hal-00497607
https://hal.science/hal-00497607

Submitted on 5 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Search in P2P Triangular Mesh by Space Filling Trees
Nicolas Bonnel, Gildas Ménier, Pierre-François Marteau

To cite this version:
Nicolas Bonnel, Gildas Ménier, Pierre-François Marteau. Search in P2P Triangular Mesh by Space
Filling Trees. 16th IEEE International Conference on Networks (ICON), Dec 2008, New Delhi, India.
pp.1 - 6, �10.1109/ICON.2008.4772629�. �hal-00497607�

https://hal.science/hal-00497607
https://hal.archives-ouvertes.fr

Search in P2P Triangular Mesh by Space Filling Trees

Nicolas Bonnel, Gildas Ménier and Pierre-Francois Marteau

VALORIA, UBS, Universite Europeenne de Bretagne, France

{nicolas.bonnel, gildas.menier,

pierre-francois.marteau}@univ-ubs.fr

Abstract

We introduce a new P2P exploration strategy based on

an extension of space filling curve principles. This stat-

egy is exhaustive and do not generates redundant mes-

sages. Initiated at the source node of a search query,

a walker is sent to explore the neighbourhood of this

node. This walker is carrying an increasing list of vis-

ited nodes as an Ariadne-sequence, building at the same

time an uncrossable fence. When encountering a fence,

this walker splits and its offsprings continue the scan-

ning of the close neighbourhood. The set of walkers

creates a tree-like covering structure that ensures that

all nodes are visited once and only once. We describe

the support overlay and introduce a low cost node het-

erogeneity management. We conclude with a discussion

on experimental validation results.

1. Introduction

In the last few years, the quality (reliability and

bandwidth) of Internet connections has increased dras-

tically. During the download of data, the transfert rate

is now only limited by the capability of the server to

manage a large amount of high bandwith clients at the

same time. Thanks to the peer-to-peer (P2P) mecha-

nisms, each user can contribute to this data exchange

mechanism as a potential server: this extends the shar-

ing capability and features some fault resilient proper-

ties because of the data replication and distribution in-

volved.

Structured P2P networks are very well suited for

search process that involves a mapping location/value:

for instance DHT based strategy are very efficient when

a key should be used to retrieve information [9, 6, 7,

11, 5]. Most of the time, structured P2P tend to equally

balance the load among peers, even if these peers have

different capabilities, as a result the heterogeneity of the

network is often poorly taken into account.

Unstructured P2P networks can greatly benefit

from this heterogeneity to dynamically optimize the

load of the different nodes. Such networks are well

suited to generic distance based queries which make no

strong assumption of the location of data: the network

has to be scanned as exhaustively as possible, to per-

form complex query evaluations on each visited node.

This implies an exploration strategy that scans each

node of the network, at least one time, and avoids (as

much as possible) to scan each node more than one

time. Queries can quickly reach a large amount of nodes

with flooding [2]: even if this strategy features low la-

tency and high parallelism, it generates a large number

of messages. On the other hand, random walk [4] re-

duces network traffic but induces high latency and is

less resilient to nodes failure.

This paper presents the design of a P2P architec-

ture featuring a tree-based search strategy. Peers gen-

erates an exploration tree that fills their neihborhood:

nodes are visited once and only once in a stable envi-

ronment and the exploration becomes more and more

parallelised as the search progress.

This tree filling strategy needs a triangular mesh to

proceed; we describe protocols that maintain at low cost

this overlay through arrival and failure of nodes. Per-

formances of this exploration strategy increase in a net-

work with heterogeneous node degrees: this approach

is therefore well suited to heterogeneity among peers

capabilities [8]. The overall number of generated mes-

sages per node needed to maintain the overlay remains

constant.

Section 2 describes related works, section 3 intro-

duces our filling tree exploration paradigm. Section 4

presents the overlay designed for the walk. In the last

section, we evaluate our approach on a simulated net-

work and discuss the results.

2. Related works

As mentionned before, search can be achieved

in unstructured P2P networks using flooding, like in

Gnutella [2]. A node initiates a query with a TTL (Time

To live) strictly positive and forwards the query to all

of its neighbors. Nodes receiving the query decrease

the TTL by one and if it is still strictly positive, they

forward it to all neighbors excepting the sender. This

approach induces low latency and high reliability but

quickly generates a lot of messages. Although nodes

discard queries already processed, flooding generates

redundancy that increases with the TTL of the search

(the number of detected cycles in the graph increases

with the radius of the exploration).

In [3], Song Jiang et al. proposed to manage the

redundancy by the mean of a spanning tree overlay. As

redundancy is only significant in flooding above a given

radius, the algorithm in [3] is divided in two stages.

In the first stage, standard flooding is used for the first

hops. In the second stage, messages are only flooded in

the suboverlay.

Search using flooding is highly parallelised, hence

the flooding process cannot be stopped when a node an-

swers the query. To solve this problem, adaptive flood-

ing has been proposed: successive floods with increas-

ing TTL are performed. According to the policy used,

they are called expanding rings [4] or iterative deepen-

ing [10]. Although these approaches reduce network

traffic to retrieve popular data (i.e. with a high number

of replicas), they induce significant overhead for rare

data as the first rings are useless.

Random walk [4] reduces network traffic, at the ex-

pense of reliability and latency. After being processed

on a node, queries are forwarded to a neighbour of this

node choosen at random. k-random walk [4] increases

reliability and reduces latency, at the cost of additionnal

network traffic since k walker are launched in parallel.

This approach is well suited for popular data, but when

searching rare data, walkers may visit twice or more the

same node.

A Gnutella-like system has been proposed in

[1]. The system relies on measures performed by

[8] that show the heterogenity in capabilities of the

peers involved in an unstructured P2P network such as

Gnutella. This system uses a biased random walk that

visits the nodes with a higher degree first. Each node

has pointers on data hosted by its neighbors, and each

new node that enters the network tries to connect to a

high-degree node. These features increase the overall

performance of the system by three to five orders of

magnitude.

3. Filling tree exploration

3.1. Principle

We propose to design walkers able to build filling

trees to explore a network area. They keep the sequence

of the visited nodes, recording a kind-of Ariadne se-

quence composed with successive visited nodes. This

sequence ensures that a node is visited once and only

once. On a plannar graph, this sequence builds incre-

mentally an uncrossable fence for the walker. When

encountering this limit, the walker splits, as shown in

figure 1, and each new walker inherits the previously

recorded path. The sequences of paths taken by the

walkers is a tree that fills the neighbourhood of the

source node Ps, ensuring that all nodes are scanned at

least and at most one time.

Figure 1. Principle of filling tree algorithm.

Since walkers create clones, this algorithm can be

viewed as a kind of k-walk. The advantage of this

approach is that, thanks to the properties of the net-

work overlay and the gathering of information about

visited nodes, all spawned walkers will not visit the

same nodes, whereas in traditional k-random walk this

may happen. Contrary to flooding (or LightFlood [3])

filling trees do not need a cache on nodes to store previ-

ous seen queries, as there is no discard process.

3.2. Cloning mecanism

Let N(p) be the 1-hop neighborhood of peer p.

When a walker visits p, it clusters unvisited nodes of

N(p). Because of the triangular mesh, all nodes in N(p)
describe a ring. By removing on this ring already vis-

ited nodes and their connections, there are between 0

and x = ⌊ |N(p)|
2
⌋ remaining connected components. A

clone of the walker is spawned in each of these remain-

ing connected component. The figure 2 shows an exam-

ple with two connected components. The behaviour of

walkers is described in algorithm 1

For x−1 connected components, there is a cycle in

the graph made from visited nodes (current visited peer

is acounted as visited). Walkers that explore these con-

nected components are trapped in deadlocks and cannot

explore the remainings of the network. This ensures that

no node will be visited more than once. The last walker

explores the remaining of the network still accessible.

Algorithm 1: Walker behaviour during explo-

ration

Input: start, Vp, T T Lp

current← start;

// visited nodes

V ←Vp;

TTL← T T Lp;

while T T L > 0 do
V ←V∪ {current};
// unvisited neighbors

W ← N(current)\V ;

TTL← TTL - 1;

if W = /0 then
TTL← 0;

else if T T L > 0 then

// nodes to visit

T ← /0;

while W 6= /0 do

// connected component

C←{randomElement(W)};
W ←W \C;

clusterGrow← true;

while clusterGrow do
clusterGrow← false;

forall p ∈ cluster do

if N(p)∩W 6= /0 then
C←C∪ (N(p)∩W);
W ←W ∩N(p);
clusterGrow← true;

end

end

end

dmax← max(|N(p)|)∀p ∈C;

C←{p ∈ cluster, |N(p)|= dmax};
T ← T ∪{randomElement(C)};

end

current← randomElement(T);
T ← T \{current};
forall p ∈ T do

launchWalker(p,V ,TTL);

end

end

end

High degree nodes are likely to be connected to-

gether, so that walkers are likely to hit fences and to

clone themselves. Our approach takes advantage of this

property to increase parallelism by visiting the largest

2-hops neighborhood first. We use the 2-hops neigh-

borhood instead of a 1-hop neighborhood because many

high degree nodes are connected through a third party

node.

Figure 2. Example of a cloning case.

When the request carried out by the walker is full-

filled, it returns to the initial node using the inverse path

it has recorded. The walker terminates if all neigh-

bors are already visited (no connected component is de-

tected) or if its TTL reaches 0.

4. Overlay

We assume that each node on the network has a

unique identifier. Nodes refresh the knowledge of their

2-hop neighborhood by sending their identifier and their

1-hop neighbors identifiers to their neighbors. Futher-

more, peers maintain a list of all the triangles they be-

long to. The size of this list is equal to the node’s de-

gree.

The overlay is maintained through the use of proto-

cols for node arrival and failure/departure. These proto-

cols induce a number of messages that are proportional

to node degrees. Because the average node degree in

a triangular mesh is nearly constant (or tends to six),

the bandwidth that is used and the number of generated

messages remains very limited. Not only this adaptive

mesh layer is important to support our strategy of explo-

ration, but also, it offers another interesting property: it

allows to promote high resource nodes with more con-

nexions, thus performing locally load balancing.

4.1. Node arrival

A peer p joining the network contacts a random

node p1 in the network. The way this random node p1 is

obtained can be achieved in various ways (for instance

with a central server registering few nodes taken at ran-

dom) and is not addressed here. A triangle (p1, p2, p3)
in the list of triangles containing p1 is then taken at

random. New connections are created between p− p1,

p− p2 and p− p3.

The lists of triangles of p1, p2 and p3 are then up-

dated. When a node connects to the network, it has a de-

Figure 3. Node arrival.

gree of three and increases the degree of the three nodes

by one. Hence the average node degree tends to six as

the size of the network grows.

4.2. Node departure/failure

We make the assumption that a node leaving the

network is equivalent to a failure of this node. A failure

on a node p f is detected by its neighbors when they do

not receive a ping message of p f within a given timeout.

If a failure is detected, then the overlay needs to be re-

paired in order to maintain the triangular mesh, except

if the failing node had a degree of three. In this case,

the node departure can be seen as the inverse of a node

arrival, as shown in figure 3.

Figure 4. Topology repairment after the failure
of node p f . The two neighbors of pr cannot be
candidate for handling the repairment because
they have three neighbors in N(p f).

The departure/failure of a node p f with a degree

higher than three makes a hole in the mesh. This hole

is delimited by N(p f) and its size is s = ‖N(p f)‖− 3.

This hole can be repaired by creating s connections.

The repairment process is handled by a node pr that

connects to other nodes of N(p f) excepts its neigh-

boors and itself, as shown in figure 4. As it creates

‖N(p f)\N(pr)‖−1 connections, it must have only two

neighbors in N(p f) to be able to create s connections.

Moreover, its two neighbors in N(p f) must have a min-

imal degree of 3 so that there are no nodes with a degree

of two after the repairment. However breaking this sec-

ond property invalidates the first one, as a node with

a degree of 2 will have its 2 neighbors in N(p f) con-

nected together, hence the first property is sufficient:

‖N(p f)∩N(pr)‖= 2.

To select Pr, we assume an order relationship be-

tween nodes identifier. The node in N(p f) with the low-

est identifier checks if it can handle the hole repairment.

This node knows it has the lowest identifier in N(p f)
because of the neighborhood knowledge he previously

received from p f . If the node cannot handle the repair-

ment process, it launches a token on the ring (nodes in

N(p f) describe a ring - see section 3.2). Each node on

the ring checks if it can handle the repairment process,

and if it cannot, the token is forwarded on the ring.

If all nodes in N(p f) have a degree of two, they are

all disconnected from the remaining of the network. Let

pc be a node that has a connection with another node

not in N(p f). Because of the triangular mesh, the two

neighboor of pc in N(p f) are connected to this other

node and there is a sequence of 3 nodes in N(p f) that

have at least a degree of 3. Because the overlay is a

planar graph, pc cannot be connected to other nodes in

N(p f) and satisfy the first constraint. This ensure that

at least one node fullfilling the two requested features

belongs to the ring (and will be found by the repairment

process). This repairment process ensures that the net-

work keeps the same overall shape.

4.3. Peers connectivity

Peer-to-peer networks feature heterogeneity

amongs peer resources as shown in [8]. As some peers

have more bandwidth or CPU, they can process more

queries than other peers. Therefore, nodes should have

a number of neighbors proportionnal to their amount

of available resources. This heterogeneity among

peers connectivity is achieved by switching peers

neighborhood.

If a peer p1 has more resources and a degree

smaller than one of its neighboor p2, it may disconnect

from its current neighbors except p2, and connect to all

neighbors of p2, except itself. p2 performs the same

process and exchanges its neighborhood with the one of

p1. As the repairment, this optimizing process ensures

that the network overall shape remains unmodified.

5. Experiments

Experiments have been performed on a dedicated

simulator developped in Java. At initialization, the net-

work is made of four nodes connected together: the

overlay is a tetrahedron, with all nodes having a degree

of four. The average node degree gets closer to six as

more nodes are added to the network with the process

described before.

We compare our approach with flooding [2], k-

random walk [4] and LightFlood [3]. We run the al-

gorithms on a random power-law graph with an aver-

age degree of six. Simulated networks contain 100000

nodes. Figure 5 shows an example of unfolded tree gen-

erated while exploring a part of the network. In our sim-

ulation, one third of the nodes have a degree of three,

hence, as described in section 4.2, their failure do not

need to be repaired.

Figure 5. Filling tree resulting of an exploration
with a TTL = 12 starting from node Ps. 236
nodes were visited. The node positions in the
unfolded tree do not reflect their position in the
overlay.

5.1. Coverage

Figure 6 shows the number of visited nodes accord-

ing to the TTL of the exploration. Flooding has the

best coverage for the lowest TTL, however this is as

the cost of redundant messages, as shown in figure 7.

LightFlood features good coverage at low TLL : 95%

of nodes are discovered with a TTL of 10.

Figure 6. Network coverage.

Our approach offers the same coverage as the

LightFlood approach at the expense of an extended TTL

: but unlike Lighflood, our system does not need a cache

storage on each visited node. A TTL of 30 remains

quite acceptable for a network of 100000 nodes. Ran-

dom walk is omitted here as it has poor coverage per-

formances.

Moreover, it takes about 40 hops for filling trees to

fully cover the network, while LightFlood covers 98.2%

of the network with a TTL of 100. This lack of exhaus-

tivity in LightFlood is explained in [3]: flooded mes-

sages may collide with each other within the spanning

tree and be discarded.

5.2. Redundancy

Let v be the number of visited nodes and m be the

number of generated messages. The percentage of re-

dundant messages is evaluated to 100× (m
v
−1). Figure

7 shows the percentage of redundant messages accord-

ing to the number of visited nodes on a static overlay.

We measure messages redundancy for flooding, k ran-

dom walk with 100 walkers, LightFlood with 4 hops of

pure flooding and our approach.

Figure 7. Message redundancy.

This experiment shows that random walk and

flooding do not scale well. While they are suited for vis-

iting few nodes (up to 20k nodes in our simulation) the

percentage of redundant messages increases with the

number of visited nodes. LightFlood generates up to 5

% of redundant messages after 4 hops of pure flooding.

Then redundancy decreases until reaching roughly one

percent for visiting 95k nodes. As shown on Figure 7,

filling tree still does not generate redundant messages.

5.3. Node departure

We measure the coverage of filling trees as more

and more nodes (taken at random) leave the network.

We evaluate our approach both on a fixed overlay (each

time a node is removed, the overlay is repaired) and on a

broken overlay (never repaired after a node departure).

We compare our approach with LightFlood with a repair

process that keeps average node degree constant. To

have similar coverage for both approaches, we set the

TTL for LightFlood to 8 after 4 hops of pure flooding,

and set the TTL of filling trees to 25. Results of this

experiment are plotted on figure 8.

Figure 8. Coverage with node departures

When repairing topologies, the number of nodes

covered by LightFlood and filling trees decreases as

more and more nodes are removed from the network.

Because of the settings we use, the number of nodes

covered by LightFlood is slightly greater than the num-

ber of nodes covered by filling trees but the gap between

the two approach is reduced as more and more nodes are

removed. This shows the efficiency of our repairment

process.

On a broken overlay, the number of nodes covered

by filling trees increases while up to 15% of nodes are

removed but decreases quickly when more of 15% of

nodes are removed. Having holes into the mesh in-

creases walker cloning rate, since holes increase the

number of different connected components of unvis-

ited nodes while analyzing the neighborhood of nodes.

However, because of the shape of the network, there

is still no redundancy. Of course, while the number of

covered nodes increases, the number of reachable nodes

(with an infinite TTL) slightly decreases.

This feature is very interesting because as node

churnning rate creates holes, a dynamic overlay is never

fully repaired. As our approach benefits from this prop-

erty, this shows that it is very well adapted to dynamic

environments.

6. Conclusion and future work

We introduced a strategy for the search in an un-

structured P2P network based on the unfolding of an

exploration tree. This tree features the evolution of a

collection of walkers that explores the mesh in a paral-

lel way, speeding up the search. We designed a low cost

maintained overlay to support this process. We show

that our approach takes into account the natural het-

erogeneity of the underlying network. The experiments

suggest very promising preliminary results on both sta-

ble and dynamic environments.

7. Acknowledgements

This research was supported by Region Bretagne.

References

[1] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick

Lanham, and Scott Shenker. Making gnutella-like p2p

systems scalable, 2003.

[2] Clip2. The gnutella protocol specification v0.4, 2002.

[3] Song Jiang, Lei Guo, Xiaodong Zhang, and Haodong

Wang. Lightflood: Minimizing redundant messages and

maximizing scope of peer-to-peer search. IEEE Trans-

actions on Parallel and Distributed Systems, 19(5):601–

614, 2008.

[4] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search

and replication in unstructured peer-to-peer networks,

2001.

[5] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-

peer information system based on the xor metric, 2002.

[6] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard

Karp, and Scott Shenker. A scalable content addressable

network. Technical Report TR-00-010, Berkeley, CA,

2000.

[7] Antony Rowstron and Peter Druschel. Pastry: Scalable,

decentralized object location, and routing for large-scale

peer-to-peer systems. Lecture Notes in Computer Sci-

ence, 2218, 2001.

[8] S. Saroiu, K. Gummadi, and S. Gribble. Measuring

and analyzing the characteristics of napster and gnutella

hosts, 2003.

[9] Ion Stoica, Robert Morris, David Karger, M. Frans

Kaashoek, and Hari Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. In

SIGCOMM ’01: Proceedings of the 2001 conference

on Applications, technologies, architectures, and pro-

tocols for computer communications, pages 149–160,

New York, NY, USA, 2001. ACM.

[10] Beverly Yang and Hector Garcia-Molina. Improving

search in peer-to-peer systems. In Proceedings of the

22nd International Conference on Distributed Comput-

ing Systems (ICDCS), 2002.

[11] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.

Tapestry: An infrastructure for fault-tolerant wide-area

location and routing. Technical Report UCB/CSD-01-

1141, UC Berkeley, April 2001.

