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Abstract

In this paper, we study the mixed finite element method. We focus on the lowest-order Raviart–
Thomas case and propose several new ways of reducing the original indefinite saddle-point
systems for flux and potential unknowns to (positive definite) systems for potential unknowns
only. It turns out that the principle of our construction is closely related to that of the so-called
multi-point flux-approximation method. We study theoretically these different ways and illus-
trate them by a series of numerical test examples. We also discuss the different versions of the
discrete maximum principle and of obtaining local flux expressions in the mixed finite element
method. We finally recall the use of the mixed finite element method on general polygonal
meshes and expose its similarity to mimetic finite difference, multi-point flux-approximation,
mixed finite volume, and hybrid finite volume methods in this case.

Key words: mixed finite element method, reformulation, one unknown per element, local flux
expression, discrete maximum principle, polygonal mesh, relations between different methods

1 Introduction

We consider in this paper the pure diffusion model problem

−∇ · (S∇p) = g in Ω, (1.1a)

p = 0 on ∂Ω, (1.1b)

where Ω ⊂ Rd, d ≥ 2, is a polygonal (we use this term also in Rd, d ≥ 3) domain. The sys-
tem (1.1a)–(1.1b) will be discretized on a family of meshes Th of Ω, consisting of simplices and
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matching (containing no “hanging nodes”); we refer to Section 2 below for the details on ter-
minology and notation. For simplicity, we restrict ourselves to homogeneous Dirichlet boundary
conditions and assume that S is a symmetric, bounded, and uniformly positive definite diffusion
tensor, piecewise constant on Th. Similarly, we assume that g is piecewise constant on Th. A wider
class of meshes T̂H , consisting of general polygonal elements, will also be considered later.

We are interested in mixed finite element approximations to (1.1a)–(1.1b). These consist in
finding ph ∈ Φh, an approximation to the potential p, and uh ∈ Vh, an approximation to the flux
u := −S∇p, such that

(S−1uh,vh)− (ph,∇ · vh) = 0 ∀vh ∈ Vh, (1.2a)

(∇ · uh, φh) = (g, φh) ∀φh ∈ Φh. (1.2b)

Here Φh ⊂ L2(Ω) and Vh ⊂ H(div,Ω) are the mixed finite element spaces (cf. Brezzi and
Fortin [17] or Roberts and Thomas [54]). We focus here on the lowest-order Raviart–Thomas case,
where Φh consists of piecewise constant functions on Th and Vh is recalled in Section 3 below. The
system (1.2a)–(1.2b) can be written in a matrix form as

(
A Bt

B 0

)(
U
P

)
=

(
F
G

)
(1.3)

and is of indefinite, saddle point type. In our case, thanks to the homogeneous Dirichlet boundary
condition (1.1b), F = 0, but we prefer to write the general form (1.3) with F not necessarily zero.
The system (1.3) is well-posed; A is symmetric and positive definite and B has a full row rank.
Thus, there exists a unique solution, on any simplicial mesh Th, without any restriction on the
shape of the elements; the usual shape-regularity of the mesh is only necessary in convergence
proofs. Recall also that the system (1.3) is well-posed in any space dimension. All these classical
results can be found in, e.g., [17, 54, 61].

Let σK,L ∈ E int
h , i.e., σK,L is an interior side of the mesh Th, shared by the elements K and

L. The approximate fluxes uh of (1.2a)–(1.2b) satisfy uh|K · nσK,L
= uh|L · nσK,L

, where nσK,L
is

a normal vector of σK,L. This is a consequence of the constraint Vh ⊂ H(div,Ω), also called the
“normal trace continuity constraint”, which ensures the conservation of mass. This constraint can
be relaxed using the hybridization technique. Herein, it is imposed instead in terms of Lagrange
multipliers. The unconstrained flux space is given by Ṽh := ΠK∈ThVh(K), where Vh(K) are the
local spaces on each element (cf. Section 3 below), and the Lagrange multipliers space Ψh is the
space of piecewise polynomials (constants in the lowest-order case) on E int

h . The hybridized version
of (1.2a)–(1.2b) consists in finding uh ∈ Ṽh, ph ∈ Φh, and λh ∈ Ψh such that

(S−1uh,vh)− (ph,∇ · vh) +
∑

K∈Th

〈vh · nK , λh〉∂K\∂Ω = 0 ∀vh ∈ Ṽh, (1.4a)

(∇ · uh, φh) = (g, φh) ∀φh ∈ Φh, (1.4b)
∑

K∈Th

〈uh · nK , ψh〉∂K\∂Ω = 0 ∀ψh ∈ Ψh. (1.4c)

It is well known and easy to show that ph,uh from (1.2a)–(1.2b) and (1.4a)–(1.4c) coincide; λh
then provides an additional approximation to the potential p. The equations (1.4a)–(1.4c) can be
written in a matrix form as




A Bt Ct

B 0 0
C 0 0






U
P
Λ


 =




F
G
0


 . (1.5)
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Figure 1: Mixed finite element potential represented by ph (left) and by λ̃h (right)

The importance of the hybridization (1.5) lies in that the matrix A has now an elementwise block-
diagonal structure. Consequently, one can algebraically, solving only local problems (inverting local
matrices), reduce (1.5) to the system for the Lagrange multipliers Λ only,

ZΛ = E. (1.6)

Here Z is a symmetric and positive definite matrix with a narrow stencil (there are at most 2(d+1)−
1 nonzero entries on each row of Z); closed-form expressions for Z and E are given in Section 3.1
below. Remark that the total number of unknowns is reduced in comparison with (1.3), being
given by the number of sides in E int

h . This process is called static condensation. We refer for details
to [17, 54]. A new, piecewise affine nonconforming approximation λ̃h of the potential p, given by
the values of λh in side barycenters (see (3.3) below) can also be defined. Such an approximation
is visualized in Figure 1, right; we plot the corresponding approximation ph in Figure 1, left.

There has been a long-standing interest to reduce (1.3) to a system for the potentials P only.
The main motivations are to reduce the number of unknowns, to replace the saddle point sys-
tem (1.3) by, if possible, a symmetric and positive definite one, and to relate the lowest-order
mixed finite element method to the finite difference and finite volume ones. A possible solution
consists in first using the first block equation of (1.3) to eliminate the unknowns U through

U = A
−1(F − B

tP ). (1.7)

Note that (1.7) represents a global flux expression (all the fluxes U are expressed from all the
potentials P ), which includes a solution of a global linear system. Plugging (1.7) into the second
block equation of (1.3), one can solve for P the system

BA
−1

B
tP = BA

−1F −G. (1.8)

The matrix BA−1Bt is symmetric and positive definite but the problem is that it tends to be full
and cannot be obtained in practice as this would be too expensive. Various approximate numerical
quadratures have been used in, e.g., [55, 6, 13, 11, 9] to reduce (1.3) into a system of the form

S̃P̃ = H̃. (1.9)

In these approaches, however, because of the numerical quadratures, the new potentials P̃ are in
general different from those in (1.3) and one cannot recover the exact potentials P .
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Figure 2: Example of a general polygonal mesh T̂H (dashed lines) and of a possible simplicial
submesh Th (solid lines)

Equivalent, one-unknown-per-element rewriting of (1.3) without any numerical quadrature in
the form

S̄P̄ = H̄, (1.10)

where P̄ is a new unknown from which P can be locally recovered, has been achieved in [66, 22, 65]
by exploiting an equivalence between mixed finite elements and finite volumes. Equivalent, one-
unknown-per-element rewriting of (1.3) without any numerical quadrature in the form

SP = H (1.11)

has been derived in [59]. In both the above approaches, in contrast to (1.9), one obtains exactly the
potentials P of (1.3) (there is no approximation included), and in contrast to (1.8), the matrices S̄
and S are sparse and locally computable. Intermediately, local flux expressions (enabling to recover
the fluxes U of (1.3) on sides of local patches from the potentials P on elements of these patches)
have been established in [66, 22, 65, 59].

The first goal of the present paper is to unify the approaches of [66, 22, 65] and of [59], to identify
their common principles, and to show that they can be included in the general approach given
in [64]. We tackle this issue in Section 4, after recalling some basic facts about the lowest-order
Raviart–Thomas method in Section 3, and summarizing the notation in Section 2. In Section 3,
we also recall the relation of the lowest-order Raviart–Thomas method to the Crouzeix–Raviart
nonconforming finite element method, local flux expressions from the Lagrange multipliers, and
the different variants of the discrete maximum principle valid in this case.

The second goal of the present paper is to carry out an extensive comparative numerical study
of the different one-unknown-per-element lowest-order mixed finite element reformulations. We in
particular focus on the behavior of the different approaches in the presence of inhomogeneous and
anisotropic diffusion tensor S. We carry out this study in Section 6.

The third goal of the present paper is to recall that, contrarily to a widespread misleading belief,
mixed finite elements can easily be defined on general polygonal meshes. We present this result in
Section 5 for all order schemes on practically arbitrary meshes and without loosing any precision
with respect to (1.2a)–(1.2b); we refer to Kuznetsov and Repin [46, 47], Kuznetsov [45, 48], or
Sboui et al. [57] for various simplifications in the context of the lowest-order Raviart–Thomas
method. Let T̂H be a mesh consisting of general polygonal elements which can be nonconvex and
non star-shaped. We give an example in Figure 2 (dashed lines). The mesh T̂H does not need to
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be matching, the maximal number of sides of each K ∈ T̂H is not necessarily limited, and T̂H is
not necessarily shape-regular. We, however, assume that there exists a simplicial submesh Th of
T̂H (that is, every element of T̂H is triangulated by elements of Th) which is matching. An example
is given in Figure 2 (solid lines). We recall in Section 5 that any order mixed finite elements can
be written in the form (

Â B̂t

B̂ 0

)(
Û

P̂

)
=

(
F̂

Ĝ

)
, (1.12)

where Û is an algebraic vector of flux unknowns related to the sides of T̂H only and P̂ is an
algebraic vector of potential unknowns related to the elements of T̂H only. The above system is
of indefinite, saddle point type. In the lowest-order case and when the sides of Th do not cut the
sides of T̂H , there is one unknown in Û per side of T̂H and one unknown in P̂ per element of T̂H .
Similarly, we also recall in Section 5 that mixed finite elements can be written in the form

ẐΛ̂ = Ê, (1.13)

where Λ̂ is an algebraic vector of Lagrange multipliers related to the sides of T̂H only. Here
Ẑ is symmetric and positive definite. Once again, in the lowest-order case and when the sides
of Th do not cut the sides of T̂H , there is one unknown in Λ̂ per side of T̂H . These properties
are generally known in the mixed finite element community; they are typically used in domain
decomposition algorithms (cf. [37]). Their proof, which we recall in Section 5, is immediate; it
suffices to consider (1.3) or (1.6) on the mesh Th and one obtains (1.12) or (1.13) by a simple static
condensation. Moreover, it turns out that both (1.12) and (1.13) can, at least in certain situations,
be reduced to

ŜP̂ = Ĥ, (1.14)

i.e., to a system with one unknown per each polygon in T̂H in the lowest-order case, by the
techniques described in this paper.

The last goal of the present paper is to, through the preceding developments, show the close-
ness of mixed finite element methods to various other discretization schemes, namely mimetic
finite difference [41, 18, 38], hybrid finite volume [33], mixed finite volume [29], multi-point flux-
approximation [1, 2, 44, 3, 42, 5, 20, 14] and related methods [31], which in particular also enable
the discretization on arbitrary polygonal meshes and are defined under one of the forms (1.12),
(1.13), or (1.14). For arbitrary polygonal meshes, it seems that the only conceptual difference of
the present mixed finite element approach with some of these methods is that in the mixed finite
element method, one has to construct a simplicial submesh of each polygonal cell and to solve a
local problem (invert a local matrix) on each polygonal cell. For some other comparisons between
these various methods, we refer to [43, 30] and the references therein. Our main belief is that
through these different links, the results and tools available in mixed finite element methods and
those available in the context of the previously-cited methods can become mutually available: for
mixed finite element methods, let us cite, e.g., the well-posedness of (1.3)/(1.5)/(1.6)/(1.10)/(1.11)
on simplicial meshes, well-posedness of both (1.12) and (1.13) on arbitrary polygonal meshes, dis-
crete maximum principle in the lowest-order case (see Section 3.3 below), optimal convergence and
superconvergence a priori error estimates (see, e.g., [17, 54, 26, 27, 61]), optimal a posteriori error
estimates [60, 7, 61], multigrid methods (see, e.g., [16, 24]), parallel implementations (see, e.g., [37]),
multiscale and mortar versions (see, e.g., [10]), and convergence of adaptive methods [21, 15, 23];
for the previously-cited finite volume-type methods, let us cite in particular convergence analysis
for nonlinear parabolic equations and their systems, see, e.g., [34, 35, 19].

Some conclusions of this paper are drawn in Section 7. An extension of the present ideas to
higher-order cases and to more involved problems is the subject of the forthcoming work [63].
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2 Notation

This section is devoted to collecting in one place the different notation used throughout the paper.
For a given domain ω ⊂ Rd, let L2(ω) be the space of square-integrable (in the Lebesgue

sense) functions over ω and (·, ·)ω the L2(ω) inner product. We keep the same notations for
L2(ω) := [L2(ω)]d as well; we omit the index ω when ω = Ω. By |ω|, we denote the Lebesgue
measure of ω and by |σ| the (d−1)-dimensional Lebesgue measure of a (d−1)-dimensional surface
σ in Rd. The symbol |S| also stands for the cardinality (the number of elements) of a set S. Next,
we let H(div, ω) := {v ∈ L2(ω); ∇ · v ∈ L2(ω)} be the space of functions with square-integrable
weak divergences. We denote by 〈·, ·〉σ the (d− 1)-dimensional L2(σ)-inner product on σ ⊂ Rd−1.

Let Th be a simplicial mesh of Ω, i.e., the elements of Th are triangles in two space dimensions,
tetrahedra in three space dimensions, and, in general, d-simplices. We suppose that Th is matching,
i.e., such that if K,L ∈ Th, K 6= L, then K ∩ L is either an empty set or a common vertex of K
and L or a common d′-face of the mesh Th, 1 ≤ d′ ≤ d− 1. We denote by Eh the set of all sides of
Th, i.e., the set of (d− 1)-faces of the mesh Th. We divide Eh into interior sides E int

h and boundary
sides Eext

h . Let σ ∈ Eh and let ψ be a possibly double-valued function on σ. We denote by [[ψ]]
the jump of the function ψ over the side σ, i.e., the difference of the values of ψ on both sides of
σ (the arbitrariness of the sign is irrelevant in what follows) when σ ∈ E int

h , and the value that ψ
takes on σ when σ ∈ Eext

h . Let K ∈ Th. By EK , we denote the set of all sides of K and by E int
K

the set of such sides of EK which lie in E int
h . For K ∈ Th, let nK be the unit normal vector defined

on the sides of K, outward to K, and, for σ ∈ Eh, let nσ stand for the unit normal vector of σ
whose orientation is chosen arbitrarily but fixed for interior sides and coinciding with the exterior
normal of Ω for boundary sides. We next denote by Vh the set of vertices of Th. For a given vertex
V ∈ Vh, we shall denote by TV the patch of the elements of Th which share V , by EV those sides
of the elements in TV contained in E int

h , by E int
V the sides in the interior of TV , and by Eext

V the set
EV \ E int

V . We will also employ the notation EV,K for the sides of K which have V as vertex. For
K ∈ Th, we denote by xK the barycenter of K and for σ ∈ Eh, we denote by xσ the barycenter
of σ. By Pk(Th), we denote the space of piecewise polynomials on Th of degree k and by Pk(E

int
h )

the space of piecewise polynomials on E int
h of degree k. We will use the notation I for the identity

matrix.

3 Reminders on the lowest-order mixed finite element method

We give in this section some reminders on the lowest-order Raviart–Thomas mixed finite element
method. We first give its definition. Then, in Section 3.1, we recall its relation to the Crouzeix–
Raviart nonconforming finite element method, in Section 3.2, we present the local flux expressions
from the Lagrange multipliers, and, in Section 3.3, we recall the different variants of the discrete
maximum principle valid herein.

In the lowest-order Raviart–Thomas mixed finite element method (see [53] for d = 2 and [51]
for d = 3), we have Φh = P0(Th), Ψh = P0(E

int
h ), and, for K ∈ Th, Vh(K) = Pd

0 + P0x. Concerning
the space Vh, there is one basis function vσ associated with each σ ∈ Eh. For σK,L ∈ E int

h ,
vσK,L

(x) = 1
d|K|(x − VK), x ∈ K, vσK,L

(x) = 1
d|L|(VL − x), x ∈ L, vσK,L

(x) = 0 otherwise, where
VK is the vertex of K opposite to σK,L and VL the vertex of L opposite to σK,L. The orientation
of vσK,L

(the order of K and L) is arbitrary but fixed. For a boundary side σ, the support of vσ

only consists of K ∈ Th such that σ ∈ EK . We refer to [17, 54] for more details.
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3.1 Relation to the Crouzeix–Raviart nonconforming finite element method

Let Ψ̃h be the Crouzeix–Raviart nonconforming space (see [28]), i.e., the space of piecewise affine
functions on Th such that all ψ̃h ∈ Ψ̃h verify

〈[[ψ̃h]], 1〉σ = 0 ∀σ ∈ Eh.

There is one basis function associated with each σ ∈ E int
h , denoted by ψ̃σ. It is such that ψ̃σ(xσ) = 1

and ψ̃σ(xγ) = 0 for all sides γ ∈ Eh different from σ (recall that xσ stands for the barycenter of
the side σ).

The Crouzeix–Raviart nonconforming finite element method (see [28, 25]) for the problem (1.1a)–
(1.1b) reads: find λ̃h ∈ Ψ̃h such that

(S∇λ̃h,∇ψ̃h) = (g, ψ̃h) ∀ψ̃h ∈ Ψ̃h. (3.1)

In a matrix setting, it can be written as

ZΛ = E. (3.2)

It follows from [12, 8, 24, 36, 62] that the above matrix Z and the right-hand side vector E
completely coincide with the Z and E of (1.6). Consequently, the same holds true for the solution
Λ of (1.6) and that of (3.2). This means that, in the present setting (both S and g are piecewise
constant on Th), the Crouzeix–Raviart nonconforming finite element method (3.2) is completely
equivalent with the hybridization (1.6) of the lowest-order Raviart–Thomas mixed finite element
one. Let σ ∈ E int

h and denote the value of λh in the barycenter of σ by λσ. In order to simplify
notation later on, in link with the homogeneous Dirichlet boundary condition (1.1b), let us set
λσ = 0 for all σ ∈ Eext

h . With this notation, we can obtain λ̃h from the Lagrange multipliers λh
given by (1.5) or by (1.6) by

λ̃h =
∑

σ∈E int

h

λσψ̃σ . (3.3)

We note that for more general coefficients or equations, there is still no structural difference. There
may be a small difference in the coefficients of the involved matrices and right-hand sides which
can be analyzed within the abstract framework of variational crimes. We refer for more details
to [8].

3.2 Local flux expressions from the Lagrange multipliers

The developments of the previous section allow to readily infer (cf., e.g., [12, 50, 24]) that the flux
uh and the potential ph in the lowest-order Raviart–Thomas mixed finite element method can be
locally expressed from λ̃h. Denote, for K ∈ Th, qK(x) := (x−xK)tS−1

K (x−xK), where SK := S|K .
Then

uh|K = −SK∇λ̃h|K +
gK
d
(x− xK), (3.4a)

ph|K = λ̃h(xK) +
gK

2d|K|
(qK , 1)K , (3.4b)

where gK := g|K (recall that xK is the barycenter of the element K, d the space dimension, and
|K| the measure of the element K). Relation (3.4a) in particular means that there exist local
flux expressions from the Lagrange multipliers. Relation (3.4b) means that the original potential
approximation ph is linked to the Lagrange multipliers and, additionally, to the source term. By
combining (3.4a) and (3.4b), we see how uh is locally linked to ph. It is, however, not obvious how
to express locally uh from ph.

7



3.3 The discrete maximum principle

Let S be such that it can be written as I (the identity matrix) times a piecewise constant scalar
function and let Th be acute, i.e., such that the magnitude of the angles between nK,σ, σ ∈ EK ,
for all K ∈ Th is greater or equal to π/2 (all interior angles smaller or equal to π/2 in two space
dimensions). As another consequence of the above equivalence, we immediately have that the
discrete maximum principle holds for the Lagrange multipliers λh, i.e., for the values λσ, σ ∈ Eh.
This is a classical result, shown in a more general setting in, e.g., [36, Theorem 4.5]. Note that one
does not necessarily have the discrete maximum principle for the function λ̃h defined in (3.3), as
this function may take values larger than maxσ∈Eh λσ and smaller than minσ∈Eh λσ (see Figure 1,
right for a graphical illustration) (only the punctual values of λ̃h in side barycenters satisfy the
discrete maximum principle).

Consider now for simplicity S = I, the source term g constant in the whole Ω, d = 2, and
the case where Th is Delaunay (that is, the circumcircle of each triangle does not contain any
vertex in its interior) and the additional condition that no circumcenters of boundary triangles lie
outside the domain. Then, following [66] (we give more details below), the lowest-order Raviart–
Thomas mixed finite element method is also equivalent to the classical two-point finite volume
scheme (see [32]). Thus, one also has the discrete maximum principle for the values of λ̃h in the
circumcenters of the elements of Th.

Finally, note that by properties of a simplex and by the fact that λ̃h is an affine function,

λ̃h(xK) =
1

d+ 1

∑

σ∈EK

λσ

for all K ∈ Th. Recall that the formula (3.4b) relates λ̃h and ph. Thus, it follows that for acute
meshes and multiples of the identity matrix diffusion tensors, the discrete maximum principle also
holds for the original approximation ph whenever the source term g is zero. However, because
of the presence of g in (3.4b), there is in general no discrete maximum principle for the original
approximation ph in the presence of a nonzero source term. Note, however, that if g ≥ 0, then one
still has ph ≥ 0 by (3.4b) and by the above discrete maximum principle for λ̃h(xK).

4 Reductions of the lowest-order mixed finite element method

We present here a unified framework allowing to reduce (1.3), (1.5), or (1.6) in the lowest-order
Raviart–Thomas mixed finite element method equivalently to (1.10) or (1.11).

Firstly, in Section 4.1, we define local problems on patches of elements (in practice, local matrices
need to to be assembled and inverted) which give local flux expressions. In this feature, our
approach is similar to that of the multi-point flux-approximation method [1, 2, 44, 3, 42, 5, 20, 14]
or to [31], and we investigate this link in Section 4.1. Next, in Section 4.1.1, we show that the
approach of [66, 22, 65] falls into our framework and leads to local matrices which are diagonal.
Also the approach of [59] is included in the present framework, see Section 4.1.2, and leads to
local matrices which are not diagonal. Taking these approaches one step further, following [64],
we show in Section 4.1.3 that the properties of the local matrices (and consequently the properties
of the final matrices S̄ or S) can be influenced so as to be as good as possible with respect to
the local geometry of the mesh Th and to the local behavior of the diffusion tensor S. This also
represents a conceptual step in order to avoid the possible appearance of singular local and global
matrices [66, 22, 65, 59]. Previous examples of locally influencing the final system properties
include, e.g., [33, 4, 30]. Further, following [64], we generalize this approach in Section 4.2, staying
on a purely algebraic level.
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Figure 3: Triangle K ∈ Th and subtriangle L given by two edge midpoints xσ and xγ and the
point zK

Section 4.3 shows how to express the Lagrange multipliers Λ or the fluxes U from the (new)
potential unknowns P̄ in the whole mesh, while only using the above local problems, which improves
on (1.7). We use these expressions in Section 4.4 and present two conceptually different ways of
obtaining the final one-unknown-per-element systems (1.10) or (1.11). Finally, we discuss the
symmetry and positive definiteness of the final matrices in Section 4.5.

4.1 Local problems definition by a geometrical interpretation and the link to

the multi-point flux-approximation method

Consider the lowest-order Raviart–Thomas mixed finite element method for the problem (1.1a)–
(1.1b), i.e., (1.2a)–(1.2b) with the spaces Φh, Vh specified in Section 3 and leading to a linear
system of a form (1.3), (1.5), or (1.6).

Let K ∈ Th be fixed. Recalling the definition (3.3) of λ̃h and taking into account that λ̃h|K is
an affine function, it can be fixed by its nodal values in d+ 1 points which do not lie in the same
hyperplane of Rd (line in two space dimensions). In (3.3), these d+1 values are the d+1 Lagrange
multipliers λσ, σ ∈ EK , i.e., we fix λ̃h|K by its point values in the side barycenters (recall that we
have set λσ = 0 for σ ∈ Eext

h ). Let zK be a point arbitrary in Rd but such that any d of the d+ 1
side barycenters of K, denoted by xσ, and the point zK do not lie in the same hyperplane. In two
space dimensions, this means that any two of the three edge midpoints xσ and zK do not lie in the
same line, i.e., that zK does not lie on the boundary of the dashed triangle in Figure 3. Suppose
now a new unknown value p̄K in any K ∈ Th. Let V be any of the vertices of K and denote by
EV,K the sides of K which have V as vertex. Then λ̃h|K can also be uniquely prescribed by the
value p̄K it takes in the point zK and by the values of the d Lagrange multipliers λσ associated
with the side barycenters xσ of σ ∈ EV,K . In the notation of Figure 3, we are saying that λ̃h|K can
be uniquely prescribed by the values it takes in the points zK , xσ, and xγ . In terms of λ̃h, the
new unknown is thus

p̄K := λ̃h(zK). (4.1)

Let a new simplex L (subsimplex of K) be given by the side barycenters xσ, σ ∈ EV,K , and
by the point zK , see Figure 3 (here the points are denoted by zK , xσ, and xγ). Denote by ϕ̃σ ,
σ ∈ EV,K , and by ϕ̃K the Lagrange basis functions associated with the points xσ, σ ∈ EV,K , and
zK ; we consider ϕ̃σ and ϕ̃K supported on K (and not on L). More precisely, ϕ̃σ, σ ∈ EV,K , is
the affine function which takes value 1 in xσ, value 0 in xγ , γ ∈ EV,K , γ 6= σ, and value 0 in zK .
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σ3

γ4

γ5

γ1

γ2

γ3
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V

TV = {Ki}
5
i=1

E int
V = {σi}

5
i=1

Eext
V = {γi}

5
i=1

EV = E int
V ∪ Eext

V

Figure 4: An example of a patch TV around a vertex V

Similarly, ϕ̃K takes value 1 in zK and value 0 in xσ, σ ∈ EV,K . Then, using (3.4a), we get

uh|K = −SK∇

( ∑

σ∈EV,K

λσϕ̃σ + p̄Kϕ̃K

)
+
gK
d
(x− xK). (4.2)

Let now a vertex V ∈ Vh be fixed and consider the patch TV ; we recall that these are the
elements of Th which share V . We refer to Figure 4 for an example. Suppose we have chosen a
point zK for each K ∈ TV , as described above. Suppose that λ̃h is expressed using the values in
zK , K ∈ TV , and in those side barycenters xσ which lie in the internal sides of the patch TV or
in the sides lying in ∂Ω. For Figure 4, these are the sides σi, i = 1, . . . , 5. Recall that we then
have (4.2) for any K ∈ TV . Consider the equations (1.4c) associated with ψh associated with the
internal sides of the patch TV (recall that we have denoted these sides by E int

V ). This gives rise to
the following local problem: given p̄K , K ∈ TV , find λγ , γ ∈ E int

V , such that

∑

K∈TV ;σ∈EK

〈uh · nK , 1〉σ = 0 ∀σ ∈ E int
V . (4.3)

In the above summation, we, for a given σ ∈ E int
V , go through all elements K ∈ TV such that σ is

a side of K (there are two such elements K). Note that (4.3) (while plugging (4.2) therein) leads
to a square linear system. Suppose that this linear system is well-posed. Then we can express
the Lagrange multipliers λγ inside the patch TV as a function of the new element values p̄K in the
patch TV (and of the sources gK in the patch TV ). Considering (4.2), we can also get the fluxes
uh in the whole patch TV as a function of p̄K , i.e., we obtain local flux expressions from the new
element potentials p̄K .

Remark 4.1 (Relation to the multi-point flux-approximation method). Considering a patch of
(sub)elements, supposing a piecewise affine, possibly nonconforming, potential approximation, im-
posing the normal flux continuity, and solving a local linear system on the patch is also the principle
of the so-called multi-point flux-approximation method [1, 2] (or of the method of [31]). This is for
us a confirmation of the fact that lowest-order Raviart–Thomas mixed finite elements and multi-
point flux-approximation methods are conceptually very close. We refer to Remark 4.2 below for
a further precision.

Let us now elaborate on (4.2)–(4.3). First recall that (4.3) can be equivalently rewritten as

∑

K∈TV ;σ∈EK

〈uh · nK , ψ̃σ〉∂K = 0 ∀σ ∈ E int
V .

10



•
zK

∇ψ̃σ

σ

γ

K∇ϕ̃γ

∇ϕ̃σ

∇ψ̃γ

Figure 5: Basis functions gradients in an element K ∈ Th

Here ψ̃σ are the Crouzeix–Raviart nonconforming basis functions, see Section 3.1. This follows by
the fact that uh ·nK is constant on any σ ∈ EK , by the fact that 〈1, ψ̃σ〉σ = |σ|, and by the fact that
〈1, ψ̃σ〉γ = 0 for any side γ different from σ, so that 〈uh ·nK , 1〉σ = 〈uh ·nK , ψ̃σ〉σ = 〈uh ·nK , ψ̃σ〉∂K .
Form this equality, using the Green theorem, we have

∑

K∈TV ;σ∈EK

{(∇ · uh, ψ̃σ)K + (uh,∇ψ̃σ)K} = 0 ∀σ ∈ E int
V . (4.4)

It follows from (1.2b) and the definition of Vh(K) in Section 3 that (∇·uh)|K = gK . For the other
term in the above relation, we employ (4.2). Remark that

(x− xK ,∇ψ̃σ)K = 0,

as (∇ψ̃σ)|K is a constant vector and xK is the barycenter of K. Extend the notation ϕ̃σ from (4.2)
to a Lagrange basis function supported on allK ∈ TV such that σ ∈ EK . Remark that the functions
ϕ̃σ are nonconforming. They are only continuous in the barycenters of the sides sharing the vertex
V . They have the same support as ψ̃σ, but are different from ψ̃σ. We then see that (4.2)–(4.3) is
equivalent to the following problem: given p̄K , K ∈ TV , find λγ , γ ∈ E int

V , such that

∑

K∈TV ;σ∈EK

∑

γ∈E int

V

λγ(SK∇ϕ̃γ ,∇ψ̃σ)K =
∑

K∈TV ;σ∈EK

{(gK , ψ̃σ)K−p̄K(SK∇ϕ̃K ,∇ψ̃σ)K} ∀σ ∈ E int
V .

(4.5)
Remark that (4.5) is a Petrov–Galerkin problem, as the basis functions ψ̃σ of the test space

are different from the basis functions ϕ̃γ of the trial space. We can now also infer the matrix form
of (4.5): given P̄V = {p̄K}K∈TV , find Λint

V = {λγ}γ∈E int

V
such that

MV Λ
int
V = G̃V − JV P̄V , (4.6)

where

(MV )σ,γ :=
∑

K∈TV ; σ∈EK

(SK∇ϕ̃γ ,∇ψ̃σ)K , (4.7a)

(G̃V )σ :=
∑

K∈TV ; σ∈EK

(gK , ψ̃σ)K , (4.7b)

(JV )σ,K := −(SK∇ϕ̃K ,∇ψ̃σ)K . (4.7c)
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•
zK (barycenter)

•
zK (circumcenter)

• zK (S-circumcenter)

Figure 6: Circumcenter, S-circumcenter, and barycenter as the evaluation points zK

In Figure 5, we illustrate for later use the gradients of the basis functions ψ̃σ and ϕ̃σ.
In the above developments, we have not specified the choice of the points zK . It turns out

that, in a formulation different from (4.2)–(4.3) (or, equivalently, (4.5)), three particular choices of
zK (the circumcenter, the so-called S-circumcenter, and the barycenter) have already been studied
previously in the literature in [66, 22, 65] and [59], respectively. We plot these three choices in
Figure 6 for the example of the triangle of Figure 3 and for the diffusion tensor S given by

S =

(
0.7236 0.3804
0.3804 0.4764

)
,

which corresponds to the first form S takes in (6.2) below. We now present these and other choices
in more details. In parallel with the present work, we give a detailed study of the properties of the
corresponding local condensation matrices MV in [64]. For the moment, we only remark that MV

can be all diagonal, nonsymmetric, regular, or singular.

4.1.1 S-circumcenter as the evaluation point

It turns out that in [66, 22] for two space dimensions and in [65] for three space dimensions,
the problem (4.2)–(4.3) (or, equivalently (4.5)) was studied in a different form. The first one to
observe that the approach of [66, 22, 65] falls into the framework (4.2)–(4.3) was probably [49].
In [66, 22, 65], a starting additional condition or assumption was that the matrixMV given by (4.7a)
is diagonal.

It turns out that in two space dimensions, one can always find a point zK such that MV is
diagonal, or, equivalently, such that the basis functions in the Petrov–Galerkin problem (4.5) are
orthogonal with respect to the (S·, ·) scalar product. When SK = IsK , zK is the circumcenter of
K. This can be easily seen from Figure 5: when zK is the circumcenter of K, ∇ψ̃σ is orthogonal to
∇ϕ̃γ and ∇ψ̃γ is orthogonal to ∇ϕ̃σ , i.e., ∇ϕ̃γ ·∇ψ̃σ = 0 and ∇ϕ̃σ ·∇ψ̃γ = 0; consequently, the off-
diagonal terms of MV vanish. A point zK such that MV is diagonal can still be found for a general
full-matrix SK . It is determined by the requirements SK∇ϕ̃γ · ∇ψ̃σ = 0 and SK∇ϕ̃σ · ∇ψ̃γ = 0,
with the notation of Figure 5. We call this point S-circumcenter; the whole mesh Th then becomes
“S-orthogonal grid” in the terminology of [1]. The S-circumcenter is uniquely defined in each
triangle by the above requirement.

In the approach of this section no local linear system needs to be solved and one always obtains
a two-point flux expression, i.e., the flux over a given side σK,L ∈ E int

h is only expressed using the
potentials p̄K and p̄L associated with the two simplices K and L sharing σK,L. Thus, in two space
dimensions, lowest-order Raviart–Thomas mixed finite elements give two-point flux expressions
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Figure 7: Typical local condensation matrices sparsity patterns, S-circumcenter (left) and barycen-
ter (right) as the evaluation points zK

K

L

•
zK = zL

Figure 8: Two triangles cutting a square and the coinciding circumcenters

even on unstructured triangular meshes with a full-matrix diffusion tensor S. Remark finally that
in this case, the choice of the evaluation point zK depends on the diffusion tensor S (but not on
the local geometry). The sparsity pattern of a typical local condensation matrix MV in this case
is given in Figure 7, left.

For the analysis of the well-posedness of (4.6) and of the properties of MV with this choice
of zK , we refer to [66, 22, 65] and to [64]. Unfortunately, it turns out that proceeding with
a diagonal matrix MV is not possible in three (and higher) space dimensions unless a specific
geometric situation occurs. Examples are given in [65]. This geometric situation can be identified,
for SK = IsK , as the requirement that the circumcenter of each side of K coincides with the
barycenter of this side. Moreover, even in two space dimensions, this approach can degenerate. This
happens when zK coincides with one of the side barycenters xσ, as illustrated in Figure 6. Then,
with the notation of Figure 3, the measure of the subtriangle L becomes 0, |L| = 0. Consequently,
one obtains |∇ϕ̃σ| = ∞. Figure 8 represents a typical mesh / situation where this happens. A
remedy by “aggregation” of the two triangles into a square is suggested in [22], see Figure 8.

4.1.2 Barycenter as the evaluation point

The choice of zK = xK , i.e., zK as the barycenter, is related to the approach studied in [59].
It turns out that the choice zK as the barycenter allows for a wider variety of meshes for which
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V 

Figure 9: An example of a patch TV where the matrix MV is singular with barycenters as the
evaluation points

the local problems (4.6) are well-posed and that it works in three (d in general) space dimensions,
without any difference to two space dimensions. The matrix MV is not diagonal in general (it
gets diagonal when SK = IsK and when the barycenters coincide with the circumcenters, i.e., on
equilateral simplices). This leads to the necessity to solve local linear systems and to a multi-point
flux expression, i.e., to the situation where the fluxes can only be expressed from the potentials p̄K
of the whole patch TV . The choice of the evaluation point zK depends neither on the diffusion tensor
S, nor on the local geometry. This approach can, however, lead to a singular local condensation
matrix MV . This happens, e.g., for S = I and the patch TV illustrated in Figure 9. The sparsity
pattern of a typical local condensation matrix MV in this case is given in Figure 7, right.

For the analysis of the well-posedness of (4.6) and of the properties of MV with this choice of
zK , we refer to [59] and to [64]. In [59], one expresses uh|TV directly from the original unknowns
pK := ph|K , K ∈ TV . Noting that for the barycenter (zK = xK) and when g = 0, we have
from (3.4b) pK = p̄K = λ̃h(zK), it can be shown that the local problems (4.2)–(4.3) (or, equiva-
lently (4.5)) coincide with those given in [59] (see namely Remark 3.5 in this reference), although
the presentation in [59] is different from that given here. When g 6= 0, it follows from (3.4b) that pK
and p̄K = λ̃h(zK) only differ by the known constants given by gK(qK , 1)K/2d|K|. Consequently,
the local problems (4.2)–(4.3) and those of [59] can still be written in the form (4.6) with the same
local matrices MV given by (4.7a) and only differ by the vectors P̄V and the right-hand side.

Remark 4.2 (Singular matrices in the multi-point flux-approximation method). Consider a tri-
angular mesh and the case where g = 0. It was shown in [40], based on the results of [59], that
the multi-point flux-approximation O-method [1, 2] is completely equivalent to the lowest-order
Raviart–Thomas mixed finite elements written with one unknown per element, with zK being the
barycenters. Thus, this variant of the multi-point flux-approximation method also gives rise to a
singular matrix MV (and singular final matrix, see Section 4.4.1 below) for the mesh of Figure 9.

4.1.3 Changing the evaluation point according to the local geometry and diffusion

tensor

In the framework of the Crouzeix–Raviart nonconforming finite element method (equivalent to the
lowest-order Raviart–Thomas method, see Section 3.1), a new idea has been proposed in [64] for
the solution of the local problems (4.5). It consists in choosing the evaluation point according to
the local geometry and the diffusion tensor. The choice of the points zK is done locally in order
to: a) ensure the well-posedness of the local problems (4.5); b) influence the properties of the local
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matrices MV ; c) influence the properties of the final global system matrices (see Sections 4.4.1
and 4.4.2 below). We refer to [64] for the analysis of this approach. Proceeding as in this section,
one the hope is to combine the advantages of Sections 4.1.1 and 4.1.2; in particular, one can arrive
on local systems which are well-posed for any local geometry and tensor S (recall that this is
not possible by any of the approaches of Sections 4.1.1 and 4.1.2). The numerical experiments of
Section 6 below show that choosing the evaluation point can also lead to the superiority of this
approach over the other ones in terms of computational properties.

4.2 Local problems definition by an algebraic interpretation

The approaches of Sections 4.1.1–4.1.3 all rely on the geometrical interpretation of the new unknown
potential values p̄K as the values of the Crouzeix–Raviart approximation λ̃h in the points zK .
Following [64], it turns out that such a physical interpretation is not necessary and we can merely
introduce a new unknown value p̄K for each K ∈ Th and relate it algebraically to the Lagrange
multipliers λσ.

4.2.1 A general algebraic principle—potentials

Let K ∈ Th and let ΛK = {λγ}γ∈E int

K
be the vector (of size (d + 1) for elements K in the interior

of Ω) of the Lagrange multipliers associated with the sides of the element K. Then we set

NKΛK = p̄K , (4.8)

where NK is a 1× |E int
K | matrix, to be specified. In order to proceed further later on, we will also

need the matrix N of size |Th| × |E int
h | whose rows are formed by the element matrices NK . Then

the relation (4.8), for all K ∈ Th, can be written as

NΛ = P̄ . (4.9)

The approaches of Sections 4.1.1–4.1.3 have as entries of the matrix NK the values of the basis
functions at the evaluation point zK . Consequently,

∑

σ∈EK

(NK)σ = 1 (4.10)

holds true for all elements K in the interior of Th. As an example, the approach of Section 4.1.2
consists in taking all entries of NK equal to 1/(d+ 1) for all interior elements K. The matrix NK

for the approach of Section 4.1.1 is specified in [65, equation (30)]. The generality of the approach
of this section/of [64] lies in the fact that the condition (4.10) is not required.

Now consider a vertex V ∈ Vh and the lines in (1.6) associated with all interior sides of the
patch TV , γ ∈ E int

V . Setting ΛV := {λγ}γ∈EV , E
int
V := Eγ∈E int

V
, and denoting ZV the corresponding

submatrix of Z, this gives
ZV ΛV = Eint

V . (4.11)

Equation (4.11) represents a rectangular linear system, where the number of equations (rows) is
given by |E int

V |, the number of sides from E int
h (the interior sides of Th) having V as vertex, and

where the number of unknowns (columns) is given by |EV |, all the sides of the elements in TV
contained in E int

h . For an interior vertex V , we refer to Figure 4 for an illustration of these different
sets. Now consider (4.8) on all elements K ∈ TV . This gives |TV | (the number of elements in TV )
equations for the unknowns ΛV , expressed as a function of P̄V . Combing (4.8) on all elements
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K ∈ TV and (4.11) gives altogether |TV |+ |E int
V | equations for the unknowns ΛV (whose number is

|TV |+ |E int
V |), expressed as a function of P̄V and Eint

V . We can write this algebraically as

(
ZV

NV

)
ΛV =

(
Eint

V

P̄V

)
. (4.12)

We remark here that |Eext
V | = |TV |, except of the non interesting cases where Th only has a couple

of elements. Remark also that (4.11) represents a set of |E int
V | linearly independent equations (as

these equations are lines of the well-posed system (1.6)). Thus the well-posedness of (4.12) only
depends on the matrix NV given by the element matrices NK . Clearly, as in Section 4.1.3, but still
in a more general fashion, the well-posedness of (4.12) can be controlled in function of the local
constellation (local geometry, local values of S) through the choice of the matrices NK , that we
have entirely under our control. This is the subject of the study in [64]. Remark finally that (4.6)
is a particular consequence of (4.12) when (4.10) holds true.

4.2.2 A general algebraic principle—fluxes

We have discussed in Section 4.1, recall (4.2), that whenever we can obtain local expressions of
the Lagrange multipliers λγ inside (or in) the patch TV as a function of the new element values
p̄K in the patch TV , we can also obtain the fluxes uh in the whole patch TV as a function of p̄K .
Starting from the hybridized formulation (1.5) instead of (1.6) and following the same general idea
as in Section 4.2.1, this can also be seen as follows: consider a vertex V ∈ Vh and the lines in (1.5)
associated with all the elements of the patch TV and their sides for the first block row, all the
elements of the patch TV for the second block row, and all the interior sides of the patch TV for the
last block row. Set UV for all the elements of the patch TV and their sides, PV for all the elements
of the patch TV , and ΛV for the sides from EV . This gives the following local rectangular linear
system: 


AV Bt

V Ct
V

BV 0 0
CV 0 0






UV

PV

ΛV


 =




FV

GV

0V


 . (4.13)

Combing (4.8) on all elements K ∈ TV with (4.13) gives a local square linear system (with (d +
1)|TV |+ |TV |+ |E int

V |+ |TV | equations and unknowns)




AV Bt
V Ct

V

BV 0 0
CV 0 0
0 0 NV







UV

PV

ΛV


 =




FV

GV

0V
P̄V


 . (4.14)

The same comments as in Section 4.2.1 hold here true as well.

4.3 Expressing the Lagrange multipliers Λ and the fluxes U as a function of

the potentials P̄

Let V ∈ Vh be a vertex and TV the corresponding patch. By any of the approaches of Sections 4.1–
4.2, if the corresponding local problems (4.6), (4.12), or (4.14) are well-posed, we obtain local
expressions of the Lagrange multipliers Λint

V (ΛV ) and/or local expressions of the fluxes UV from
the potentials P̄V (and sources in TV ). We in particular infer from (4.6)

Λint
V = (MV )

−1(G̃V − JV P̄V ) (4.15)
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and from (4.12)

ΛV =

(
ZV

NV

)−1(
Eint

V

P̄V

)
. (4.16)

A similar expression can be obtained for UV from all (4.6), (4.12), or (4.14).
We will now run through all vertices of the mesh Th. For every vertex V , we have one expression

for Λint
V . Once the new potentials P̄ are known, these different expressions have to lead to the

same values of the Lagrange multipliers Λ. Thus, we are free to associate a weight wV,σ to the
expression of Λσ from every patch TV where the side σ is such that Λσ is the unknown in the local
problem, and combine these expressions with these weights. The only (natural) condition is that,
for every side σ, the sum of all its weights is equal to one. Let V ∈ Vh. Let us define a mapping
ΥV : R|E int

V
| → R|E int

h
|, extending a vector Λint

V = {Λσ}σ∈E int

V
of values associated with the sides from

E int
V to a vector of values associated with all the interior sides E int

h by

[ΥV (Λ
int
V )]σ :=

{
Λσ if σ ∈ E int

V

0 if σ 6∈ E int
V

.

Let next WV be a diagonal matrix of size |E int
V |× |E int

V |, with the entries given by the weights wV,σ.
With these notations and assumptions, we have

∑

V ∈Vh

ΥV (WV Λ
int
V ) = Λ. (4.17)

Let us now introduce a mapping ΥV : R|E int

V
|×|E int

V
| → R|E int

h
|×|E int

h
| (with the same name as the

previous one, since there is no possibility of confusion), extending a local matrix MV to a full-size
one by zeros by

[ΥV (MV )]σ,γ :=

{
(MV )σ,γ if σ ∈ E int

V and γ ∈ E int
V

0 if σ 6∈ E int
V or γ 6∈ E int

V
.

We finally in the same fashion define a mapping ΘV : R|E int

V
|×|TV | → R|E int

h
|×|Th|, filling a full-size

representation of a matrix JV by zeros on the rows associated with the sides that are not from E int
V

and on the columns associated with the elements that are not from TV ,

[ΘV (JV )]σ,K :=

{
(JV )σ,K if σ ∈ E int

V and K ∈ TV
0 if σ 6∈ E int

V or K 6∈ TV
.

With these notations, we obtain from (4.15)

ΥV (WV Λ
int
V ) = ΥV (WV (MV )

−1(G̃V − JV P̄V ))

= ΥV (WV (MV )
−1)G̃−ΘV (WV (MV )

−1
JV )P̄ .

Now, employing (4.17), we finally come to

Λ = M̃
invG̃−M

invP̄ (4.18)

with
M̃

inv :=
∑

V ∈Vh

ΥV (WV (MV )
−1), M

inv :=
∑

V ∈Vh

ΘV (WV (MV )
−1

JV ).

A similar procedure as above can be applied for the local problems (4.12) or (4.14).
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In the same way, in all (4.6), (4.12), or (4.14), also the fluxes can be expressed. We then arrive
at the equivalent of (4.18) in the form

U = Õ
invG−O

invP̄ . (4.19)

Let us stress that all Minv, M̃inv, Oinv, and Õinv are fully computable and sparse matrices, obtained
by a weighted combination of the inverses of the local matrices. We would finally like to mention
here that in the numerical experiments of Section 6, we only use the approach of Section 4.1. We
set there all the weights wV,σ equal to 1/d.

4.4 Prescribing the final system for the potentials P̄ only

We now want to use the above developments in order to write a global system of the form (1.10). It
turns out that two different approaches may be taken. In both of them, somehow surprisingly and
unusually, we are going to reuse the same equations that have been previously used to obtain (4.18)
or (4.19).

4.4.1 Prescribing the final system by an equilibrium of the fluxes

Using (4.19), the first way of writing a final linear system for the unknowns P̄ only is to insert this
expression into the second block equation of (1.3), i.e., into

BU = G.

This gives
− BO

invP̄ = G− BÕ
invG, (4.20)

i.e., (1.10) with S̄ = −BOinv and H̄ = G− BÕinvG. Remark that here, the second block equation
of (1.3) (BU = G) is used in (4.6) (it is employed in (4.4))/in (4.14), as well as in (4.20). We
now comment on the different approaches of Sections 4.1.1–4.1.3 when they are used in connection
with (4.20).

In the approach of Section 4.1.1 (when it is feasible), following [66, 22, 65], the final matrix S̄

is symmetric and has a (d+ 2)-point stencil (there are at most d+ 2 nonzero entries per each row
of S̄) (for each K ∈ Th, only its neighbors are involved). When SK = IsK , S̄ is positive definite
on strictly Delaunay meshes but indefinite otherwise. A critical situation arises, as outlined in
Section 4.1.1, in two space dimensions, when two triangles cut a square, see Figure 8. The local
matrices MV degenerate and the final problem (4.20) is not well-posed. In order to proceed, an
“aggregation” of the two triangles into a square has to be done, leading to one final unknown for
each aggregated pair of triangles. We refer for a detailed description of all these results and for
further results to [66, 22, 65]. This approach is called in Section 6 below the FV method.

In the approach of Section 4.1.2, the final matrix S̄ is in general nonsymmetric and has a wider
stencil (for each K ∈ Th, all simplices sharing a node with K are involved). The family of meshes
where S̄ is positive definite (which implies well-posedness) is, however, wider in comparison with
the previous case. Recall that, similarly as in the previous case, singular local matrices MV can
appear, see Section 4.1.2. We refer for a detailed description of all these results and further results
to [59]. This approach is called in Section 6 below the CMFE method.

Finally, the approach of Section 4.1.3 can be described similarly as that of Section 4.1.2.
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4.4.2 Prescribing the final system by a potential relation

Using (4.18), the second way of writing a final linear system for the unknowns P̄ only is to insert
this expression into (4.9), i.e., into

NΛ = P̄ .

This gives
NM

invP̄ + P̄ = NM̃
invG̃, (4.21)

i.e., (1.10) with S̄ = NMinv + I and H̄ = NM̃invG̃. Remark that here, (4.9) is used repeatedly.
This approach is studied in detail in [64]. It turns out that the approach of Section 4.1.1,

in contrast to Section 4.4.1, leads here in general to a nonsymmetric matrix. This approach is
called in Section 6 below the MFEC method. The other approaches still lead to a nonsymmetric
matrix as in Section 4.4.1. The stencil involves only neighbors of a given K ∈ Th for Section 4.1.1
and all simplices sharing a node with a given K ∈ Th in the other cases. Positive definiteness
and well-posedness depend again on the mesh Th and the diffusion tensor S. The approaches of
Sections 4.1.2 and 4.1.3, respectively, are called the MFEB and MFEO methods in Section 6 below.

4.5 Additional symmetry and positive definiteness issues

As we have described, the final matrix S̄ of (1.10), given by (4.20) or by (4.21), is generally
nonsymmetric. The exception is the use of the S-circumcenter as the geometric evaluation point
of Section 4.1.1, while imposing the final system through (4.20).

Consider the case S = I and the approach of Section 4.1.1 (S-circumcenter as the geometric
evaluation point), in combination with (4.21). It is observed in numerical experiments in [64]
that in this case, the final matrix S̄ is symmetric if the mesh is “symmetric”, consisting of the
elements with the same shape, repeated in the mesh. Here the two approaches of imposing (1.10)
through (4.20) or through (4.21) coincide. Interestingly enough, this is no more the case for an
inhomogeneous or anisotropic diffusion tensor S.

An open question that we find interesting is whether by adopting one of the approaches of
Sections 4.1.3, 4.2.1, or 4.2.2 in combination with the use of the weights wV,σ of Section 4.3, we
can obtain a symmetric and positive definite matrix for any mesh Th and any diffusion tensor S,
either while imposing the final system as in Section 4.4.1, or as in Section 4.4.2.

5 Mixed finite elements on general polygonal meshes and their

relations to other locally conservative methods

The aim of this section is to recall that mixed finite elements (of arbitrary order) can be used on
general polygonal meshes T̂H described in Section 1 in order to produce a scheme of the type (1.12)
or (1.13).

Theorem 5.1 (Mixed finite elements on polygonal meshes under the form (1.13)). Let T̂H be
an arbitrary polygonal mesh with a matching simplicial submesh Th. Consider any mixed finite
element scheme on Th leading to (1.6). Then, (1.6) can be statically condensed into a well-posed
system of the form (1.13) with a sparse, symmetric, and positive definite matrix Ẑ.

Proof. Let a K ∈ T̂H be given and denote the unknowns Λ of (1.6) corresponding to the sides of
Th which are in the interior of K by Λint

K . Use a similar notation Eint
K for the right-hand side entries

of (1.6). Finally, denote the unknowns corresponding to sides of Th which are on the boundary of
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K but not on the boundary of Ω by Λext
K . Consider the lines of (1.6) associated with such sides of

Th which are in the interior of K. This gives rise to the following local problem:

Z
int
K Λint

K = Eint
K − Z

ext
K Λext

K . (5.1)

Note that the system matrix Zint
K is square, symmetric, and positive definite, which implies the

well-posedness of the local problem (Zint
K is a submatrix of Z corresponding to the lines and columns

corresponding to the sides of Th which are in the interior of K). Note also that (5.1) is a local
Dirichlet problem, which allows to compute Λint

K from Λext
K and Eint

K . More precisely, we have

Λint
K = (Zint

K )−1(Eint
K − Z

ext
K Λext

K ). (5.2)

We now repeat the above procedure for all K ∈ T̂H . We finally use the lines of (1.6) associated
with the sides of Th which are on the boundary of some K ∈ T̂H but not on the boundary of Ω,
where we insert the expressions (5.2). This gives (1.13). Note that, contrarily to Section 4, all
equations of (1.6) are used exactly once; this process is called static condensation and clearly leads
to the well-posedness of (1.13) with Ẑ being sparse, symmetric, and positive definite.

Theorem 5.2 (Mixed finite elements on polygonal meshes under the form (1.12)). Let T̂H be
an arbitrary polygonal mesh with a matching simplicial submesh Th. Consider any mixed finite
element scheme on Th leading to (1.3). Then, (1.3) can be statically condensed into a well-posed
system of the form (1.12) of indefinite, saddle point type, with Â being symmetric and B̂ having
full row rank.

Proof. Consider such basis of the space Φh which contains the indicator functions φK of allK ∈ T̂H ,
i.e., the functions equal to one on K and zero elsewhere (then, all other basis functions of Φh have
zero mean value on each K ∈ T̂H). Let a K ∈ T̂H be given and consider the lines of the first block
of (1.3), i.e., of (A Bt), associated with such sides of Th which are in the interior of K. Consider
moreover the lines of the second block of (1.3), i.e., of (B 0), associated with all basis functions
with support in K, other than φK . This gives rise to the following local problem:

(
Aint
K (B0

K)t

B0
K 0

)(
U int
K

P 0
K

)
=

(
F int
K − Aext

K U ext
K

G0
K

)
. (5.3)

The well-posedness of this local problem follows from the fact that it corresponds to a local Neu-
mann problem with compatible data (the compatibility of the data follows from (1.3)). Using (5.3),
we can compute the fluxes U int

K and potentials P 0
K in the interior of K as a function of the fluxes

U ext
K through the boundary of K. Note that the matrix of (5.3) is formed by lines and rows of

the matrix of (1.3). It is now sufficient to insert these expressions for all K ∈ T̂H into the remain-
ing equations of (1.3), i.e., those associated with the lines of the first block of (1.3) associated
with the sides of Th which are on the boundary of some K ∈ T̂H and those associated with the
lines of the second block of (1.3) associated with the basis functions φK . This leads to a sys-
tem of a form (1.12). Note that contrarily to Section 4, there is no reuse of the same equations.
This procedure is called static condensation and clearly leads to the well-posedness and indefinite,
saddle-point form of (1.12), with Â being symmetric and B̂ having full row rank.

Remark 5.3 (A priori and a posteriori error estimates). Using Theorems 5.1 and 5.2, (1.13) is
only an algebraic rewriting of (1.6) and (1.12) is only an algebraic rewriting of (1.3). Thus, all
a priori and a posteriori error estimates recalled in Section 1 are valid for mixed finite element
methods also on arbitrary polygonal grids.

Remark 5.4 (Discrete maximum principle on arbitrary polygonal meshes). In the same sense
as in the previous remark, under the conditions discussed in Section 3.3, the discrete maximum
principle is valid for mixed finite element methods also on arbitrary polygonal grids.
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Figure 10: Initial mesh

6 Numerical experiments

The goal of this section is to carry out an extensive comparative numerical study of the different
one-unknown-per-element reformulations of the lowest-order Raviart–Thomas mixed finite element
method, as presented in Section 4. We study the behavior of the different approaches for the
homogeneous and isotropic diffusion tensor in Section 6.1, for an anisotropic diffusion tensor in
Section 6.2, and for an inhomogeneous diffusion tensor in Section 6.3.

We consider the problem (1.1a) on Ω = (0, 1)× (0, 1), with inhomogeneous Dirichlet boundary
condition given by the function p(x, y) = 0.1y+0.9 instead of (1.1b). We perform the calculations
on uniform refinements of the mesh viewed in Figure 10. This mesh is strictly Delaunay, with the
minimal and maximal angles equal to 35.4 and 88.7 degrees, respectively. A sink term g = −0.001
is prescribed on two elements of the initial mesh. We consider the tensor S in the form

S|K =

(
cos(θK) − sin(θK)
sin(θK) cos(θK)

)(
sK 0
0 νsK

)(
cos(θK) sin(θK)
− sin(θK) cos(θK)

)
for K ∈ Th,

where we distinguish the following three different forms:

sK = 1 ∀K ∈ Th, ν = 1, (6.1)

i.e. the homogeneous isotropic case (S = I), or

sK = 1 ∀K ∈ Th, θK ∈

{
π

5
,
3π

4
,
π

2
,
3π

5
,
π

3

}
, ν = 0.2, (6.2)

i.e. the (homogeneous with respect to sK) anisotropic case (S is a full-matrix tensor), or

sK ∈ {10, 1, 0.1, 0.01, 0.001}, ν = 1, (6.3)

i.e. the inhomogeneous isotropic case (S is a varying multiple of the identity matrix). The dif-
ferent grey shades in Figure 10 correspond to the different choices θK and sK in (6.2) and (6.3),
respectively. All the computations were performed in double precision on a notebook with Intel
Core2 Duo 2.6 GHz processor and MS Windows Vista operating system. Machine precision was
in the power of 1e-16. All the linear system solutions were done with the help of MATLAB 7.0.4.
Additional numerical experiments are presented in [64].

We test the following methods, which are all equivalent implementations of the lowest-order
Raviart–Thomas mixed finite element method (1.2a)–(1.2b) (written as (1.3) in the matrix form):
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Figure 11: System matrix sparsity pattern of the original MFE formulation (top left), NCFE
formulation (top right), MFEB, MFEO, and CMFE formulations (bottom left), and FV and MFEC
formulations (bottom right) for the mesh of Figure 10

1. MFEB: the final system is of the form (1.10), imposed through (4.21), with the barycenter
as the evaluation point (cf. Section 4.1.2); this is the approach studied in [64];

2. MFEC: the final system is of the form (1.10), imposed through (4.21), with the S-circum-
center as the evaluation point (cf. Section 4.1.1); this is the approach studied in [64];

3. MFEO: the final system is of the form (1.10), imposed through (4.21), while choosing the
evaluation point as a function of the local geometry (cf. Section 4.1.3); this is the approach
studied in [64];

4. CMFE: the final system is of the form (1.11), given by the approach of [59]; considering the
discrete unknowns p̄K of (4.1) with the barycenter as the evaluation point (cf. Section 4.1.2)
instead of pK (recall the relation (3.4b)), the system matrix S of (1.11) is the same as the
system matrix S̄ of (1.10) imposed through (4.20);

5. FV: the final system is of the form (1.10), imposed through (4.20), with the S-circumcenter
as the evaluation point (cf. Section 4.1.1); this is the approach of [66, 22, 65] and corresponds
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Abbreviation Meaning

Meth. method, one of the equivalent mixed finite element formulations
Un. number of unknowns (matrix size)
Mat. matrix
St. stencil (the maximum number of nonzero entries on each matrix row)
Nonz. total number of matrix nonzero entries
CN 2-norm condition number
CNS 2-norm condition number after diagonal scaling
DS direct linear solver
CG conjugate gradients iterative linear solver
PCG preconditioned conjugate gradients iterative linear solver
Bi-CGStab bi-conjugate gradients stabilized iterative linear solver
PBi-CGStab preconditioned bi-conjugate gradients stabilized iterative linear solver
CPU CPU time of a direct/iterative linear solver
Iter. number of iterations of an iterative linear solver
IC CPU time of incomplete Cholesky factorization with a specified drop tolerance
ILU CPU time of incomplete LU factorization with a specified drop tolerance
SPD symmetric positive definite
SID symmetric indefinite
NPD nonsymmetric positive definite
NNS nonsymmetric negative stable
NID nonsymmetric indefinite

Table 1: Abbreviations used in Tables 2–5

to the finite volume method;

6. NCFE: the final system is of the form (1.6), imposed through (3.2), i.e., through the
Crouzeix–Raviart nonconforming finite element method, see Section 3.1.

We show in Figure 11 the sparsity patterns of the original mixed finite element method (1.3) and
of its equivalent reformulations of the above list, for the case of the mesh of Figure 10. In Tables 2–
5, we present various properties of the final matrix systems arising from the different equivalent
reformulations. We summarize in Table 1 the different abbreviations used in Tables 2–5. Recall
that a real matrix S ∈ RM×M is positive definite if P tSP > 0 for all P ∈ RM , P 6= 0, and negative
stable when all its eigenvalues have positive real parts (this is in particular the case for positive
definite matrices). The 2-norm condition number of a matrix S is defined by ‖S‖2‖S

−1‖2. We also
consider the 2-norm condition number after diagonal scaling, by which we mean the minimal of
the two 2-norm condition numbers of the two matrices

(diag(S))−1
S, |diag(S)|−1/2

S |diag(S)|−1/2.

We also study the computational cost. We first test the Matlab \ direct solver. A direct
solver may not be usable for very large systems or may not be suitable for parabolic or nonlinear
problems. Thus the behavior of iterative solvers is very important. We test two iterative methods.
If the matrix is symmetric and positive definite, we use the conjugate gradients method [39, 52].
For nonsymmetric matrices, we employ the bi-conjugate gradients stabilized method [52, 58].
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CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 13824 NPD 14 177652 7564 7580 0.27 4.86 324.5 0.81 0.36 9.0
MFEC 13824 NNS 4 55040 11256 11056 0.09 2.23 372.0 0.42 0.19 6.5
MFEO 13824 NPD 14 177652 7531 7558 0.28 4.08 270.0 0.80 0.41 7.5
CMFE 13824 NPD 14 177652 7397 7380 0.27 4.70 312.0 0.83 0.39 8.5
FV 13824 SPD 4 55040 65722 8898 0.07 3.09 1098.0 0.42 0.17 17.0
NCFE 20608 SPD 5 102528 14064 9944 0.14 2.92 620.0 1.11 0.56 19.0

Table 2: Matrix properties and computational cost of the different equivalent equivalent formula-
tions of the mixed finite element method, coefficients (6.1)

Unpreconditioned iterative linear solvers may be rather slow but usually illustrate well the matrix
properties and especially the matrix condition number. To accelerate their convergence, we use
incomplete Cholesky and incomplete LU factorizations with a specified drop tolerance, cf. [56]. The
drop tolerance is always chosen in such a way that the sum of CPU times of the preconditioning
and of the solution of the preconditioned system was minimal. We always use a zero start vector
and stop the iterative process as soon as the relative residual ‖H − SP̃‖2/‖H‖2, where P̃ is the
approximate solution to the system SP = H, decreases below 1e-8.

Some general conclusions may be drawn from the theoretical investigations and from Tables 2–
5. The number of unknowns is given by the number of elements for all methods except of NCFE,
where the number of unknowns is given by the number of interior sides. NCFE always produces a
symmetric positive definite matrix. The FV matrix is always symmetric, but positive definiteness
depends on the tensor S and on the mesh Th. All the other methods lead to nonsymmetric matrices
(see the discussion in Sections 4.4 and 4.5). These matrices can be positive definite, negative stable,
or indefinite, in dependence on S and Th. Methods FV and MFEC produce four nonzero entries
per matrix row in the interior of the mesh. In the NCFE case, this number is equal to 5. The
stencil of the other methods is variable (recall that on the row associated with a given element K,
there are nonzero entries on columns associated with those elements L which share a vertex with
K); it the present case, this is equal to 14. Methods MFEC and FV lead to fewest total nonzero
matrix entries; NCFE has roughly twice and the other methods have roughly three times as many
nonzeros.

6.1 Identity matrix diffusion tensor

Tables 2 and 3 present the results for the coefficients (6.1) and respectively fourth- and fifth-
level uniform refinements of the mesh of Figure 10. The condition number of all methods is here
roughly comparable; the only (negative) exception is the FV method. The condition numbers get
mutually much closer after the diagonal scaling. The matrix size and sparsity pattern/number
of nonzero entries imply that FV/MFEC give smallest CPU times while using the direct solver,
followed respectively by NCFE and then all other methods. The method MFEC behaves best for
an unpreconditioned linear solver, actually much better than FV which do has the advantage of
a symmetric matrix. The methods MFEB/MFEC/MFEO proposed in the present paper and the
related CMFE method seem to outperform NCFE for increasing mesh size (a systematically better
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CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 55296 NPD 14 714740 30289 30373 1.51 33.31 530.0 8.14 3.37 19.5
MFEC 55296 NNS 4 220672 45016 44643 0.49 17.47 624.5 3.34 1.25 13.5
MFEO 55296 NPD 14 714740 30143 30285 1.55 37.76 594.5 7.06 2.75 19.5
CMFE 55296 NPD 14 714740 29630 29551 1.49 34.32 544.5 6.91 2.73 18.5
FV 55296 SPD 4 220672 263036 35813 0.48 29.52 2170.0 3.08 1.47 20.0
NCFE 82688 SPD 5 412416 56416 39901 0.90 35.80 1219.0 9.41 3.78 42.0

Table 3: Matrix properties and computational cost of the different equivalent equivalent formula-
tions of the mixed finite element method, coefficients (6.1)

CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 13824 NPD 14 177652 14489 11203 0.28 6.61 448.0 0.98 0.59 6.5
MFEC 13824 NID 4 55040 2401279 416769 0.08 — — 0.45 0.20 7.0
MFEO 13824 NPD 14 177652 13401 10767 0.27 6.51 440.5 0.95 0.41 10.0
CMFE 13824 NPD 14 177652 9276 7758 0.28 5.27 350.5 0.84 0.38 9.0
FV 13824 SID 4 55040 247055 239934 0.09 — — 0.45 0.20 7.0
NCFE 20608 SPD 5 102528 25393 16969 0.18 4.03 850.0 1.12 0.41 30.0

Table 4: Matrix properties and computational cost of the different equivalent equivalent formula-
tions of the mixed finite element method, coefficients (6.2)

behavior of CMFE over NCFE is observed in [59]). Concerning preconditioned iterative solvers,
FV/MFEC seem to perform roughly two times as fast as MFEB/MFEO/CMFE and roughly three
times as fast as NCFE.

6.2 Anisotropic diffusion tensor

Table 4 presents the results for the coefficients (6.2) and the fourth-level uniform refinement of
the mesh of Figure 10. Because of the anisotropy of the diffusion tensor, the FV method leads to
a symmetric indefinite matrix, whereas the MFEC method to a nonsymmetric indefinite matrix.
These matrices are also very badly conditioned, whereby the diagonal scaling does not help too
much. Consequently, direct application of the iterative solvers leads to no convergence in 50000
iterations. All the other methods behave rather similarly to Table 2. Application of the direct
solver or of iterative solvers with preconditioning leads to results similar to that of Table 2.
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CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 13824 NPD 14 177652 819248 740706 0.28 13.33 897.5 1.05 0.62 6.5
MFEC 13824 NNS 4 55040 903789 763849 0.09 5.34 947.5 0.47 0.20 7.5
MFEO 13824 NPD 14 177652 820367 739957 0.28 12.45 790.5 1.05 0.56 8.0
CMFE 13824 NPD 14 177652 2500730 478974 0.28 102.27 6842.5 1.01 0.41 10.5
FV 13824 SPD 4 55040 16387758 497974 0.07 39.41 14101.0 0.44 0.17 16.0
NCFE 20608 SPD 5 102528 4797335 670623 0.18 52.42 11226.0 1.22 0.64 16.0

Table 5: Matrix properties and computational cost of the different equivalent equivalent formula-
tions of the mixed finite element method, coefficients (6.3)

6.3 Inhomogeneous diffusion tensor

Table 5 presents the results for the coefficients (6.3) and the fourth-level uniform refinement of the
mesh of Figure 10. Here the matrices are as for the identity matrix diffusion tensor of Tables 2
and 3; in particular the FV method gives a symmetric positive definite matrix and MFEC a
nonsymmetric negative stable matrix. The inhomogeneity of the diffusion tensor however causes
an increase of the matrices condition numbers. This increase is severe in CMFE and NCFE
methods, and in particular in the FV method. Consequently, direct application of the iterative
solvers leads to important increase of the CPU time in CMFE, NCFE, and FV methods. Whereas
the FV and MFEC methods behaved similarly in Table 2, the MFEC method becomes here almost
8 times faster than the FV one. When diagonal scaling is applied, however, the condition numbers
of all methods become comparable, whence the preconditioned iterative solvers behave similarly
as for the case of Table 2. Also the application of the direct solver leads to results similar to those
of Table 2.

7 Conclusions

We have introduced in this paper a systematic way of reducing the number of unknowns in the
lowest-order Raviart–Thomas mixed finite element method from the flux and potential unknowns
to (new) potential unknowns only. This gives rise to a whole family of equivalent one-unknown-
per-element reformulations of the mixed finite element method, some of which reduce to some well-
known discretization schemes. Amongst these equivalent formulations, the MFEC leads to very
compact 4-point stencils in two space dimensions and excellent computational costs for problems
with a possibly highly inhomogeneous diffusion tensor. The FV has similar properties and leads,
in addition, to symmetric matrices, but behaves considerably worse for highly inhomogeneous
diffusion tensors. Both of these reformulations, however, seem to behave less well for anisotropic
diffusion tensors, and, moreover, are only applicable in two space dimensions. Then the MFEB,
MFEO, or the previously proposed CMFE reformulations seem as appealing alternatives to the
classical NCFE implementation.

We have also recalled the validity of the discrete maximum principle and the possibility to
formulate mixed finite element methods on general polygonal meshes. To us, the major conclusion
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of the present paper is that in all underlying principles, derivation, properties, applicability, and
computational cost, the lowest-order Raviart–Thomas mixed finite element method is closely re-
lated to many other locally conservative discretization methods, while possessing a well-explored
and solid theoretical background.
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[57] Sboui, A., Jaffré, J., and Roberts, J. A composite mixed finite element for hexahedral
grids. SIAM J. Sci. Comput. 31, 4 (2009), 2623–2645.

[58] van der Vorst, H. A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 2 (1992),
631–644.

[59] Vohraĺık, M. Equivalence between lowest-order mixed finite element and multi-point finite
volume methods on simplicial meshes. M2AN Math. Model. Numer. Anal. 40, 2 (2006), 367–
391.
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[61] Vohraĺık, M. Unified primal formulation-based a priori and a posteriori error analysis of
mixed finite element methods. Math. Comp. (2010). DOI 10.1090/S0025-5718-2010-02375-0.
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