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Abstract

We consider a reaction-di�usion equation with a half-Laplacian. In the case where the solution

is independent on time, the model reduces to the Peierls-Nabarro model describing dislocations as

transition layers in a phase �eld setting. We introduce a suitable rescaling of the evolution equation,

using a small parameter ε. As ε goes to zero, we show that the limit dynamics is characterized by

a system of ODEs describing the motion of particles with two-body interactions. The interaction

forces are in 1/x and correspond to the well-known interaction between dislocations.

AMS Classi�cation: 35Q99, 35B40, 35J25, 35D30, 35G25, 70F99.

Keywords: non-local Allen-Cahn equation, reaction-di�usion equation, singular limit, Peierls-

Nabarro model, transition layer, particle systems.

1 Introduction

Let us set the one-dimensional half-Laplacian operator L de�ned on functions w ∈ L∞(R)∩
C1,β
loc (R) for some 0 < β < 1 by the Lévy-Khintchine formula

Lw(x) =
1

π

∫
R

dz

z2

(
w(x+ z)− w(x)− zw′(x)1{|z|≤1}

)
.

Given a suitable 1-periodic potential W which satis�es in particular W ′(k) = 0 for k ∈ Z
(W will be precised later in assumption (A)), it is known (see Section 3.2) that there exists
a unique solution φ of

(1.1)

{
Lφ−W ′(φ) = 0 on R,

φ′ > 0 and φ(−∞) = 0, φ(0) =
1

2
, φ(+∞) = 1.
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Model (1.1) is known as the Peierls-Nabarro model for dislocations in crystals where W is
called the stacking fault energy. Here φ(x) is a phase transition representation of a dislocation
localized at the position x = 0. For a physical introduction to the model, see for instance
[25]; for a recent reference, see [37]; we also refer the reader to the paper of Nabarro [33]
which presents an historical tour on the model.

We now consider a scalar function v solution of the following evolution problem associated
to the Peierls-Nabarro model:

(1.2) vt = Lv −W ′(v) + σε(t, x) on (0,+∞)× R

where σε is the exterior stress acting in the material. This equation has been for instance
considered in [32] (see also [14] for a similar model). We assume that this exterior stress is
given for ε > 0 small, by

σε(t, x) = εσ

(
t

ε2
,
x

ε

)
where σ is a given suitable function. Then we can consider the following rescaling

vε(t, x) = v

(
t

ε2
,
x

ε

)
.

We now look for scalar functions vε satisfying

(1.3)


vεt =

1

ε

{
Lvε − 1

ε
W ′(vε) + σ(t, x)

}
on (0,+∞)× R

vε(0, x) = vε0(x) for x ∈ R.

When vε has N transition layers as ε goes to zero, we will see that we can associate a
particle to each transition layer such that the dynamics of vε is driven by the following ODE
system for particles (xi(t))i=1,...,N :

(1.4)


dxi
dt

= γ

(
−σ(t, xi) +

1

π

∑
j 6=i

1

xi − xj

)
, on (0,+∞),

xi(0) = x0
i ,

∣∣∣∣∣∣∣ for i = 1, ..., N

where

(1.5) γ =

(∫
R
(φ′)2

)−1

.

1.1 Statement of the main result

To state precisely our main result, we make the following assumptions:
(A)
i) Assumption on the potential
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

W ∈ C2,β(R) for some 0 < β < 1,

W (v + 1) = W (v) for any v ∈ R,

W = 0 on Z,

W > 0 on R\Z,

W ′′(0) > 0.

ii) Assumption on the exterior stress
σ ∈ BUC ([0,+∞)× R) and for some 0 < β < 1 and K > 0, we have

|σx|L∞([0,+∞)×R) ≤ K, |σt|L∞([0,+∞)×R) ≤ K,

|σx(t, x+ h)− σx(t, x)| ≤ K|h|β for all x, h ∈ R, t ∈ [0,+∞).

We recall that BUC is the space of bounded uniformly continuous functions.
iii) Assumption on the initial condition

(1.6)


For x0

1 < x0
2 < ... < x0

N , we set

vε0(x) =
ε

α
σ(0, x) +

N∑
i=1

φ

(
x− x0

i

ε

)
with α = W ′′(0) > 0.

Let us now give our main result (which has been announced in [15]):

Theorem 1.1. (Convergence to the ODE system)
Under assumption (A), there exists a unique solution (xi(t))i=1,...,N of (1.4). Let

v0(t, x) =
N∑
i=1

H(x− xi(t))

where H(x) = 1[0,+∞)(x) is the Heaviside function. Then for any ε > 0, there exists a unique
viscosity solution vε of (1.3). Moreover as ε→ 0, vε converges to v0 in the following sense:

(1.7) lim sup
(t′,x′)→(t,x), ε→0

vε(t′, x′) ≤ (v0)∗(t, x)

and

(1.8) lim inf
(t′,x′)→(t,x), ε→0

vε(t′, x′) ≥ (v0)∗(t, x)

for (t, x) ∈ [0,+∞)× R.

Remark 1.2. We recall here that the semi-continuous envelopes of a given any function u
are de�ned as follows

u∗(t, x) = lim sup
(t′,x′)→(t,x)

u(t′, x′) and u∗(t, x) = lim inf
(t′,x′)→(t,x)

u(t′, x′).
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The proof of Theorem 1.1 is done by constructing suitable sub and supersolutions essen-
tially based on the following ansatz of the solution:

(1.9) ṽε(t, x) =
ε

α
σ(t, x) +

N∑
i=1

{
φ

(
x− xi(t)

ε

)
− εẋi(t) ψ

(
x− xi(t)

ε

)}
where ψ is a suitable corrector.

1.2 Brief review of the literature

As we have mentioned, the di�usion equation (1.3) is the evolution equation for the Peierls-
Nabarro model, which describes the dynamics of dislocation defects in crystal. For general
references, we refer the reader to [3] (see also the paper [36]). The Peierls-Nabarro model
can also be derived from Frenkel-Kontorova models (see [19]).

In the time-independent setting, our model is related to a pioneering work of Alberti-
Boucchitté-Seppecher. They have shown in [1] that if we consider the energy functional for
Ω ⊂ Rn and a double well potential W given by

Eε[u] =
1

2

∫
Ω

|∇u|2 +
1

ε

∫
∂Ω

W (u)

then, in particular, the rescalings Eε[u]/ |log ε| Gamma-converge when ε→ 0 to 2
π
H0(Su0) if

n = 2 (thus ∂Ω is one dimensional) and the minimizers uε converge to u0, where u0 = 0, 1
on ∂Ω, ∆u0 = 0 in Ω, and the singular set is

Su0 = {z ∈ ∂Ω : u0 jumps at z} .

A generalization to the case of elasticity equations with application to dislocations has been
done by Garroni and Müller in [22].

For the time-dependent case, the (anisotropic) mean curvature motion has been obtained
at the limit (in the framework of viscosity solutions) by Imbert and Souganidis [26]. Related
to this result, let us also mention the work [12].

It is important to mention that a result similar to Theorem 1.1 has been obtained for
the non linear heat equation (after a suitable rescaling)

vt = ε2vxx −W ′(v)

Here the interaction force between particles is also related to the behavior of the layer solution
associated to the non linear heat equation, and hence is of exponential type. For such results
using an invariant manifold approach, we refer the reader to Carr-Pego [10], Fusco-Hale [21],
and Ei [16] for generalization to systems of PDEs. For results using the energy approach, see
Bronsard-Kohn [6], Kalies, Van der Vorst, Wanner [27]. Remark that our approach by sub
and super solutions seems new (even in this context). We also refer to the paper of Chen
[11], for an interesting tour of the di�erent regimes of the solution to the non linear heat
equation that appear for general initial data.

Let us mention that similar results have also been obtained for Cahn-Hilliard equations
or their generalization to systems, called Cahn-Morral systems (see Grant [24]).
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We expect (even if we have no proof) Theorem 1.1 to be true for any power of the
Laplacian (−∆)α, α ∈ (0, 1), once the layer solutions of (1.1) are found. The existence of
such layer solutions is the content of the work in preparation [7], that tries to generalize the
work of Cabré and Solà-Morales [8] for layer solutions of the half Laplacian. The extension
problem (see [9]) that would be needed in this case is a degenerate elliptic equation with A2

weight, that has been well understood in the classical reference [18].
We should mention the result by Forcadel-Imbert-Monneau [20], where they homogenize

in particular system (1.4) and more generally non-local �rst order Hamilton-Jacobi equations
describing the dynamics of dislocation lines. Similarly, homogenization results have been
obtained in [31] for equation (1.2) for periodic stress σ.

1.3 Organization of the paper

In Section 2 we review of the notion and properties of viscosity solutions for this type of
non-local equations. Section 3 contains all the preliminary results that will be required later
(layer solutions, corrector) together with some motivation of our result and a study of the
ODE system of particles (1.4). Section 4 is the proof of the main result (convergence is
proven by �nding suitable sub and supersolutions of the PDE). Section 5 and Section 6 are
almost independent of the rest of the paper: Section 5 is a necessary review of known and
further results (used in Section 6) for the half-Laplacian operator, while Section 6 contains
the proof of the properties of the layer solution (Theorem 3.1) and of the existence of the
corrector (Theorem 3.2).

2 Viscosity solutions

We recall the de�nition of a viscosity solution v for equation (1.3) with ε = 1 to simplify,
namely for T ∈ (0,+∞):

(2.10)

{
vt = Lv −W ′(v) + σ(t, x) on (0, T )× R
v(0, x) = v0(x) for x ∈ R.

De�nition 2.1. (Viscosity sub and supersolutions)
An upper (respectively lower) semicontinuous function v ∈ L∞([0, T ) × R) is said to be a
subsolution (resp. a supersolution) of (2.10) if and only if

v(0, ·) ≤ v∗0 on R

(resp. v(0, ·) ≥ v∗0 on R)

and for any C2 test function ϕ satisfying

v = ϕ at the point (t0, x0) ∈ (0, T )× R

and
v ≤ ϕ on a neighborhood of {t0} × R

(resp. v ≥ ϕ on a neighborhood of {t0} × R)

then we have

ϕt(t0, x0) ≤ L1[ϕ(t0, ·), v(t0, ·)](x0)−W ′(ϕ(t0, x0)) + σ(t0, x0)
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(
resp. ϕt(t0, x0) ≥ L1[ϕ(t0, ·), v(t0, ·)](x0)−W ′(ϕ(t0, x0)) + σ(t0, x0)

)
where for any functions Φ(x), w(x) we set

L1[Φ, w](x0) =
1

π

∫
[−1,1]

dz

z2
(Φ(x0 + z)− Φ(x0)− zΦ′(x0))+

1

π

∫
R\[−1,1]

dz

z2
(w(x0 + z)− w(x0)) .

A function v ∈ L∞([0, T )×R) is said to be a viscosity solution of (2.10), if and only if v∗ is
a subsolution and v∗ is a supersolution.
Finally, a function v ∈ L∞loc([0,+∞)× R) is said to be a viscosity solution on [0,+∞)× R,
if and only if its is a viscosity solution on [0, T )× R for any T > 0.

Remark 2.2. (Classical solutions are viscosity solutions)
From this de�nition, we can easily check that every function v ∈ L∞([0, T )×R)∩C1,β

loc ([0, T )×
R) for some 0 < β < 1, is indeed a viscosity solution if and only if it is a classical solution
of (2.10). This is mainly due to the fact that vt and Lv(t, ·) are then de�ned pointwise.

Without entering in the details of the viscosity solutions (for which we refer the interested
reader the paper by Barles-Imbert [4]), let us recall the known results that we will use.

Proposition 2.3. (Perron's method)
Assume that there exists a supersolution v and a subsolution v of equation (2.10) satisfying

v ≤ v on [0, T )× R.

Then there exists a viscosity solution v of (2.10) satisfying

v ≤ v ≤ v on [0, T )× R.

Let us also recall the comparison principle:

Proposition 2.4. (Comparison principle)
Assume that v is a subsolution (resp. v is a supersolution) of equation (2.10) on [0, T ) such
that

v(0, x) ≤ v(0, x) for all x ∈ R.

Then
v ≤ v on [0, T )× R.

In particular, when the initial data v0 is continuous, the comparison principle implies the
uniqueness and the continuity of the solution.

3 Preliminary results

In this section, we collect several results that will be used in the section 4 for the proof of
our main result.
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3.1 Formal ansatz

In the following, we try to explain formally why we have to expect an ansatz as in (1.9) for
the solutions of (1.3).

Namely, we are looking for an ansatz for the solutions of

(3.11) −εvεt =
1

ε
{W ′(vε)− εLvε − εσ} on (0,+∞)× R.

Assume to simplify that σ is a constant here, and that there is only one transition layer.

First try for the ansatz
As a �rst try, in the case where σ̃ is constant, we could consider the Ansatz

ṽε(t, x) = εσ̃ + φ

(
x− x1(t)

ε

)
where φ is the transition layer solution of

(3.12) Lφ−W ′(φ) = 0.

When we plug this expression in (3.11), we get

ẋ1φ
′ ' 1

ε
{W ′(εσ̃ + φ)− Lφ− εσ}

' 1

ε
{W ′(εσ̃ + φ)−W ′(φ)− εσ}

' W ′′(φ)σ̃ − σ +O(ε)

where we have used (3.12) for the second line, and a Taylor expansion to get the third line.
From this computation, we learn two things. First for φ ' 0 we have to choose

(3.13) W ′′(0)σ̃ = σ.

The second information, is that it is impossible to satisfy the equation with this ansatz, and
we need to introduce a corrector.

Second try for the ansatz
Let us take

ṽε(t, x) = εσ̃ + φ

(
x− x1(t)

ε

)
− εcψ

(
x− x1(t)

ε

)
for σ̃ satisfying (3.13) and for some constant c to �x later. When we plug this expression in
(3.11), we get

ẋ1φ
′ + h.o.t. ' 1

ε
{W ′(εσ̃ + φ− εcψ)− Lφ+ cεLψ − εσ}

' 1

ε
{W ′(εσ̃ + φ− εcψ)−W ′(φ) + cεLψ − εσ}

' W ′′(φ)(σ̃ − cψ)− σ + cLψ + h.o.t.
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where we have used a Taylor expansion to get the last line. Finally using (3.13), we see that
ψ has to solve

(3.14) Lψ −W ′′(φ)ψ =
ẋ1

c
φ′ − σ̃

c
(W ′′(φ)−W ′′(0)).

We see that it is convenient to choose (in order to get later ψ independent on ẋ1)

ẋ1 = c.

Moreover, multiplying (3.14) by φ′ we get formally by integration:∫
R
φ′ (Lψ −W ′′(φ)ψ) =

∫
R
(φ′)2 − σ̃

c

(∫
R

d

dx
(W ′(φ(x))−W ′′(0)

∫
R
φ′
)

=

∫
R
(φ′)2 +

σ̃

c
W ′′(0).

On the other hand using the fact that L is self-adjoint, we get formally∫
R
φ′ (Lψ −W ′′(φ)ψ) =

∫
R
ψ (Lφ′ −W ′′(φ)φ′)

= 0.

where the last equality comes from the fact that φ solves (3.12) so then φ′ solves

Lφ′ −W ′′(φ)φ′ = 0.

Therefore, we get

c = −γσ with γ =

(∫
R
(φ′)2

)−1

and ψ solves

Lψ −W ′′(φ)ψ = φ′ + η(W ′′(φ)−W ′′(0)) with η =
1

γW ′′(0)
.

3.2 The layer solution and the corrector

In this subsection, we state without proofs some results on the layer solution and the cor-
rector. These results will be proven in Section 6.

We recall that the layer solution satis�es (1.1), namely

(3.15)

{
Lφ−W ′(φ) = 0 on R,

φ′ > 0 and φ(−∞) = 0, φ(0) =
1

2
, φ(+∞) = 1

Then we have
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Theorem 3.1. (Existence and properties of the layer solution)
Under assumption Ai), there exists a unique solution φ of (3.15). Moreover φ ∈ C1,β

loc (R) for
some 0 < β < 1, and there exists a constant C > 0 such that

(3.16) 0 < φ′(x) ≤ C

1 + x2
for all x ∈ R

and

(3.17)

∣∣∣∣φ(x)−H(x) +
1

απx

∣∣∣∣ ≤ C

x2
for all |x| ≥ 1

where H is the Heaviside function and α = W ′′(0).

We are also looking for a corrector ψ, solution of the following equation

(3.18)

{
Lψ −W ′′(φ)ψ = φ′ + η(W ′′(φ)−W ′′(0)) on R,
ψ(−∞) = 0 = ψ(+∞)

with

(3.19) η =

∫
R(φ′)2

W ′′(0)
.

Then we have

Theorem 3.2. (Existence and properties of the corrector)

Under assumption Ai), there exists a unique solution ψ ∈ H
1
2 (R) of (3.18). Moreover

ψ ∈ C1,β
loc (R) ∩ L∞(R) for some 0 < β < 1 and

|ψ′|L∞(R) < +∞.

3.3 The ODE system

Recall that we consider a solution (xi(t))i=1,...,N of (1.4), namely

(3.20)


dxi
dt

= γ

(
−σ(xi, t) +

1

π

∑
j 6=i

1

xi − xj

)
, on (0,+∞),

xi(0) = x0
i ,

∣∣∣∣∣∣∣ for i = 1, ..., N

where γ > 0 is given in (1.5).
We recall the following result

Lemma 3.3. (Lower bound on the distance between particles, [20])
Let (xi(t))i=1,...,N be the solution of (3.20) on [0, T ] and let

d(t) := min{|xi(t)− xj(t)| , i 6= j}
be the minimal distance between particles. Then under assumptions Ai) and Aii), we have
for all t ∈ [0, T ]

d(t) ≥ d(0)e−Ct with C = γK

where K is the space Lipschitz constant of σ.

This lemma prevents the crossing of particles in �nite time. As a consequence, we easily
get the following long time existence result:

Corollary 3.4. (Long time existence of a solution to the ODE system)
Under assumption (A), there exists a unique solution (xi(t))i=1,...,N of (3.20) on [0,+∞).
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4 The convergence result: proof of Theorem 1.1

We want to build a supersolution with a parameter δ > 0 to �x later. We de�ne (xi(t))i=1,...,N

as the solution of
dxi
dt

= γ

(
−δ − σ(xi, t) +

1

π

∑
j 6=i

1

xi − xj

)
, on (0,+∞),

xi(0) = x0
i − δ,

∣∣∣∣∣∣∣ for i = 1, ..., N

with γ given in (1.5).
We also de�ne

vε(t, x) = εσ̃(t, x) +
N∑
i=1

{
φ

(
x− xi(t)

ε

)
− εci(t)ψ

(
x− xi(t)

ε

)}
where 

ci(t) = ẋi(t)

σ̃ =
δ + σ

α
with α = W ′′(0) > 0

and φ is given in Theorem 3.1 and ψ in Theorem 3.2.

Then we have

Proposition 4.1. (Supersolution at the initial time)
Under assumption (A), there exists δ0 > 0 such that for all 0 < δ ≤ δ0, we have

(4.21) vε(0, x) ≥ vε0(x) for all x ∈ R

for ε > 0 small enough.

Proof of Proposition 4.1
First we choose δ > 0 small enough such that

x0
i < xi+1(0) < x0

i+1 for i = 1, ..., N − 1.

Let A > 0 be large enough such that

(4.22)
δ

α
≥

(
N∑
i=1

|ci(0)|

)
sup

R\[−A,A]

|ψ|.

Case 1: |x− xi(0)| ≥ εA for each i = 1, ..., N

Using the fact that φ is increasing, we deduce that φ

(
x− xi(0)

ε

)
≥ φ

(
x− x0

i

ε

)
and then

using (4.22), we get that
vε(0, x) ≥ vε0(x).

Case 2: |x− xi0(0)| < εA for some index i0 ∈ {1, ..., N}
Then

φ

(
x− xi0(0)

ε

)
≥ φ(−A) > 0
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while

φ

(
x− x0

i0

ε

)
= φ

(
x− xi0(0)− δ

ε

)

≤ φ

(
A− δ

ε

)
= O

(ε
δ

)
as ε→ 0.

Therefore for ε small enough, we have

φ

(
x− xi0(0)

ε

)
≥ φ

(
x− x0

i0

ε

)
+

N∑
i=1

εci(0)ψ

(
x− xi(0)

ε

)
.

Using again the monotonicity of φ, we conclude in case 2 that

vε(0, x) ≥ vε0(x).

Finally case 1 and 2 prove that (4.21) holds for any x ∈ R. This ends the proof of the
Proposition.

Let us de�ne for i = 1, ..., N
ψi := ψ

(
x− xi(t)

ε

)

φ̃i := φ

(
x− xi(t)

ε

)
−H

(
x− xi(t)

ε

)
where H is the Heaviside function.

Lemma 4.2. (Computation using the ansatz)
Let

Iε := εvεt +
1

ε
{W ′(vε)− εLvε − εσ}.

Then for any i0 ∈ {1, ..., N}, we have

(4.23) Iε = eεi0 + (ασ̃ − σ) +O(φ̃i0)

{
ηci0 + σ̃ +

∑
i 6=i0

φ̃i
ε

}

where η is de�ned in (3.19) and the error eεi0 is given by

eεi0 = O(ε) +
∑
i 6=i0

O(ψi) +
∑
i 6=i0

O(φ̃i) +
∑
i 6=i0

O

(
(φ̃i)

2

ε

)
.

Proof of Lemma 4.2
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We have, using the equation for the corrector, that

Iε =

(
N∑
i=1

−ẋiφ′
(
x− xi(t)

ε

))
+

(
ε

N∑
i=1

{
(ci)

2ψ′
(
x− xi(t)

ε

)
− εċiψi

})
+ ε2σ̃t

+
1

ε



−ε2Lσ̃ − εσ

+W ′

(
εσ̃ +

N∑
i=1

{
φ̃i − εciψi

})

−
N∑
i=1

{
W ′(φ̃i)− εci

[
W ′′(φ̃i)ψi + φ′

(
x− xi(t)

ε

)
+ η

(
W ′′(φ̃i)−W ′′(0)

)]}


.

We �rst remark that all the terms in φ′ vanish (because ci = ẋi). Using assumption (A),
we can bound σ̃t, Lσ̃ and ċi. Moreover using Theorem 3.2, we can also bound ψ′. Finally,
collecting all the terms of order ε together, we get simply

Iε = O(ε) +
1

ε



−εσ

+W ′

(
εσ̃ +

N∑
i=1

{
φ̃i − εciψi

})

−
N∑
i=1

{
W ′(φ̃i)− εci

[
W ′′(φ̃i)ψi + η

(
W ′′(φ̃i)−W ′′(0)

)]}
.


Now let us choose any index i0 ∈ {1, ..., N} and let us make a Taylor expansion of W ′(·)
when the argument of this function is close to φ̃i0 . We get

Iε = −σ +O(ε) +
1

ε



W ′(φ̃i0) +W ′′(φ̃i0)

{
εσ̃ +

∑
i 6=i0

φ̃i0 +

(
−εci0ψi0 +

∑
i 6=i0

−εciψi

)}

+0

(
ε2 +

∑
i 6=i0

(φ̃i)
2

)

−
{
W ′(φ̃i0)− εci0

[
W ′′(φ̃i0)ψi0 + η

(
W ′′(φ̃i0)−W ′′(0)

)]}
−
∑
i 6=i0

{
W ′′(0)φ̃i +O((φ̃i)

2)− εci
[
W ′′(φ̃i)ψi + 0(φ̃i)

]}
.


We remark that the terms in W ′(φ̃i0) vanish and the terms in ψi0 vanish. Now taking into
account the de�nition of eεi0 , we see that we get

Iε = −σ + eεi0 + (W ′′(φ̃i0)−W ′′(0))

{
σ̃ +

∑
i 6=i0

φ̃i
ε

+ ηci0

}
+W ′′(0)σ̃

12



and then

Iε = eεi0 + (ασ̃ − σ) +O(φ̃i0)

{
σ̃ +

∑
i 6=i0

φ̃i
ε

+ ηci0

}
.

This ends the proof of the lemma.

We are now ready to prove the following result:

Proposition 4.3. (Supersolution for positive time)
Under assumption (A), there exists δ0 > 0 such that for all 0 < δ ≤ δ0 and given T > 0, we
have

(4.24) vεt ≥
1

ε

(
Lvε − 1

ε
W ′(vε) + σ(t, x)

)
on (0, T )× R

for ε > 0 small enough.

Proof of Proposition 4.3
Case 1: |x− xi0(t)| ≤ ε

1
3 for some index i0 ∈ {1, ..., N}

Hence for ε small enough, we also have

|x− xi(t)| ≥ ε
1
3 for i ∈ {1, ..., N} \ {i0} .

Recall also that by (3.17), we have∣∣∣∣φ(y)−H(y) +
1

απy

∣∣∣∣ ≤ C

y2
for all |y| ≥ 1.

We deduce that ∣∣∣∣∣∑
i 6=i0

{
φ̃i
ε

+
1

απ(x− xi)

}∣∣∣∣∣ ≤ (N − 1)Cε
1
3 = O(ε

1
3 ).

Therefore using (4.23)

Iε ≥ eεi0 +O(ε
1
3 ) + ασ̃ − σ

+0(φ̃i0)

{
1

α
(δ + σ(t, x))−

∑
i 6=i0

1

απ(xi0 − xi)
+

1

αγ
ci0

}

≥ eεi0 +O(ε
1
3 ) + δ + 0(φ̃i0) {σ(t, x)− σ(t, xi0)}

≥ δ +O(ε
1
3 ) + eεi0

≥ δ/2 for ε small enough

where in the �rst inequality we have used the fact that αγη = 1. To get the last line, we
have used the fact that eεi0 → 0 as ε→ 0.

Case 2: |x− xi(t)| ≥ ε
1
3 for each i = 1, ..., N

Using in particular that
φ̃i = O(ε

2
3 )

13



we conclude again from (4.23) that

Iε ≥ δ/2 for ε small enough.

Finally case 1 and 2 prove that for ε small enough we have

Iε ≥ δ/2 for every x ∈ R

which ends the proof of the Proposition.

Proof of Theorem 1.1
Step 1: existence and uniqueness of the solution
First remark that for ε small enough the initial condition satis�es

−1 ≤ vε0 ≤ N + 1

and the functions

u(t, x) = −1−Kεt and u(t, x) = N + 1 +Kεt

with
Kε = ε−1|σ|L∞([0,+∞)×R) + ε−2|W ′|L∞(R)

are respectively sub and supersolutions of (1.3) on [0,+∞)×R. From the Perron's method,
it follows the existence of a solution vε of (1.3) on [0,+∞) × R which is moreover unique
thanks to the comparison principle (Proposition 2.4).
Step 2: sub and supersolutions as ε→ 0
Now, given any �xed T > 0, and thanks to Propositions 4.1 and 4.3, we can �nd some δ > 0
small enough such that vε is a supersolution of (1.3) on [0, T )× R.
Similarly we can build a subsolution vε (de�ned simply as vε but with δ < 0). At the initial
time we have

vε(0, x) ≥ vε(0, x) ≥ vε(0, x) for all x ∈ R

and then from the comparison principle, we get that

vε(t, x) ≥ vε(t, x) ≥ vε(t, x) for all t ∈ [0, T ), x ∈ R.

Now for �xed T > 0, we get the result (namely (1.7) and (1.8)) on [0, T )×R, passing to the
limit as ε → 0. Finally, because T > 0 was arbitrary, we recover the result for all time on
[0,+∞)× R. This ends the proof of the Theorem.

5 Known and further results on the half-Laplacian

In this section, we recall several results that will be used in Section 6 for the proof of The-
orems 3.1 and 3.2. We �rst recall four de�nitions (that are equivalent for smooth enough
functions) of the half-Laplacian operator (Fourier, Lévy-Khintchine, classical harmonic ex-
tension, notion of weak solutions).

We will essentially use the notion of weak solution (via the harmonic extension) for which
we will show that it coincides with the notion of viscosity solutions (via the Lévy-Khintchine

formula), when the function is in the space L∞(R) ∩ C1,β
loc (R) ∩H 1

2 (R).
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Then we recall results from [8] on the layer solutions and the comparison principle (for
the harmonic extension). We also recall regularity results for harmonic extensions and give
new useful results for the L∞ regularity of solutions to half-Laplacian type equations.

There are many points of view to handle half-Laplacian operators. Here we have chosen to
consider it through a harmonic extension problem, although another more direct approach
could have been taken. However, our approach has two advantages: �rst, many of the
results reduce to its analogous for harmonic functions, and second, we use the setting already
established by Cabré and Solà Morales in [8]. Another advantage is that this is precisely the
setting of Cabré-Sire [7] for generalization to any power α ∈ (0, 1).

5.1 The Direct approaches

5.1.1 The Fourier approach

We recall our de�nition of the Fourier transform for w ∈ S(R) (where S(R) is the Schwartz
space):

ŵ(ξ) =

∫
R
w(x) e−iξxdx for all ξ ∈ R

and recall the de�nition of the following Hilbert space

H
1
2 (R) =

{
w ∈ L2(R),

∫
R
dξ (1 + |ξ|)|ŵ(ξ)|2 < +∞

}
with the scalar product

(v, w)
H

1
2 (R)

=

∫
R
dξ (1 + |ξ|)v̂∗(ξ)ŵ(ξ)

where v̂∗ denotes here the complex conjugate of v̂. We also set the following Hilbert space

H−
1
2 (R) =

{
w ∈ S ′(R), ŵ ∈ L2

loc(R),

∫
R
dξ (1 + |ξ|)−1|ŵ(ξ)|2 < +∞

}
with the scalar product

(v, w)
H−

1
2 (R)

=

∫
R
dξ (1 + |ξ|)−1v̂∗(ξ)ŵ(ξ).

It is known that H−
1
2 (R) is the dual of H

1
2 (R). Recall that we set L = −(−∆)

1
2 to be the

half-Laplacian operator de�ned in Fourier space by

(5.25) L̂w(ξ) := −|ξ|ŵ(ξ) for ξ ∈ R.

In particular, L is a continuous linear mapping from H
1
2 (R) into H−

1
2 (R) satisfying

‖Lw‖
H−

1
2 (R)
≤ ‖w‖

H
1
2 (R)

.

Moreover L is self-adjoint as follows: for any v, w ∈ H 1
2 (R), we have

< Lv,w >
H−

1
2 (R)×H

1
2 (R)

=< Lw, v >
H−

1
2 (R)×H

1
2 (R)

.

Finally let us remark that for any w ∈ H 1
2 (R) we have

(5.26) < −Lw,w >
H−

1
2 (R)×H

1
2 (R)

+

∫
R
w2 =

1

2π
(w,w)

H
1
2 (R)

.
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5.1.2 The approach in real space

We have the following result (see [28], or the more recent paper [13], Theorem 1):

Theorem 5.1. (The Lévy-Khintchine formula)

For any 0 < β < 1, if w ∈ H 1
2 (R) ∩ C1,β

loc (R), then we have

Lw(x) =
1

π

∫
R

dz

z2

(
w(x+ z)− w(x)− zw′(x)1{|z|≤1}

)
.

Moreover this formula allows also to de�ne Lw for instance for w ∈ L∞(R) ∩ C1,β
loc (R).

Remark 5.2. In the previous formula the characteristic function 1{|z|≤1} can be replaced by
1{|z|≤r} for any r > 0, which does not change the value of the integral.

The operator L is called a Lévy operator associated to the Lévy measure dz/z2. In

particular, the Lévy-Khintchine formula allows to see that for any w ∈ H 1
2 (R), we have

(5.27)
1

2π

∫
R
dξ |ξ||ŵ(ξ)|2 =< −Lw,w >

H−
1
2 (R)×H

1
2 (R)

=
1

2π

∫
R×R

dxdx′
|w(x′)− w(x)|2

|x′ − x|2
.

This last formula is a simple exercise and can be found in the book by Lieb-Loss [29], theorem
7.12, part ii.

5.2 The approaches by harmonic extension on R2
+ and notion of

weak solutions

In the following, we give a characterization of the half-Laplacian operator in R through
a harmonic extension to the upper half-plane as a Dirichlet-to-Neumann operator. This
relation was well known but it has been recently rediscovered by Ca�arelli-Silvestre in [9],
where they also give the generalization to any fractional power of the Laplacian between
zero and one.

The main advantage of this interpretation is that the regularity results and maximum
principles for the half-Laplacian can be shown through the analogous results for harmonic
functions in the extension, as it has been considered by Cabré and Solà Morales in [8].

5.2.1 Classical harmonic extension for smooth functions with compact support

Assume that w ∈ C∞c (R) (the space of smooth functions with compact support) and consider
its harmonic extension u(x, y) on

Ω := {(x, y) : x ∈ R, y > 0} = R2
+

de�ned as the solution of

(5.28)


∆u = 0 on Ω,

u(x, 0) = w(x) for all x ∈ ∂Ω.

Then it is known that

(5.29) Lw(x) = −∂u
∂ν

(x, 0) for all x ∈ ∂Ω.
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Here, and for the rest of the paper, ν denotes the exterior normal along ∂Ω.
The half-Laplacian appears to be a Dirichlet-to-Neumann operator. This is also called

a Steklov-Poincaré operator. Moreover, we can use the Poisson kernel P for the upper
half-plane to write u = P ∗x w, i.e.,

(5.30) u(x, y) = c2

∫
R

y

|x− ξ|2 + y2
w(ξ)dξ,

where c2 is a dimensional constant.

5.2.2 Harmonic extension of functions in H
1
2 (R)

Now let us de�ne the scalar product

(u, v)H =

∫
Ω

∇u · ∇v +

∫
∂Ω

uv

and consider the Hilbert space

H = C∞c (Ω)
|·|H
.

Then we have the following result:

Theorem 5.3. (The trace mapping)
The trace mapping

T : H −→ H
1
2 (R)

u 7−→ Tu := u(·, 0)

is linear continuous and satis�es

(5.31) ‖Tu‖2

H
1
2 (R)
≤ 2π ‖u‖2

H .

Moreover we have ‖Tu‖2

H
1
2 (R)

= 2π ‖u‖2
H if and only if u is harmonic on Ω.

Proof. For u smooth and with compact support, the classical embedding trace inequality
reads

(5.32) ‖Tu‖2

Ḣ
1
2 (R)

:=

∫
R×R

dxdx′
|Tu(x′)− Tu(x)|2

|x′ − x|2
≤ 2π

∫
Ω

|∇u|2 dxdy.

A proof of the previous inequality can be found in corollary 6.3 in [2]. Then (5.31) follows by
putting together the previous line with (5.26) and (5.27). For a general u the result follows
by density, while the equality case is dealt with in Theorem 5.4 below.

Now, we can reformulate problem (5.28)-(5.29) in a more general setting:

Theorem 5.4. (Half-Laplacian de�ned by the harmonic extension)

For any w ∈ H 1
2 (R), there exists a unique u ∈ H which is harmonic on Ω, such that Tu = w,

and it is written as u = P ∗x w. Moreover for any v ∈ H, we have

(5.33) < −Lw, Tv >
H−

1
2 (R)×H

1
2 (R)

=

∫
Ω

∇u · ∇v.
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In particular,

1

2π

∫
R
dξ |ξ||ŵ(ξ)|2 =< −Lw,w >

H−
1
2 (R)×H

1
2 (R)

=

∫
Ω

|∇u|2,

and

(5.34)

∫
Ω

|∇u|2 +

∫
∂Ω

w2 =
1

2π
‖w‖2

H
1
2 (R)

.

The previous theorem allows to de�ne weak solutions (in the sense of distributions) for
half-Laplacian equations, that may not be necessarily equivalent to the notion of viscosity
solutions introduced in De�nition 2.1. Although the introduction of a new concept may seem
confusing at �rst, it will allow to use the available functional analysis tools. Moreover, this
de�nition is a particular case of the one introduced in [8]. Thus we set:

De�nition 5.5. (Weak sub/super/solution)

Let d be a measurable bounded function on R, and let g ∈ L2(R). We say that w ∈ H 1
2 (R)

is a weak supersolution for the equation

(5.35) Lw − d(x)w = g on ∂Ω

if, for u := P ∗x w and

B(u, v) :=

∫
Ω

∇u · ∇v +

∫
∂Ω

d(x)(Tu)(Tv),

we have that

(5.36) B(u, v) ≥
∫
∂Ω

gTv for all v ∈ H.

Respectively, w is a weak subsolution if

(5.37) B(u, v) ≤
∫
∂Ω

gTv for all v ∈ H.

Accordingly, we say that w is a weak solution if it is both a weak sub and supersolution.

We summarize the di�erent concepts in the following lemma:

Lemma 5.6. (Equivalence of solutions)
Given w ∈ L∞(R) ∩ C1,β

loc
(R), the following two ways of compuing Lw, i.e,

1. as a Dirichlet to Neumann operator (see section 5.3.1., in particular (5.28)-(5.29));

2. using the Lévy-Khintchine formula (see theorem 5.1),

are equivalent.
If, in addition, w ∈ H 1

2 (R), then the half-Laplacian de�nition in term of distributions as
given in theorem 5.4 is also equivalent. As a consequence, the notions of viscosity and weak
solutions from De�nitions 2.1 and 5.5, respectively, coincide in the smooth case.

Proof. We refer the reader to the paper [13].
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5.3 Miscellanea

Here we remind the reader some basic facts.
For harmonic extensions, we have (cf. [35], chapter II.2):

Theorem 5.7 (Lp bound). If w ∈ Lp(R), 1 ≤ p ≤ ∞, and u = P ∗x w is the Poisson
integral of w, then u is harmonic in R2

+, limy→0 u(x, y) = w(x) for almost every x ∈ R and

‖u(·, y)‖Lp(R) =

(∫
R
|u(x, y)|p dx

)1/p

≤ ‖w‖Lp(R)

for all y > 0. If w is bounded on R, then also u is uniformly bounded in R2
+.

As a consequence, given w ∈ H 1
2 (R), then for u = P ∗xw ∈ H we have that u ∈ W 1,2(B+

R)
for every half ball B+

R , since∫
B+
R

u2 dxdy ≤
∫
y∈(0,R)

∫
x∈R

u2 dxdy ≤ R

∫
∂Ω

w2.

Moreover (c.f. [17], Chapter 2, Section 2, Theorem 7):

Theorem 5.8 (Local gradient estimates). Assume that u is harmonic in a domain U .
Then

|Dαu(x0)| ≤ Ck
rk
‖u‖L∞(Br(x0)) ,

for every ball Br(x0) ⊂ U , and multiindex |α| = k.

Next, we give some classical facts on Sobolev spaces, from [30] (Section 7.1.3, Theorem
4, part (6) and Section 8.8.1, Theorem 4):

Theorem 5.9. (Sobolev embedding) The injection

H
1
2 (R) ↪→ Lp(R)

is continuous, for any p > 1. Moreover, if K ⊂ R is a compact subset, then the restriction
map

H
1
2 (R) ↪→ Lp(K)

is a compact embedding for any p > 2.

5.4 Layer solutions for half-Laplacian problems

The paper [8] is concerned with the boundary reaction problem

(5.38)

∆u = 0 in Ω,

∂u

∂ν
= f(u) on ∂Ω,

for some non-linearity f . We say that u is a layer solution of (5.38) if it satis�es (5.38),
ux > 0 on ∂Ω and

lim
x→−∞

u(x, 0) = 0, lim
x→+∞

u(x, 0) = 1.

19



Since we are only concerned with smooth solutions of (5.38), then we do not need to
worry here about the di�erent concepts of weak or viscosity solutions for half-Laplacian
problems previously introduced.

In the next theorem we summarize the basic facts about existence and behavior of layer
solutions for (5.38) (see theorems 1.2, 1.4, 1.6, and equation (2.27) from [8]).

Theorem 5.10. (Known existence and properties of the layer solution)
Let f be any C1,β function with 0 < β < 1 and such that W ′ = −f . Then there exists a layer
solution uW ∈ C2,β

loc
(Ω) of (5.38) if and only if

W ′(0) = W ′(1) = 0 and W > W (0) = W (1) in (0, 1).

Moreover,

1. If W ′′(0),W ′′(1) > 0, then a layer solution of (5.38) is unique up to translations in
the x variable, and it satis�es

(5.39) (uW )x > 0 in Ω.

2. We have the estimate

(5.40) |∇uW (x, y)| ≤ C

1 + |(x, y)|
, for all x ∈ R, y ≥ 0.

3. Set φ(x) := uW (x, 0). We have the bounds

(5.41) |φ(x)−H(x)| ≤ C

1 + |x|
for all x ∈ R,

(5.42)
C1

1 + |x|2
≤ φ′(x) ≤ C2

1 + |x|2
, for all x ∈ R,

for some positive constants C,C1, C2.

4. A layer solution is always a stable solution. This means that

(5.43)

∫
Ω

|∇v|2 +

∫
∂Ω

W ′′(φ)v2 ≥ 0

for every function v ∈ C1(Ω) with compact support in Ω.

One of the crucial ingredients in the present work is the precise knowledge of the asymp-
totics for φ as given in (3.17). In order to improve from the known (5.41), we will use a
comparison argument with the explicit layer solution of the Peierls-Nabarro problem (see [8],
Lemma 2.1, for the proofs, or the original paper [36]): for each a > 0, consider the equation

(5.44)

∆ua = 0 in Ω,

∂ua

∂ν
= −V ′a(ua) on ∂Ω,
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with potential given by

V ′a(t) = − 1

2πa
sin
[
2π
(
t− 1

2

)]
.

It is well known that the function

(5.45) ua(x, y) =
1

π
arctan

x

y + a
+

1

2

is a layer solution for the problem (5.44) and, in fact, it is the only one.

A simple computation gives that

(5.46) uax ≤ a
∂uax
∂ν

+ 2uax

along ∂Ω. Set φa(x) := ua(x, 0). We know explicitly its asymptotic behavior

(5.47)
∣∣∣φa(x)−H(x) +

a

πx

∣∣∣ ≤ C

1 + |x|2
for all x ∈ R,

an improvement from (5.41).

Finally, �x ū := (uW )x ∈ C1,β

loc
(Ω̄), and note that ū = P ∗x φ′. Then:

Lemma 5.11. (Properties of φ′). For ū de�ned as ū = P ∗x φ′, we have that

1. ū ∈ H.

2. φ′ is a weak solution of Lw −W ′′(φ)w = 0 in the sense of De�nition 5.5, i.e.,

(5.48) B(ū, v) = 0 for all v ∈ H.

Proof. We recall estimate (3.16). It shows that φ′ ∈ L2(R). To complete the proof of
the �rst claim we need to check that

∫
Ω
|∇ū|2 <∞.

Step 1:
∫
{0<y<R} |∇ū|

2 < +∞.

We proceed as in the proof of Lemma 2.3 in [8]. We �rst set

v(x, y) =

∫ y

0

ū(x, t)dt.

We can see that v is a (smooth) solution of{
∆v = W ′′(φ(x))φ′(x) in Ω,
v(x, 0) = 0 on ∂Ω.

We know (5.40) which implies that v ∈ L2 (R× [0, R]). Because the right hand side of the
equation is bounded in L2(R × [0, R]), and here we are using again the precise decay of φ′,
then we get also that v ∈ W 2,2

loc using the boundary gradient estimates for harmonic functions
in [23], Lemma 9.12. As a consequence, ū ∈ W 1,2(R× [0, R]).
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Step 2:
∫
{y>R} |∇ū|

2 < +∞.

Far away from the boundary of Ω, we can use standard interior gradient estimates (Lemma
5.8) for the harmonic function ū, say, at a ball B1(x, y) ⊂ Ω so that

|∇ū(x, y)| ≤ C ‖ū‖L∞(B1(x,y)) ≤
C ′

1 + (|(x, y)| − 1)2

where we have used (5.40) in the last inequality.
Step 3: Conclusion.
From Steps 1 and 2, we get that ū ∈ H.
Step 4: Proof of (5.48).
From (5.38) with f = −W ′, we get for any w ∈ C∞c (Ω):

0 =

∫
Ω

∇u · ∇w +

∫
∂Ω

wW ′(u)

Setting w = vx with v ∈ C∞c (Ω), we get by integration by parts

B(ū, v) = 0

Finally, we conclude by density of C∞c (Ω) in H.

5.5 Comparison principles for smooth enough solutions

Next, we consider some comparison results for half-Laplacian equations:

Lemma 5.12 (Strong comparison principle, Lemma 2.8 in [8]). Let v be a bounded
function in Ω, v ∈ C2(Ω) and C1 up to the boundary ∂Ω, satisfying

(5.49)

 −∆v ≥ 0 in Ω,

∂v

∂ν
+ d(x)v ≥ 0 on ∂Ω,

for some bounded function d satisfying d(x) ≥ τ for all x ∈ R and some τ > 0. Then v > 0
in Ω unless v ≡ 0.

We will also need the following variation:

Corollary 5.13. Let v be a bounded function in Ω, v ∈ C2(Ω) and C1 up to the boundary
∂Ω, satisfying ∆v = 0 in Ω,

∂v

∂ν
+ d(x)v = M(x) on ∂Ω,

where d is a bounded function satisfying d(x) ≥ τ for all x ∈ R and some τ > 0. Assume,
in addition, that the right hand side M can be estimated by

|M(x)| ≤ C

1 + |x|2
, x ∈ R
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for some constant C ≥ 0. Then there exists a non-negative constant C̃ depending on C, τ
such that

|v(x, 0)| ≤ C̃

1 + |x|2

for all x ∈ R.

Proof. Fix a := 2/τ , and consider the model layer solution ua given in (5.45), with trace
φa. Because of hypothesis on M and the decay of (φa)x from (5.42), we can �nd a positive
constant K such that |M(x)| ≤ Kφax(x) for all x ∈ R. Next, compute

∂v

∂ν
+ d(x)v = M(x) ≤ Kuax ≤ K

[
2

τ

∂uax
∂ν

+ 2uax

]
≤ 2K

τ

[
∂uax
∂ν

+ d(x)uax

]
along ∂Ω,

where we have used (5.46) in the second inequality. Now we apply Lemma 5.12 to the
di�erence

[
2K
τ
uax − v

]
to get v ≤ 2K

τ
uax in Ω̄. The same argument, applied to −v gives

that |v| ≤ 2K
τ
uax. Taking into account the estimate (5.42), we achieve the conclusion of the

corollary.

5.6 Further properties of weak solutions

The aim of this subsection is to extend the classical results for harmonic functions to the
boundary ∂Ω, in order to obtain regularity and maximum principles for weak solutions (in
the sense of de�nition 5.5). We set

u− := − inf{u, 0}, u+ := sup{u, 0}.

Our �rst result is a weak maximum principle for non-smooth solutions:

Proposition 5.14. (Weak maximum principle). Let u ∈ H be a weak supersolution of
(5.35) with g ≡ 0, and let d(x) be a measurable bounded function. Set u = P ∗x w. Assume

that u ≥ 0 in B+
R , and that d > 0 on R\[−R,R]. Then

u ≥ 0 in R2
+,

and also, Tu ≥ 0 on R.

Proof. This is a small variation of the classical proof for the Laplacian, that can be
found in Gilbarg-Trudinger [23], Theorem 8.1. Note that (Tu)− = T (u−) a.e. in R. Set

Ω− := supp(u−) and Θ := supp((Tu)−) ⊂ R.

We know that Ω− is contained in R2
+\B+

R and Θ ⊂ R\(−R,R). Use u− ∈ H as an admissible
test function in (5.36); then

0 ≤ −
∫

Ω−
|∇u|2 −

∫
Θ

d(x)u2.

The proof is easily completed.

23



Note that a function u ∈ H must have trace Tu belonging to Lp(R) for all p > 1.
However, it may not belong to L∞(R). In the next result, we use a Moser iteration scheme
to show that weak solutions are actually bounded.

Proposition 5.15. (L∞ bound for g = 0). Let w ∈ H 1
2 (R) be a weak subsolution of (5.35)

with g ≡ 0 for some uniformly bounded function d de�ned on R. Then

sup
R
w ≤ C

∥∥w+
∥∥
L2(R)

.

If w is a supersolution, the conclusion reads

sup
R
{−w} ≤ C

∥∥w−∥∥
L2(R)

.

The constant does not depend on w. As a corollary, u := P ∗x w is also uniformly bounded
on Ω.

Proof. This is the classical proof by Moser for the Laplacian case. We follow closely the
arguments from Theorems 8.15 and 8.18 in Gilbarg-Trudinger [23], so we will not give every
single detail here. Assume that w is a subsolution, and set u := P ∗x w. Given σ ≥ 1, we
insert into (5.37), the test function

v = (u+)σ.

Note that Tv = (Tu)σ a.e.. Here we point out that this v might not belong to H; in order
to make the argument rigorous, a truncated version must be used instead in the de�nition
of v, say replacing u+ by

(5.50) min{u+, n}, for n ∈ N.

We obtain

σ

∫
Ω

uσ−1∇u · ∇u+ ≤
∫
∂Ω

−d(x)(u+)σu.

Next, we set u1 := (u+)γ and w1 := Tu1 for γ = σ+1
2
, and use that |d(x)| ≤ C0. Thus we get

(5.51)

∫
Ω

|∇u1|2 ≤ C1(γ)

∫
∂Ω

w2
1 with C1(γ) =

C0γ
2

2γ − 1
.

For the left hand side, we proceed as follows. We use the trace inequality (5.32) to
estimate

1

2π
‖w1‖2

Ḣ
1
2 (R)
≤
∫

Ω

|∇u1|2 .

But, on the other hand, by Theorem 5.9, for every p > 1, there exists a constant Cp > 0
such that

||w1||2L2p ≤ Cp

(
||w1||2L2 + ||w1||2

Ḣ
1
2

)
≤ C2(γ)||w1||2L2 with C2(γ) = Cp(1 + 2πC1(γ)),

where we have used (5.51) in the last line.
If we denote

Ψ(q) :=

(∫
∂Ω

∣∣w+
∣∣q) 1

q

,
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then we have shown that
Ψ(2pγ) ≤ [C2(γ)]

1
2γ Ψ(2γ).

Fixed p > 1 and choose γm = pm for m ∈ N; by iteration we know

(5.52) Ψ(2γm) ≤ CmΨ(2), ∀m ∈ N\ {0} , Cm :=
m−1∏
j=0

[C2(γj)]
1

2γj .

It is then easy to check that Cm ≤ C∞ uniformly bounded in m ∈ N (which is also shown,
for instance, in page 190 of [23]). Remark that

sup
(−R,R)

∣∣w+
∣∣ = lim

q→∞

(
1

2R

∫
(−R,R)

∣∣w+
∣∣q) 1

q

.

Letting m to in�nity in (5.52), we have

sup
(−R,R)

∣∣w+
∣∣ ≤ C∞

∥∥w+
∥∥
L2(R)

,

for every R > 0. We get the �rst part of the conclusion, taking R→ +∞ and then n→ +∞
in (5.50). The second part is analogous, using u− instead. The �nal assertion is an immediate
consequence of Theorem 5.7.

We will use also the following particular case (that is not the optimal one can prove, but
it su�ces for our purposes):

Corollary 5.16. (L∞ bound when g is bounded). Let w ∈ H 1
2 (R) be a weak solution

of (5.35) with non-vanishing right hand side g. If there exists p0 > 1 such that

(5.53) ‖g‖Lp(R) ≤ c for all p ≥ p0

(with c independent on p), then w is bounded.

Proof. We use Proposition 5.15 with some modi�cations in order to account for the
extra right hand side term involving g. By hypothesis, w is a weak solution satisfying for all
v ∈ H,

B(u, v) = −
∫
∂Ω

gv, for u = P ∗x w.

Similarly as before (using if necessary a truncated version), we use the test function v =
|u|σ−1 u, u1 = |u|γ−1u and w1 = Tu1. We use Hölder inequality with exponents 2γ, 2γ

2γ−1
,

which gives ∣∣∣∣∫
∂Ω

gv

∣∣∣∣ ≤ (∫
∂Ω

|g|2γ
) 1

2γ
(∫

∂Ω

w2
1

) 2γ−1
2γ

,

we get∫
Ω

|∇u1|2 ≤ C1(γ)

∫
∂Ω

w2
1 + C̃1(γ)

(∫
∂Ω

w2
1

) 2γ−1
2γ

with C̃1(γ) =
γ2

2γ − 1
·
(∫

∂Ω

|g|2γ
) 1

2γ

.
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Assuming (5.53) with 2γ ≥ p0, we get∫
Ω

|∇u1|2 ≤ C̄1(γ) max

{
1,

∫
∂Ω

w2
1

}
with C̄1(γ) = C1(γ) +

cγ2

2γ − 1

The rest of the argument follows similarly, with C̄2(γ) = max
{

1, Cp(1 + 2πC̄1(γ))
}
,

Ψ̄(q) = max
{

1,
(∫

∂Ω
|w|q

) 1
q

}
, and Ψ̄(2pγ) ≤ (C̄2(γ))

1
2γ Ψ̄(2γ), starting the iteration at

2γ = p0.

We now quote the regularity theory for bounded weak solutions of [8].

Proposition 5.17. (Regularity of weak solutions). Let R > 0, β ∈ (0, 1), and let

w ∈ H
1
2 (R) be a weak solution of (5.35) with d ∈ Cβ([−4R, 4R]), g ∈ Cβ([−4R, 4R]). If

u = P ∗x w ∈ L∞(B+
4R) ∩W 1,2(B+

4R), then u ∈ C1,β(B+
R) and

‖u‖C1,β(B+
R)
≤ CR,

for some constant CR that depends only on β, R and on the upper bounds for ‖u‖L∞(B+
4R),

‖d‖Cβ([−4R,4R]) and ‖g‖Cβ([−4R,4R]).

Proof. This is a consequence of Lemma 2.3 from [8], using de�nition 5.5 for weak
solutions.

In particular, we obtain C1,β

loc
regularity up to the boundary ∂Ω:

Corollary 5.18. (Uniform regularity of weak solutions). Given R, β, w, u, d, g as
above, assume, in addition, that ‖d‖Cβ(R) ≤ C, ‖g‖Cβ(R) ≤ C. Then u ∈ C1,β(R× [0, R]) and

‖∇u‖L∞(R×[0,R]) ≤ CR,

for some constant CR that depends only on β, R and on the upper bounds for ‖u‖H , ‖d‖Cβ(R)

and ‖g‖Cβ(R).

Proof. We apply the previous proposition to every ball BR(x0, 0), x0 ∈ R, as in Lemma
2.3, part (b) of [8]. It uses the condition that u is uniformly bounded on Ω, which in our
case follows from Corollary 5.16.

6 Results on the layer solution and the corrector

In this last section, we give the proofs of Theorems 3.1 and 3.2.

6.1 Proof of Theorem 3.1

Let W be a potential satisfying hypothesis Ai). Theorem 5.10 shows existence, regularity,
uniqueness and asymptotic behavior of a layer solution 0 < uW < 1 satisfying uW (0, 0) = 1/2,
u ∈ C2,β

loc
(Ω), for the problem

(6.54)

∆u = 0 in Ω,

∂u

∂ν
= −W ′(u) on ∂Ω.
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We denote its trace value by φ := uW (·, 0). The aim of the next paragraphs is to show the
more precise estimate (3.17) for the asymptotic behavior near in�nity.

Set a = 1/α, where α = W ′′(0) as de�ned in (1.6), and choose the model layer solution
ua as given in (5.45). We know explicitly because of (5.47) that φa := ua(·, 0) has the right
asymptotic behavior (3.17). We would like to compare uW to ua, in order to obtain the
analogous estimate for uW . Therefore, we set v := uW − ua. Then v satis�es∆v = 0 in Ω,

∂v

∂ν
= −W ′(φ) + V ′a(φ

a) on ∂Ω.

Now we estimate

−W ′(φ) +W ′(φa) = −W ′′(0)[φ− φa] +O

(
1

1 + |x|2

)
,

thanks to the growth estimate (5.41). And also,

−W ′(φa) + V ′a(φ
a) = [−W ′′(0) + V ′′a (0)]φa +O

(
1

1 + |x|2

)
.

Because of the choice of a, we have that W ′′(0) = V ′′a (0). Thus adding the previous two lines
we conclude that v is a solution of∆v = 0 in Ω,

∂v

∂ν
+W ′′(0)v = M(x) on ∂Ω,

for some function M satisfying

|M(x)| = O

(
1

1 + |x|2

)
.

Therefore, (3.17) follows from Corollary 5.13 (comparison principle for smooth solutions)
and the fact that W ′′(0) > 0.

The proof of Theorem 3.1 is completed due to the fact that a smooth, bounded solution
u of (6.54), with trace φ, is a viscosity solution in the sense of De�nition 2.1 of

Lφ−W ′(φ) = 0 in R,

with L de�ned through the Lévy-Khintchine formula, as it is noted in Lemma 5.6.

6.2 Proof of Theorem 3.2 - coercivity

Here we remind the reader of the notation introduced in Section 5: let φ be the layer solution
constructed Theorem 3.1, with harmonic extension uW (some properties are given also in
Theorem 5.10). Its asymptotic behavior is given in Theorem 3.1:

(6.55)


∣∣∣∣φ(x)−H(x) +

1

απx

∣∣∣∣ ≤ C

1 + x2
,

|φ′(x)| ≤ C

1 + x2
,
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for all x ∈ R. We also �x ū := (uW )x ∈ C1,β

loc
(Ω̄), and note that ū = P ∗x φ′ ∈ H. For some

of its properties, see also Lemma 5.11.

In the following, we set up the necessary functional analysis ingredients for Theorem 3.2,
while the proof will be completed in the last subsection.

We set H0 to be the subspace in H consisting of functions whose trace is orthogonal to
φ′ in L2(∂Ω), i.e,

(6.56) H0 :=

{
u ∈ H :

∫
∂Ω

uφ′ = 0

}
.

Lemma 6.1. H0 is a closed subspace of H.

Proof. As we have noted in Theorem 5.3, the trace of functions in H is a well de�ned
function in H

1
2 (R). In particular, the trace mapping T : H → L2(R) is continuous by

Sobolev embedding (Theorem 5.9). Then, if we have a sequence {uk}∞k=1 → u0 in H with
uk ∈ H0, then∣∣∣∣∫

∂Ω

φ′(uk − u0)

∣∣∣∣ ≤ (∫
∂Ω

φ′2
)1/2(∫

∂Ω

|uk − u0|2
)1/2

→ 0 when k →∞,

using the bounds for φ′ given in (6.55). We conclude that u0 ∈ H0, and the lemma is shown.

Now, given u, v ∈ H, we de�ne the bilinear functional

(6.57) B(u, v) :=

∫
Ω

∇u · ∇v +

∫
∂Ω

W ′′(φ)uv,

whose associated quadratic form is precisely

Q(u) =

∫
Ω

|∇u|2 +

∫
∂Ω

W ′′(φ)u2, u ∈ H.

It is easy to check that B is a continuous and symmetric bilinear functional in H.

The key lemma in this section is the following:

Lemma 6.2. (Lower bound for Q). There is some constant C0 > 0 such that for all
u ∈ H0, where H0 is de�ned in (6.56), we have that

Q(u) ≥ C0

∫
∂Ω

u2.

So we immediately have that

Corollary 6.3. (Coercivity). There exists some C > 0 such that for all u ∈ H0,

B(u, u) ≥ C ‖u‖2
H .
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Proof. It easily follows from Lemma 6.2. Indeed,

B(u, u) =

∫
Ω

|∇u|2 +

∫
∂Ω

W ′′(φ)u2 ≥ (1− µ)C0

∫
∂Ω

u2 + µQ(u)

≥ µ

∫
Ω

|∇u|2 +

∫
∂Ω

u2 [(1− µ)C0 + µW ′′(φ)] .

BecauseW ′′ is bounded, there exists µ > 0 small enough such that (1−µ)C0 +µW ′′(φ) > C0

2
.

Therefore,

(6.58) B(u, u) ≥ min
{
µ, C0

2

}
‖u‖2

H ,

as claimed.

Proof of Lemma 6.2: It is divided into several steps:

Step 1: Stability. Because of the construction of uW and φ, we know from Theorem 5.10
that Q(u) ≥ 0 for all u ∈ C∞c (Ω̄) (i.e. layer solutions are stable). Thus the functional Q is
bounded from below also in H.

Step 2: Existence.
Step 2.1: Preliminaries.
We seek a minimizer for the functional

Q(u) =

∫
Ω

|∇u|2 +

∫
∂Ω

W ′′(φ)u2

subject to the constraints

u ∈ H0 and

∫
∂Ω

u2 = 1.

Note that W ′′(φ) is not bounded from below by any positive constant. However, due to our
assumptions Ai) on W and the growth condition (6.55) for φ, we still can �nd some τ > 0
and h a non-negative smooth function supported on a compact set K := [−R,R] ⊂ R that
makes W ′′(φ) + h ≥ τ > 0 for all x ∈ R. We write

Q(u) =

[∫
Ω

|∇u|2 +

∫
∂Ω

(W ′′(φ) + h)u2

]
−
∫
K

hu2 =: Q1(u) +Q2(u).

Let {uk}∞k=1 ⊂ H0 be a minimizing sequence for Q with
∫
∂Ω
u2
k = 1. This L2 bound for uk

tells us that, in particular, |Q2(uk)| ≤ suph ≤ C for all k, for some constant C > 0. As
a consequence, we also know that there exists a constant C ′ such that Q1(uk) ≤ C ′. From
here we get a uniform bound for the H-norm of the sequence {uk}, depending on τ and C ′.

Next, we concentrate on the space H
1
2 (R). We de�ne an equivalent Hilbert space norm

‖·‖H̃ on R as follows: for any w ∈ H 1
2 (R), we consider its harmonic extension u := P ∗x w,

and de�ne
‖w‖H̃ := Q1(u).
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We have shown that ‖uk‖H ≤ C for all k. This implies that for wk := Tuk, the norm
‖wk‖H̃ ≤ C ′ for another constant C ′. Because H̃ is a Hilbert space, then there is a subse-

quence (still denoted by wk), such that wk ⇁ w0, weakly in H̃, for some w0 ∈ H
1
2 (R). Weak

convergence implies, for instance ([5], proposition III.12), that

‖w0‖H̃ ≤ lim inf
k→∞

‖wk‖H̃ .

Set ũk := P ∗x wk, that has the same trace as uk, and u0 := P ∗x w0. It is clear that

(6.59) Q1(ũk) ≤ Q1(uk)

and that equality holds when uk is already harmonic. Then we have shown that

(6.60) Q1(u0) = ‖w0‖H̃ ≤ lim inf
k→∞

‖wk‖H̃ = Q1(ũk) ≤ Q1(uk).

On the other hand, the embedding H
1
2 (R) ↪→ Lp(K) is compact for any compact subset

K ⊂ R and p > 2, as stated in Theorem 5.9. Thus, we can �nd some subsequence (still
denoted by wk) such that wk → w̄0 strongly in Lp(K). As a consequence, also wk → w̄0 in
L2(K). The uniqueness of the limit will give that w̄0 = w0, at least a.e. in K. In addition,
since Q2 lives only on the compact subset K ⊂ R, we also have that

(6.61) Q2(uk)→ Q2(u0).

From (6.60) and (6.61) we deduce that u0 ∈ H satis�es

Q(u0) ≤ lim inf
k→∞

Q(uk).

Remark that if lim infk→∞Q(uk) > 0, then we have already �nished the proof, because
this implies (6.58). Therefore we can assume that

(6.62) lim inf Q(uk) = 0

Step 2.2: Concluding.
Case A: u0 ≡ 0
Remark �rst that

Q1(uk) ≥ τ

∫
∂Ω

u2
k = τ > 0.

On the other hand, we have Q2(uk)→ Q2(u0) = 0. Therefore we get

lim inf
k→∞

Q(uk) = lim inf
k→∞

{Q1(uk) +Q2(uk)} ≥ τ > 0,

which is in contradiction with (6.62). Therefore only the next case occurs.
Case B: u0 6≡ 0
Then we have 0 ≤ Q1(u0) = 0 and we will show that Tuk → Tu0 in H

1
2 (R). Since {uk} was

a minimizing sequence, then Q(uk)→ 0 = Q(u0) when k →∞. In addition, we have shown
that Tuk → Tu0 strongly in L

2(K), so thatQ2(uk)→ Q2(u0). BecauseQ(u0) = 0 ≤ Q(ũk) ≤
Q(uk)→ 0, we deduce that Q(ũk)→ Q(u0). Moreover we have Q2(ũk) = Q2(uk)→ Q2(u0)
and Q = Q1 +Q2 which implies that

(6.63) Q1(ũk)→ Q1(u0).
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By de�nition (6.63) means that

(6.64) lim
k→∞
‖wk‖H̃ = ‖w0‖H̃ .

Proposition III.30 in [5] assures that if we have a weakly convergent sequence wk ⇁ w0 in
the space H̃ and such that we have convergence of the norms (6.64), then the convergence

wk → w0 is strong in H̃, and then in H
1
2 (R).

As a consequence, wk = Tuk → Tu0 = w0 in L2(R), which, in particular, implies the
non-degeneracy of the L2(∂Ω) norm of w0:∫

∂Ω

w2
0 = lim

k→∞

∫
∂Ω

w2
k = 1.

To �nish, just remark that strong convergence in L2(R) implies that
∫
∂Ω
u0φ

′ = 0. Thus,
u0 ∈ H0.

Step 3: Euler-Lagrange equation. Once the minimizer u0 is found, the theory of Lagrange
multipliers for minimization problems (see, for instance, [17], chapter 8.4) gives that u0 ∈ H
must be a weak solution of

(6.65) B(u0, v) = λ

∫
∂Ω

u0v + µ

∫
∂Ω

φ′v for every v ∈ H,

where λ, µ ∈ R. The value of the multipliers can be found by choosing the right test function
v. Thus if we test the equality (6.65) with v = P ∗x φ′, we obtain µ = 0 (see Lemma 5.11),
while testing against v = u0 gives that

(6.66) λ = Q(u0) =

∫
Ω

|∇u0|2 +

∫
∂Ω

W ′′(φ)u2
0 (≥ 0).

Step 4: Regularity. First, Proposition 5.15 with d(x) = W ′′(φ(x))− λ implies a uniform
L∞ bound for both w0 and u0 = P ∗x w0. Then, Proposition 5.17 assures that u0 ∈ C1,β

loc
(Ω̄),

with the following boundary estimate

‖u0‖C1,β(B+
R)
≤ C

(
β,R, ‖u0‖L∞(B+

4R) , ‖W
′′(φ)‖Cβ([−4R,4R])

)
.

Note that u0 is as smooth as we want in the interior.
Step 5: Positivity. In the following we show that if λ = 0, then w0 = Tu0 must necessarily

be a multiple of φ′, which is a contradiction with the fact that u0 ∈ H0 and
∫
∂Ω
u2

0 = 1.
Thus we take λ = 0 in (6.65). Then we have a solution u0 satisfying B(u0, v) = 0 for all

v ∈ H. We remind the reader that have de�ned uW to be the layer solution for our potential
W , with trace φ := uW (·, 0), and ū := ∂xuW , which is also uniformly bounded and has trace
ū(·, 0) = φ′. Because of the hypothesis on the potential W and the asymptotic behavior of
the layer solution φ, there exists some τ > 0 such that W ′′(φ) ≥ τ on R\[−R,R] for some
R > 0.

We have shown, in particular, that u0 is uniformly bounded in Ω. Since ū is positive
from (5.39), then there exists κ ≥ 0 such that |u0| < κū in B+

R . We set v := κū − u0, and
note that v satis�es the conditions of Proposition 5.14. Thus we can conclude that v ≥ 0 in
R2

+ so that u0 ≤ κū. An analogous argument gives that −u0 < κū. We have proved that
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|u0| < κū on R2
+ and, in particular, |w(x)| < κφ′(x) for all x ∈ R.

The next step is to decrease κ up to the �rst point where κū touches |u0|: assume, without

loss of generality, that for some κ∗ ≥ 0 there exists (x0, y0) ∈ R2
+ such that

(6.67) κ∗ū = u0 at (x0, y0) and κ∗ū ≥ u0 on Ω.

We set d1 := max{W ′′(φ), τ}, and d2 := d1 −W ′′(φ). We note that both are non-negative
functions on R and d1(x) ≥ τ for all x ∈ R. Let v := κ∗ū − u0 ≥ 0, that is a weak
supersolution of ∆v = 0 in Ω,

∂v

∂ν
+ d1v = d2v ≥ 0 on ∂Ω.

We are in the hypothesis of Lemma 5.12, that can be applied because the functions have
enough regularity (in particular v ∈ C1,β

loc
(Ω)). However, because of (6.67) we necessarily

must have v ≡ 0. We have shown that u0 ≡ κ∗ū, which at the boundary translates as
w ≡ κ∗φ′.

Step 6: Conclusion. The multiplier λ in (6.66) must be non-negative. However, we have
shown that λ 6= 0, so then

(6.68) Q(u) ≥ Q(u0) = λ =: C0 > 0 for all u ∈ H0 with

∫
∂Ω

u2 = 1.

Finally, substituting

u1 :=
u√∫
∂Ω
u2

for any u ∈ H0 into (6.68) �nishes the proof of Lemma 6.2.

6.3 Proof of Theorem 3.2 - regularity

Here we seek a solution for

(6.69) Lψ −W ′′(φ)ψ = g

where

g := φ′ + η(W ′′(φ)−W ′′(0)) with η =

∫
(φ′)2

W ′′(0)
.

It is easy to check that

g ∈ H
1
2 (R),

∫
∂Ω

gφ′ = 0.

We de�ne also the continuous linear functional on H given by

Ev := −
∫
∂Ω

gTv.

The previous Corollary 6.3 asserts that the bilinear functional B from (6.57) is coercive on
the space H0. Then, Lax-Milgram theorem can be applied to obtain a unique weak solution
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u0 ∈ H such that B(u0, v) = Ev for all v ∈ H. Moreover, the solution depends continuously
on the initial datum:

‖u0‖H ≤ C ‖g‖
H

1
2 (R)

.

We set ψ := Tu0 ∈ H
1
2 (R).

The following theorem summarizes its regularity and properties:

Theorem 6.4. The solution ψ ∈ H 1
2 (R) of (6.69) has regularity C1,β

loc
(R) ∩ L∞(R), satis�es

ψ(±∞) = 0 and ‖ψ′‖L∞(R) <∞.

Proof. Note that u0 ∈ H so, in particular, ψ ∈ H 1
2 (R) (and is also in all Lp(R) for p > 1).

Claim 1: ψ is bounded; as a consequence, also u0. This follows from Corollary 5.16, after
estimating the norm of g. We use the asymptotic behavior and boundedness of φ, φ′ from
Theorem 3.1, and the Hölder regularity of W ′′. Then∫

R
|g|p ≤

∫
(−R,R)

cp +

∫
R\(−R,R)

cp

|x|pβ
≤ cp

[
2R +

2

(pβ − 1)Rpβ−1

]
.

In particular, for R = 1, and p > 1
β
we have,

‖g‖Lp(R) ≤ Kc.

Claim 2: C1,β

loc
(R) regularity for ψ follows from Proposition 5.17, while the uniform

bound for ψ′ is a consequence of Corollary 5.18. For the values of ψ at in�nity, just note
that ψ is a smooth function in L2(R).

Finally, a weak solution ψ ∈ H 1
2 (R) ∩ C1,β

loc
(R) ∩ L∞(R) of (6.69) is actually a viscosity

solution of the equation (3.18), thus completing the proof of Theorem 3.2. This is so because
of Lemma 5.6.
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