
HAL Id: hal-00497350
https://hal.science/hal-00497350v2

Submitted on 29 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What can you verify and Enforce at Runtime?
Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

To cite this version:
Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier. What can you verify and Enforce at Run-
time?. International Journal on Software Tools for Technology Transfer, 2011, pp.Online First. �hal-
00497350v2�

https://hal.science/hal-00497350v2
https://hal.archives-ouvertes.fr

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

What can you Verify and Enforce at Runtime ?

Yliès Falcone1, Jean-Claude Fernandez2, Laurent Mounier2
1 INRIA, Rennes - Bretagne Atlantique - e-mail: Ylies.Falcone@inria.fr
2

Verimag, Université Grenoble I - e-mail: {Jean-Claude.Fernandez,Laurent.Mounier}@imag.fr

Received: date / Revised version: date

Abstract. The underlying property, its definition and
representation play a major role when monitoring a sys-
tem. Having a suitable and convenient framework to ex-
press properties is thus a concern for runtime analysis.
It is desirable to delineate in this framework the sets of
properties for which runtime analysis approaches can be
applied to.
This paper presents a unified view of runtime verifica-
tion and enforcement of properties in the Safety-Progress
classification. Firstly, we extend the Safety-Progress clas-
sification of properties in a runtime context. Secondly,
we characterize the set of properties which can be veri-
fied (monitorable properties) and enforced (enforceable
properties) at runtime. We propose in particular an al-
ternative definition of “property monitoring” to the one
classically used in this context. Finally, for the delineated
sets of properties, we define specialized verification and
enforcement monitors.

1 Introduction

In the past decades, we have seen the emergence of a
world in which information systems are ubiquitous. Sys-
tem dissemination entails a growing need of confidence.
System failures in history showed limits of existing engi-
neering methodologies and enabled the emergence of for-
mal methods [9]. Ideally, one would like to validate a pro-
gram prior to its execution. However, static validation
methods such as model-checking [12] suffer from limits
preventing their use in real large-scale applications. For
instance, those techniques are often bound to the de-
sign stage of a system and hence they are not shaped to
face-off specification evolution. Even when those tech-
niques (e.g., static analysis [10]) do scale well, they are

Send offprint requests to: Yliès Falcone

limited by the properties they can check, and may not
be able to check interesting behavioral properties. Thus,
the verification of some properties, and elimination of
some faults, have to be complemented using methods
relying on dynamic analysis. In this paper, we are inter-
ested in runtime verification and runtime enforcement.
These methods, said to be incomplete, operate on one
execution of the system. Acknowledging the loss of com-
pleteness enables to face-off the limitations of static val-
idation methods.

Runtime-verification [34,32,4,3,21] is an effective tech-
nique to ensure at execution time that a system meets
a desirable behavior. It can be used in numerous ap-
plication domains, and more particularly when integrat-
ing together untrusted software components. A possi-
ble approach for runtime verification consists in ana-
lyzing a run of the system under scrutiny in an incre-
mental way using a decision procedure called a monitor.
This monitor may be generated from a user-provided
high level specification (consisting in e.g., a property
expressed by temporal logic formula or an automaton).
The primary goal of this monitor is to detect violation
or satisfaction with respect to the given specification. It
can be viewed as a state machine (with an output func-
tion) processing an execution sequence (step by step)
of the monitored program, and producing a sequence of
verdicts (truth values taken from a truth-domain) in-
dicating specification satisfaction or violation. Most re-
search endeavors focused on monitoring safety proper-
ties (stating that something bad can never happen), as
seen for example in [33,22]. Moreover, it has been shown
by Viswanathan and Kim [37] that some computability
constraints apply to runtime monitors. Considering the
monitoring of safety properties, the violation detection
mechanism used in the runtime device needs to be ef-
fective. Thus, for a safety property to be monitorable it
has to be co-recursively enumerable. However, the au-

2 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

thors of [11] show that, when monitoring is purposed to
detect violations of a property, safety properties are not
the only monitorable properties. Recently, a new defini-
tion of monitorability was given by Pnueli and Zaks [32]
where monitoring not only detects violations but also
satisfactions, and it is proved in [3] that safety and co-
safety properties represent only a proper subset of the
set of the monitorable properties.

Runtime enforcement is an extension of runtime verifi-
cation aiming to circumvent property violations. It was
initiated by the work of Schneider [35] on the so-called
security automata. In this work the enforcement monitor
watches the current execution sequence and halts the un-
derlying program whenever it deviates from the desired
property. Schneider announced that security automata
are able to enforce the whole class of safety properties.
The results in [37], previously mentioned in the introduc-
tion, that impose computability constraints on monitors,
also apply to security automata. Thus the known class
of enforceable properties with security automata was re-
fined into the class of co-recursively enumerable proper-
ties. Later, Hamlen et al. [20] addressed the question of
determining, in general, the class of properties enforce-
able on programs seen as Turing machines. The authors
showed that enforcement at runtime can be addressed
for co-recursively enumerable properties.

More recently, Ligatti et al. [28] showed that it is pos-
sible to enforce at runtime more than safety properties.
Using more powerful enforcement mechanisms called edit-
automata, it is possible to enforce the larger class of
infinite renewal properties. Within the classical safety-
liveness dichotomy, the renewal class is a super set of
the safety class which contains some liveness properties
(but not all). More than simply halting an underlying
program, edit-automata can also suppress (i.e., freeze)
and insert (frozen) actions in the current execution se-
quence.

Several tools have been proposed in this context,
and in practice there is not always a clear distinction
between runtime-verification and runtime-enforcement.
For instance a verification monitor may execute an ex-
ception handler when detecting an error, hence modify-
ing the initial program execution.

Motivations and contributions. Based on the amount of
works published and existing tools now available within
the runtime-validation community, it appears that this
technique progressed a lot in the last decade and seems
now mature enough to address concrete industrial chal-
lenges. However, some interesting questions remain about
its expressiveness. More precisely, the main questions we
consider in this work are the following: what are the
classes of properties that can be handled at runtime,
and is there a distinct answer for runtime verification and
runtime enforcement? These questions are not original in
themselves, but we propose here to address them within

a unified framework: the Safety-Progress (SP) classifica-
tion of properties [29,6]. The contributions of the paper
are then the following:

1. to propose a suitable framework for specifying and
reasoning about properties in a runtime context;

2. to integrate and improve within this framework some
existing expressiveness results related to runtime mon-
itoring [32,4,3], and to propose an alternative defi-
nition of the notion of monitorability, leveraging the
semantics of finite execution sequences;

3. and to improve some recent results related to prop-
erty enforcement [15,16], giving a more accurate clas-
sification of enforceable properties;

4. to get a generic monitor synthesis technique, allowing
to produce either a verification or an enforcement
monitor from the same property description.

Let us illustrate a bit more the second motivation. Con-
sider a system on which it is possible to evaluate two
atomic propositions called p and q. At system runtime,
system events are fed to a monitor. Each event is a pair
containing the truth-values of p and q. Now let us con-
sider the following requirement: “Either p is always true
or q is eventually true”. This means that, for the observed
sequence of events, either p is evaluated to true on every
event, or there exists an event on which q is evaluated to
true. Now consider the two following possible executions
of the system, represented by their sequences of events
of length 2:

– {p, q} · {p, q}: on both events p is true, q is false;
– {p, q}·{p, q}: on the first event p is true and q is false,

on the second event p and q are false.

After observation of the first sequence of events, one can
reasonably state that the property is “currently” true.
Thus, if the program execution stops after this obser-
vation, the requirement is satisfied. Indeed, p has been
always true during the program execution. Conversely,
after observing the second sequence of events, one can
reasonably state that the property is “currently” false.
Indeed, the last observed event does not fulfill the re-
quirement (neither p nor q evaluate to true).

We will see in Section 5 that this kind of property is
monitorable according to the classical definition of mon-
itorability. Moreover, a monitor built following this defi-
nition of monitorability would produce the same verdict
for those two sequences, namely a don’t know verdict.
This situation is undesirable from our point of view.
Thus, we will propose an alternative definition of mon-
itorability able to better cope with these kinds of prop-
erties, and to give more precise verdicts.

This paper is a revised and extended version of [17]
which appeared in the 9th international workshop on
Runtime Verification. This new version brings the fol-
lowing additional contributions. First, it contains a more
comprehensive theoretical basis by revisiting and ex-
tending results about the Safety-Progress classification

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 3

of properties. Moreover, we provide additional results on
monitorability. Furthermore, the synthesis of verification
and enforcement monitors is given with full details (it
was previously sketched). Finally, the presentation has
been improved by means of additional examples, cor-
rected results, and complete proofs.

Paper Organization. The remainder of this article is or-
ganized as follows. First, Section 2 introduces some pre-
liminary notations used throughout this paper and Sec-
tion 3 overviews related work on the issues we address.
In Section 4, we propose an extension of the Safety-
Progress classification of properties in a runtime veri-
fication context. Section 5 is dedicated to runtime mon-
itoring, whereas Section 6 is dedicated to runtime en-
forcement. In both sections we provide some characteri-
zations of the classes of properties that can be handled
by these techniques, with respect to the Safety-Progress
framework. Then, in Section 7, we show how to obtain
runtime verification and enforcement monitors for the
delineated sets of properties. Finally, we give some con-
cluding remarks and future work in Section 8.

In order to facilitate the reading of this article, some
of the proofs have been sketched. Complete proofs can
be found in Appendix.

2 Preliminaries and notations

This section introduces some background, namely the
notions of program execution sequences and program prop-
erties.

2.1 Sequences and execution sequences

Considering a finite set of elements E, we define no-
tations about sequences of elements belonging to E. A
sequence σ containing elements of E is formally defined
by a total function σ : I → E where I is either the in-
teger interval [0, n] for some n ∈ N, or N itself (the set
of natural numbers). We denote by E∗ the set of finite
sequences over E (partial function from N), by E+ the
set of non-empty finite sequences over E, and by Eω the

set of infinite sequences over E. The set E∞ def

= E∗ ∪Eω

is the set of all sequences over E. The empty sequence
of E is denoted by ǫE or ǫ when clear from context. The
length (number of elements) of a finite sequence σ is
noted |σ| and the (i+1)-th element of σ is denoted by σi.
For a finite sequence σ ∈ E∗, we may use last(σ) to de-
note the last element of σ, i.e., σ|σ|−1. For two sequences
σ ∈ E∗, σ′ ∈ E∞, we denote by σ · σ′ the concatenation
of σ and σ′, and by σ ≺ σ′ the fact that σ is a strict
prefix of σ′. The sequence σ is said to be a strict prefix
of σ′ ∈ E∞ when ∀i ∈ [0, |σ| − 1], σi = σ′

i and |σ| < |σ′|.

When σ′ ∈ E∗, we note σ � σ′ def

= σ ≺ σ′ ∨ σ = σ′. For
σ ∈ E∞ and n ∈ N, σ···n is the sub-sequence contain-
ing the n + 1 first elements of σ. Also, when |σ| > n,

the subsequence σn··· is the sequence containing all el-
ements of σ but the n first ones. The set of prefixes
pref (σ) of a sequence σ ∈ E∞ is defined as follows.

If σ ∈ E∗, then pref (σ)
def

= {σ′ ∈ E∗ | σ′ � σ}. If

σ ∈ Eω, then pref (σ)
def

= {σ′ ∈ E∗ | σ′ ≺ σ}. The
set Pref (X) of prefixes of a set of sequences X is the

union of the sets of prefixes of X-sequences: Pref (X)
def

=
⋃

σ∈X pref (σ). The set Pref (X,σ) of prefixes of a set of
sequences X which are also strict prefixes of a sequence

σ ∈ Σ∞ is: Pref ≺(X,σ)
def

= Pref (X)∩pref (σ)\{σ}. The
σ-continuations, i.e., the continuations of a sequence σ,
are the finite and infinite sequences belonging to the set
{σ′ ∈ E∞ | σ ≺ σ′}. For σ′ ∈ E∞ a σ-continuation, if
σ′ = σ · σ′′, then σ′′ ∈ E∞ is called an extension of σ.

A program P is considered as a generator of execu-
tion sequences. We are interested in a restricted set of op-
erations the program can perform. These operations in-
fluence the truth-value of properties the program is sup-
posed to fulfill. Such execution sequences can be made
of access events on a secure system to its resources, or
kernel operations on an operating system. In a software
context, these events may be abstractions of relevant in-
structions such as variable modifications or procedure
calls. These events may also be fed from the underlying
program and contain the evaluation of some proposi-
tions of the system under scrutiny. We abstract these
operations by a finite set of events, namely an alphabet
Σ. We denote by PΣ a program for which the alpha-
bet is Σ. The set of execution sequences of PΣ is de-
noted by Exec(PΣ) ⊆ Σ∞. This set is prefix-closed, i.e.,
∀σ ∈ Exec(PΣ), ∀σ

′ ∈ Σ∗, σ′ � σ ⇒ σ′ ∈ Exec(PΣ). In
the remainder of this article, we use an alphabet Σ.

2.2 Properties

Properties as sets of execution sequences. A finitary prop-
erty (resp. an infinitary property, a property) is a subset
of execution sequences of Σ∗ (resp. Σω, Σ∞). Consid-
ering a given finite (resp. infinite, finite or infinite) exe-
cution sequence σ and a property φ (resp. ϕ, θ), when
σ ∈ φ, noted φ(σ) (resp. σ ∈ ϕ, denoted ϕ(σ), σ ∈ θ,
noted θ(σ)), we say that σ satisfies φ (resp. ϕ, θ). A
consequence of this definition is that properties we will
consider are restricted to single execution sequences1,
excluding specific properties defined on power-sets of ex-
ecution sequences (like fairness, for instance).

Runtime properties. In this paper we will focus on prop-
erties to be evaluated at runtime. As stated in the in-
troduction, this means that we would have to consider
finite and infinite execution sequences (that a program
may produce). A runtime verification technique should

1 This is the distinction, made by Schneider [35], between prop-
erties and (general) policies. The set of properties (defined over
single execution sequences) is a subset of the set of policies (de-
fined over sets of execution sequences).

4 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

address both kinds of sequences in a uniform way. So we
introduce a notion of “runtime property” (r -property) as
a pair of finite/infinite execution sequence sets2:

Definition 1 (runtime properties). An r -property
is a pair (φ, ϕ) ⊆ Σ∗ ×Σω. The property φ is called the
finitary part of the r -property, whereas ϕ is called the
infinitary part of the r -property.

Intuitively, the finitary property φ represents the desir-
able property that finite execution sequences should ful-
fill, whereas the infinitary property ϕ is the expected
property for infinite execution sequences. Notations for
r -properties follow from the notations for finitary and
infinitary properties. For an r -property (φ, ϕ), its nega-
tion, noted (φ, ϕ), is defined as (Σ∗ \ φ,Σω \ ϕ). Bool-
ean combinations of r -properties are defined in a nat-
ural way: (φ1, ϕ1) ∨ (φ2, ϕ2) = (φ1 ∪ φ2, ϕ1 ∪ ϕ2), and
(φ1, ϕ1) ∧ (φ2, ϕ2) = (φ1 ∩ φ2, ϕ1 ∩ ϕ2). Considering an
execution sequence σ ∈ Exec(PΣ), we say that σ satis-
fies (φ, ϕ) when σ ∈ Σ∗ ∧ φ(σ) ∨ σ ∈ Σω ∧ ϕ(σ). For
an r -property Π = (φ, ϕ), we note Π(σ) (resp. ¬Π(σ))
when σ satisfies (resp. does not satisfy) (φ, ϕ). The set
of prefixes of an r -property Π = (φ, ϕ) is defined as:
Pref (Π) = Pref (φ)∪Pref (ϕ). Intersection between fini-
tary, infinitary properties and r -properties is straightfor-
ward and denoted using operator ⊓, e.g., Σ∗⊓(φ, ϕ) = φ.

Evaluation of r-properties. Monitorability, enforceabil-
ity, and monitor synthesis are based on the evaluation
of r -properties by a monitor. Evaluating an execution
sequence σ w.r.t. an r -property consists in producing a
verdict regarding the current property-satisfaction of σ
or future satisfactions of the possible σ-continuations.
As a matter of fact, the verdicts produced by moni-
tors are not necessarily usual Boolean values: they are
truth-values taken from a truth-domain. A truth-domain
is a lattice, i.e., a partially ordered set with an upper-
bound and a lower-bound. Examples of truth-domains
are the classical Boolean domain {true, false} or the real-
number interval [0, 1], or any relevant set of values used
for evaluating properties. Considering a truth-domain B,
an r -property Π and a finite execution sequence σ, the
evaluation of σ ∈ Σ∗ w.r.t. Π in B, noted [[Π]]B(σ), is
an element of B depending on Π(σ) and satisfaction of
σ-continuations w.r.t. Π.

The sets of monitorable and enforceable properties
(Sections 5 and 6) rely both upon the truth-domain and
evaluation function we consider.

3 Related Work

This section overviews some related work on the topics
we will discuss in this paper3. In particular we summa-

2 Using a pair of sets makes the distinction between the finitary
and infinitary parts of the property more explicit.

3 The interested reader may consult [21] (resp. [13]) for more
information on runtime verification (resp. runtime enforcement).

events verdictsMonitor

σ |= Π? B

Verification

ω ∈ B∞
Πσ ∈ Σ∞

Fig. 1. Principle of runtime verification

rize the basic concepts used for runtime verification and
runtime enforcement, and we recall the existing results
in terms of sets of properties that can be addressed by
each of these techniques.

3.1 Runtime verification

Basic concepts. As stated in the introduction, the no-
tion of runtime verification can be formalized by a veri-
fication monitor (see Fig. 1) whose behavior consists in
translating a sequence of events σ ∈ Σ∞ into a sequence
of verdicts ω ∈ B∞, where B is a given truth-domain.
This monitor is defined with respect to an r -property
Π, and the sequence of verdicts ω is expected to give
some information on the evaluation of Π on σ with re-
spect to B. Thus, one of the problems to be addressed
is that each evaluation [[Π]]B(σ···n) = ω···n of a finite se-
quence should not only give some relevant information
on Π(σ···n), but also possibly on Π(σ). In this context
several notions of monitorability were proposed in the
past, and we review below the most important results.

Monitorability in the sense of [37]. Viswanathan and
Kim gave the first characterization of monitorable prop-
erties in [37]. Monitorable properties were characterized
as a strict subset of safety properties defined over infinite
sequences. The authors show that, due to the undecid-
ability of some problems, a verification monitor is lim-
ited by some computability constraints Moreover, this
definition of monitorability was specifically defined for
the detection of errors. Thus, the mechanism used for
the error detection needs to be effective. Consequently,
a property ϕ ⊆ Σω was defined to be monitorable if it
is a safety property and Σ∗ \Pref (ϕ) is recursively enu-
merable. The authors establish the equality between this
set of properties and the class Π0

1 of the arithmetical hi-
erarchy which is the class of co-recursively enumerable
properties.

Monitorability in the sense of [32]: Pnueli et al. gave a
more general notion of monitorable properties relying on
the notion of verdict determinacy by a finite sequence.
More precisely, considering a finite sequence σ ∈ Σ∗, a
property θ ⊆ Σ∞ is negatively determined (resp. posi-
tively determined) by an execution sequence σ if σ and
each of its possible continuations does not satisfy (resp.
does satisfy) θ. Then, θ is σ-monitorable if σ has a con-
tinuation s.t. θ is negatively or positively determined
by this continuation. Finally, θ is monitorable, if it is

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 5

σ-monitorable for every σ ∈ Σ∗. The idea is that it
becomes unnecessary to continue the execution of a θ-
monitor after reading σ if θ is not σ-monitorable.

In Section 5, we give the corresponding formal defi-
nition in the context of r -properties.

Monitorability in the sense of [3]: Bauer et al., inspired
from Pnueli’s definition of monitorable properties, pro-
posed a slightly different one based on the notion of
good and bad prefix introduced in model-checking by
Kupferman and Vardi [24]. The intuitive idea is that
with monitorable properties it is possible to “detect” a
violation or satisfaction of infinitary properties with fi-
nite sequences. More precisely, the definition of moni-
torable properties comes in the following way. Consider-
ing an infinitary property ϕ ⊆ Σω, a prefix σ is said to
be a bad prefix, noted bad_prefix (σ, ϕ) (resp. good pre-
fix, noted good_prefix (σ, ϕ)) of ϕ if ∀w ∈ Σω,¬ϕ(σ ·w)
(resp. ∀w ∈ Σω, ϕ(σ ·w)). Then, a prefix σ is said to be
ugly if it does not have good nor bad continuation, i.e.,
¬∃v ∈ Σω, bad_prefix (σ · v, ϕ) ∨ good_prefix (σ · v, ϕ).
Finally, a property is said to be monitorable if it has no
ugly prefix, formally: ∀σ ∈ Σ∗, ∃v ∈ Σ∗, bad_prefix (σ ·
v, ϕ) ∨ good_prefix (σ · v, ϕ).

About previous characterizations of monitorable proper-
ties: The first characterization of monitorable proper-
ties given in [37] may seem arbitrary. It characterizes
the class of monitorable properties directly as a class of
properties. However, let us remark that, in this definition
a monitor is dedicated to the detection of “bad behav-
iors” from finite observations. It seems reasonable that a
verification monitor is used to detect “good” behaviors as
well, e.g., the satisfaction of a desired property. This is
actually the idea behind the definition given in [32]. The
last definition, given in [3], is equivalent to the previous
one on Σω. We will refer to the definition given in [32]
as the classical definition as it was enunciated before the
definition in [3]. Furthermore, Bauer et al. have shown
that, according to this definition, the set of monitorable
properties is a strict superset of safety and co-safety
properties. These classes of properties are taken from the
classical Safety-Liveness classification of properties [25,
1]. They also gave an example of request/acknowledge
property which is not monitorable. Such a property can
be framed in the set of response properties (see Sec-
tion 4) w.r.t. the SP classification (see Example 5 in
Section 5).

3.2 Runtime enforcement

Basic concepts. In runtime enforcement, the purpose of
an enforcement monitor (see Fig. 2) used at runtime is
to transform an input sequence σ ∈ Σ∞ into an output
sequence o ∈ Σ∞ with respect to an r -property Π. The
expected constraints on o are (usually) the following:

events events

memory

Monitor

(o � σ)

σ |= Π? o |= Π
Π

Enforcement

Fig. 2. Principle of runtime enforcement

soundness: o should be a correct execution sequence,
i.e., Π should evaluate to true on o ;

transparency : the enforcement operation should pre-
serve as much as possible the initial program behav-
ior by modifying the input sequence in a minimal
way. A possible interpretation is that when σ does
not satisfy Π then o should be the longest correct
prefix of σ.

According to this definition, the set of properties that
can be enforced at runtime clearly depends on the capa-
bilities of the enforcement mechanism. To this purpose,
the authors of [20] proposed a very general classifica-
tion of enforceable properties: a program is viewed as a
Turing machine and the enforcement mechanisms they
considered were based respectively on static analysis,
program rewriting and runtime enforcement monitors.
Other research efforts [35,37,28,27,16] focused more spe-
cifically on runtime enforcement monitors and proposed
a characterization of enforceable properties in this con-
text. We summarize these results below.

Security automata and co-recursively enumerable safety
properties: Schneider introduced security automata (a
variant of Büchi automata) as the first runtime mech-
anism for enforcing properties in [35]. The announced
set of enforceable properties with this kind of security
automata is the set of safety properties. Then, Schnei-
der, Hamlen, and Morrisett refined the set of enforceable
properties and showed that these security automata were
actually restrained by the computational limits exhib-
ited by Viswanathan and Kim in [37]. Hence, Schnei-
der, Hamlen, and Morrisett showed that the set of co-
recursively enumerable safety properties is a strict upper
limit of the power of (execution) enforcement monitors
defined as security automata [20].

Edit-automata and infinite renewal properties: Ligatti
et al. [28,27] introduced edit-automata as runtime mon-
itors. Depending on the current input and its control
state, an edit-automaton can either insert a new action
by replacing the current input, or suppress it. The prop-
erties enforced by edit-automata are called infinite re-
newal properties: it is a superset of safety properties
and contains some liveness properties (but not all). More
precisely, a property θ is said to be an infinite renewal
property if each valid infinite sequence σ has an infinite
number of valid prefixes:

6 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

∀σ ∈ Σ∞, θ(σ) ⇒
∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ∃σ′′ ∈ Σ∗, σ′ � σ′′ ≺ σ ∧ θ(σ′′).

Shallow History Automata and an information-based lat-
tice of enforceable policies. Fong [19] studied the effect
of restraining the capacity of the runtime execution mon-
itor and the effect on the enforcement power. Shallow
History Automata (SHA) keep as history a set of access
events the underlying program made. Fong showed that
these automata can enforce a set of properties strictly
contained in the set of properties enforceable by Schnei-
der’s automata. The result has been generalized by us-
ing abstraction mechanisms on an equivalent variant of
Schneider’s automata. It raised up an information-based
lattice of enforceable policies. At the top of this lattice
is the set of properties enforceable by security automata
(SHA keeps history of all events). At the bottom of this
lattice is the set of policies prohibiting a set of events
(SHA does not distinguish between prefixes of execution
sequences made of the same events).

Fong’s classification has a practical interest in the
sense that it studies the effect of practical programming
constraint (limited memory). It also shows that some
classical security policies remain enforceable using such
shallow automata.

Generic runtime enforcers and response properties: In
previous work [16,18] we introduced a generic notion
of enforcement monitor encompassing previous mecha-
nisms and gave a lower-bound on the set of properties
they can enforce in the Safety-Progress classification (see
Section 4). In this paper, we will show that this bound is
tight. Furthermore, in [18], we have studied the question
of enforcement monitor composition.

3.3 Synthesis of monitors

We give a short overview of the works related to the
synthesis of monitors. An exhaustive list of works on
monitor synthesis is far beyond the scope of this paper.
We refer to [34,26,21] (resp. [13]) for more information
on this topic in runtime verification (resp. runtime en-
forcement).

For runtime verification: Generally, runtime verification
monitors are generated from LTL-based specifications,
as seen recently in [3,7]. Alternatively, ω-regular expres-
sions have been used as a basis for generating monitors,
as for example in [11].

For runtime enforcement: In [30] Martinelli and Mat-
teucci tackle the synthesis of enforcement mechanisms
as defined by Ligatti. More generally, the authors con-
sider security automata and edit-automata. The monitor
is modeled by an algebraic operator expressed in CCS.
The program under scrutiny is then a term Y ⊲K X
where X is the target program, Y the controller program

and ⊲K the operator modeling the monitor, where K is
the kind of monitor (truncation, insertion, suppression
or edit). The desired property for the underlying system
is formalized using µ-calculus. In [31] Matteucci extends
the approach in the context of real-time systems. In [15,
18] we defined transformations for some classes of the
safety-progress classification of properties. Those class-
specific transformations take as input a Streett automa-
ton recognizing a property and produce an enforcement
monitor for this property. In this paper, we will provide
a unified class-independent transformation.

4 The SP classification in a runtime context

This section recalls and extends some results about the
Safety-Progress classification of properties [5,6,29]. In
the original papers this classification introduced a hier-
archy between regular properties4 defined as sets of in-
finite execution sequences. We extend the classification
with finite-length execution sequences in a conservative
way.

4.1 Informal description

The Safety-Progress classification is made of four basic
classes over execution sequences. Informally, the classes
were defined as follows:

– safety properties are the properties for which when-
ever a sequence satisfies a property, all its prefixes
satisfy this property;

– guarantee properties are the properties for which when-
ever a sequence satisfies a property, there are some
prefixes (at least one) satisfying this property;

– response properties are the properties for which when-
ever a sequence satisfies a property, an infinite number
of its prefixes satisfy this property;

– persistence properties are the properties for which when-
ever a sequence satisfies a property, all but finitely
many of its prefixes satisfy this property; i.e., a finite
number of its prefixes does not satisfy the property.

Furthermore, two extra classes can be defined as finite
Boolean combinations (union and intersection) of basic
classes.

– The obligation class can be defined as the class ob-
tained by Boolean combinations of safety and guar-
antee properties.

– The reactivity class can be defined as the class ob-
tained by Boolean combinations of response and per-
sistence properties. This is the most general class
containing all linear temporal properties [5].

4 In the following, the term property will stand for regular prop-
erty.

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 7

An r -property of a given class is said to be pure when it
is a property of none of the other sub-classes.

The Safety-Progress classification is an alternative
to the more classical Safety-Liveness dichotomy [25,1].
Unlike this later, the Safety-Progress classification is a
hierarchy and not a partition. It provides a finer-grain
classification, and the properties of each class are charac-
terized according to four views [5]: a language-theoretic
view, a topological view, a temporal logic view, and an
automata-based view. The language-theoretic view de-
scribes the hierarchy according to the way each class can
be constructed from sets of finite sequences. The topo-
logical view characterizes the classes as sets with topo-
logical properties. The third vision links the classes to
their expression in temporal logic. At last, the automata
view gives syntactic characterizations on automata rec-
ognizing properties of a given class. We will consider here
only the language-theoretic and the automata views ded-
icated to r -properties.

4.2 The language-theoretic view of r-properties

4.2.1 Construction of r -properties

The language-theoretic view of the Safety-Progress clas-
sification is based on the construction of infinitary prop-
erties and finitary properties from finitary ones. It re-
lies on the use of four operators A,E,R, P (building
infinitary properties) and four operators Af , Ef , Rf , Pf
(building finitary properties) applying to finitary prop-
erties. In the original classification of Manna and Pnueli,
the operators A,E,R, P,Af , Ef were introduced. In this
paper, we add the operators Rf and Pf and give a for-
mal definition of all operators. In these definitions ψ is
a finitary property over Σ.

Definition 2 (Operators A,E,R, P).

– A(ψ) = {σ ∈ Σω | ∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ψ(σ′)}.
– E(ψ) = {σ ∈ Σω | ∃σ′ ∈ Σ∗, σ′ ≺ σ ∧ ψ(σ′)}.
– R(ψ) = {σ ∈ Σω | ∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ∃σ′′ ∈
Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ψ(σ′′)}.

– P (ψ) = {σ ∈ Σω | ∃σ′ ∈ Σ∗, ∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺
σ ⇒ ψ(σ′′)}.

A(ψ) consists of all infinite words σ s.t. all prefixes of
σ belong to ψ. E(ψ) consists of all infinite words σ s.t.
some prefixes of σ belong to ψ. R(ψ) consists of all infi-
nite words σ s.t. infinitely many prefixes of σ belong to
ψ. P (ψ) consists of all infinite words σ s.t. all but finitely
many prefixes of σ belong to ψ.

The operators Af , Ef , Rf , Pf build finitary proper-
ties from finitary ones.

Definition 3 (Operators Af , Ef , Rf , Pf).

– Af (ψ) = {σ ∈ Σ∗ | ∀σ′ ∈ Σ∗, σ′ � σ ⇒ ψ(σ′)}.
– Ef (ψ) = {σ ∈ Σ∗ | ∃σ′ ∈ Σ∗, σ′ � σ ∧ ψ(σ′)}.
– Rf (ψ) = {σ ∈ Σ∗ | ψ(σ) ∧ ∀n ∈ N, ∃σ′ ∈ Σ∗, σ ≺
σ′ ∧ |σ′| ≥ n ∧ ψ(σ′)}.

– Pf (ψ) = {σ ∈ Σ∗ | ψ(σ) ∧ ∃σ′ ∈ Σ∗, σ � σ′ ∧ ∀n ∈
N, ∃σ′′ ∈ Σ∗, |σ′′| = n ∧ ψ(σ′ · σ′′)}.

Af (ψ) consists of all finite words σ s.t. all prefixes of σ
belong to ψ. One can observe that Af (ψ) is the largest
prefix-closed subset of ψ. Ef (ψ) consists of all finite
words σ s.t. some prefixes of σ belong to ψ. One can
observe that Ef (ψ) = ψ ·Σ∗. Rf (ψ) consists of all finite
words σ s.t. ψ(σ) and there exists an infinite number of
continuations σ′ of σ also belonging to ψ. Pf (ψ) consists
of all finite words σ belonging to ψ s.t. there exists a con-
tinuation σ′ of σ s.t. σ′ persistently has continuations σ′′

staying in ψ (i.e., σ′ · σ′′ belongs to ψ).
Based on these operators, each class can be seen from

the language-theoretic view.

Definition 4. Π = (φ, ϕ) is defined to be:

– A safety r -property if Π = (Af (ψ), A(ψ)) for some
finitary property ψ. That is, all prefixes of a finite
word σ ∈ φ or of an infinite word σ ∈ ϕ belong to ψ.
– A guarantee r -property if Π = (Ef (ψ), E(ψ)) for
some finitary property ψ. That is, each finite word
σ ∈ φ or infinite word σ ∈ ϕ is guaranteed to have
some prefixes (at least one) belonging to ψ.
– A response r -property ifΠ = (Rf (ψ), R(ψ)) for some
finitary property ψ. That is, each finite word σ ∈ φ or
infinite word σ ∈ ϕ recurrently has (infinitely many)
prefixes belonging to ψ.
– A persistence r -property if Π = (Pf (ψ), P (ψ)) for
some finitary property ψ. That is, each finite word σ ∈
φ or infinite word σ ∈ ϕ persistently has (continuously
from a certain point on) prefixes belonging to ψ.

In all cases, we say that Π is built over ψ. Furthermore,
obligation (resp. reactivity) r -properties are obtained by
Boolean combinations of safety and guarantee (resp. res-
ponse and persistence) r -properties.

Given a set of events Σ, Safety(Σ) (resp. Guarantee(Σ),
Obligation(Σ), Response(Σ), Persistence(Σ)) designates
the set of safety (resp. guarantee, obligation, response,
persistence) r -properties defined over Σ.

We illustrate in the following example the construc-
tion of infinitary properties from finitary ones (described
as regular expressions) for each of the four operators.

Example 1 (Construction of infinitary and finitary prop-
erties from finitary ones - r-properties). We consider a
client-server application, with a set of observable events
Σ ⊆ {r, g, d} where r denotes a client request of a given
resource and g (resp. d) denotes a corresponding grant
(resp. deny) of this resource provided by the server.

– For the finitary property ψ = ǫ + r+ · g∗, Af (ψ) =
ǫ+ r+ · g∗, A(ψ) = rω + r+ · gω, Π1 = (Af (ψ), A(ψ))
is a safety r -property. This language contains all the
words that have either only occurrences of r or a fi-
nite number of occurrences of r (at least one) followed
only by occurrences of g. According to this property

8 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

a resource should be requested at least once to be
granted, and, when granted once, it should not be
requested anymore.

– For the finitary property ψ = r+ · g, Ef (ψ) = r+ · g ·
Σ∗, E(ψ) = r+ ·g ·Σω, Π2 = (Ef (ψ), E(ψ)) is a guar-
antee r -property. This property tells that the client
will issue some requests and will receive a positive
answer later on.

– For the finitary property ψ = g + (r · g)∗, Rf (ψ) =
(r · g)∗, R(ψ) = (r · g)ω, Π3 = (Rf (ψ), R(ψ)) is a
response r -property. This language contains all the
words that have infinitely many occurrences of r · g.
This property tells that clients will repeatedly send
requests and receive back a positive answer (the pat-
tern r · g can be seen here as a transaction).

– For the finitary property ψ = g + r · g · (r + r · g)∗,
Pf (ψ) = r · g · (r + r · g)∗, P (ψ) = r · g · (r + r · g)ω,
Π4 = (Pf (ψ), P (ψ)) is a persistence r -property. This
language contains all the words starting with r · g · r
and ending with occurrences of r+r ·g. According to
this property, after a first granted resource, at some
point this resource should be granted forever.

4.2.2 Some useful facts about the language view

Now, we give some useful facts about r -properties in the
language view. Those facts will be used in the remainder
when characterizing the set of monitorable properties.

Basic classes were defined in a constructive fashion.
It is sometimes interesting to have a direct characteri-
zation for the properties of those classes. The following
property gives a characterization for safety and guaran-
tee r -properties. The proof is a direct adaptation of the
proof given in [5].

Property 1 (Characterization of safety and guar-
antee r-properties). An r -property Π = (φ, ϕ) is

– a safety iff Π = (Af (Pref (φ)), A(Pref (ϕ))),

– a guarantee iff Π =
(

Ef (Pref (φ)), E(Pref (ϕ))
)

.

We expose the closure of safety and guarantee r -proper-
ties as a straightforward consequence of definitions of
safety and guarantee r -properties.

Property 2 (Closure of r-properties). Considering
an r -property Π = (φ, ϕ) defined over an alphabet Σ
built from a finitary property ψ, the following facts hold:

1 If Π is a safety r -property, all prefixes of a sequence
belonging to Π also belong to Π. That is, ∀σ ∈
Σ∞, Π(σ) ⇒ ∀σ′ ≺ σ,Π(σ′).

2 If Π is a guarantee r -property, all continuations of
a finite sequence belonging to Π also belong to Π.
That is, ∀σ ∈ Σ∗, Π(σ) ⇒ ∀σ′ ∈ Σ∞, Π(σ · σ′).

Proof. The proof can be found in Appendix A.1.1, it
uses the definitions of the operators Af , A,Ef , E. ⊓⊔

The following lemma (inspired from [5]) provides a de-
composition of each obligation properties in a normal
form.

Lemma 1. Any obligation r-property can be represented
as the intersection

k
⋂

i=1

(Safetyi ∪Guaranteei)

for some k > 0, where Safetyi and Guaranteei are re-
spectively safety and guarantee r-properties. We refer to
this presentation as the conjunctive normal form of obli-
gation r-properties.

When an r -property Π is expressed as ∩ki=1(Safetyi ∪
Guaranteei), Π is said to be a k-obligation r -property.
The set of k-obligation r -properties (with k ≥ 1) is de-
noted k−Obligation(Σ). Similar definitions and proper-
ties hold for reactivity r -properties which are expressed
by Boolean combinations of response and persistence r -
properties.

4.3 The automata view of r-properties

For the automata view of the Safety-Progress classifica-
tion, we follow [5] and define r -properties using Streett
automata. Furthermore, for each class of the Safety-Pro-
gress classification it is possible to syntactically char-
acterize a recognizing finite-state automaton. Moreover,
we introduce transformations that take a deterministic
finite-state automaton and a “modification pattern” so
as to obtain a Streett automaton. These transformations
are the representatives in the automata view of the op-
erators defined in the language view.

4.3.1 Streett automata

We define a variant of deterministic and complete Streett
automata (introduced in [36] and used in [5]) for prop-
erty recognition5. These automata process events and
decide properties of interest. We add to original Streett
automata a finite-sequence recognizing criterion in such
a way that these automata uniformly recognize r -proper-
ties.

Definition 5 (Streett automaton). A deterministic
finite-state Streett automaton is a tuple (Q, q

init
, Σ,−→,

{(R1, P1), . . . , (Rm, Pm)}) defined relatively to a set of
events Σ. The set Q is the set of automaton states, q

init
∈

Q is the initial state. The function −→: Q × Σ → Q
is the (complete) transition function. In the following,
for q, q′ ∈ Q, e ∈ Σ we abbreviate −→ (q, e) = q′ by

q
e

−→ q′. The set {(R1, P1), . . . , (Rm, Pm)} is the set of
accepting pairs, for all i ≤ n, Ri ⊆ Q are the sets of
recurrent states, and Pi ⊆ Q are the sets of persistent
states.

5 There exist several equivalent definitions of Streett automata
dedicated to the recognition of infinite sequences. We choose here
to follow the definition used in [5].

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 9

We refer to an automaton with m accepting pairs as an
m-automaton. Whenm = 1, a 1-automaton is also called
a plain-automaton, and we refer to R1 and P1 as R and
P . Moreover, for σ = σ0 · · ·σn−1 a word over Σ of length

n and q, q′ ∈ QA two states, we note q
σ

−→ q′ when

∃q1, . . . , qn−2 ∈ QA, q
σ0−→ q1 ∧ . . . ∧ qn−2

σn−1

−→ q′. In the
following A = (QA, qA

init
, Σ, −→A, {(R1, P1), . . . , (Rm,

Pm)}) designates a deterministic finite state Streett m-
automaton.

For q ∈ QA, ReachA(q) is the set of reachable states
from q with at least one transition in A (denoted Reach(q)

when clear from context), that is ReachA(q)
def

= {q′ ∈

QA | ∃σ ∈ Σ+, q
σ

−→A q′}. For σ ∈ Σ∞, the run of σ on
A is the sequence of states involved by the execution of
σ on A. It is formally defined as run(σ,A) = q0 · q1 · · ·

where ∀i, (qi ∈ QA ∧ qi
σi−→A qi+1)∧ q0 = qA

init
. The trace

resulting in the execution of σ on A is the unique se-
quence (finite or not) of tuples (q0, σ0, q1) ·(q1, σ1, q2) · · ·
where run(σ,A) = q0 · q1 · · · .

For an execution sequence σ ∈ Σω on a Streett au-
tomaton A, we define vinf (σ,A), as the set of states
appearing infinitely often in run(σ,A). It is formally de-

fined as follows: vinf (σ,A)
def

= {q ∈ QA | ∀n ∈ N, ∃m ∈
N,m > n ∧ q = qm with run(σ,A) = q0 · q1 · · · }.

For a Streett automaton, the notion of acceptance
condition is defined using the accepting pairs.

Definition 6 (Acceptance condition for infinite se-
quences). For σ ∈ Σω, we say that A accepts σ if
∀i ∈ [1,m], vinf (σ,A) ∩Ri 6= ∅ ∨ vinf (σ,A) ⊆ Pi.

To deal with r -properties we need to also define an ac-
ceptance criterion for finite sequences: a finite sequence
is accepted by a Streett automaton if and only if it termi-
nates on a distinguished state Ri or Pi for each accepting
pair i.

Definition 7 (Acceptance condition for finite se-
quences). For a finite-length execution sequence σ ∈
Σ∗ s.t. |σ| = n, we say that the m-automaton A accepts
σ if (∃q0, . . . , qn ∈ QA, run(σ,A) = q0 · · · qn ∧ q0 = qA

init

and ∀i ∈ [1,m], qn ∈ Pi ∪Ri).

4.3.2 The hierarchy of automata

An interesting feature of Streett automata is that the
class of properties they recognize can be easily charac-
terized by some syntactic considerations.

– A safety automaton is a plain-automaton s.t. R = ∅
and there is no transition from a state q ∈ P to a state
q′ ∈ P .

– A guarantee automaton is a plain-automaton s.t. P =
∅ and there is no transition from a state q ∈ R to a
state q′ ∈ R.

– Anm-obligation automaton is anm-automaton s.t. for
each i in [1,m]:
– there is no transition from q ∈ Pi to q′ ∈ Pi,

– there is no transition from q ∈ Ri to q′ ∈ Ri.
– A response automaton is a plain-automaton s.t. P = ∅.
– A persistence automaton is a plain-automaton s.t. R =

∅.
– A reactivity automaton is any unrestricted automaton.

The syntactic restrictions are illustrated in Fig. 4: shapes
of Streett automata for basic classes are depicted. One
may remark that these syntactic restrictions hold for the
automata represented in Fig. 3.

Automata and properties. We now link Streett automata
to r -properties.

Definition 8 (Automata and r-properties). We say
that a Streett automaton A defines an r -property (φ, ϕ)
∈ 2Σ

∗×Σω if and only if the set of finite (resp. infinite) ex-
ecution sequences accepted by A is equal to φ (resp. ϕ),
which is noted L(A) = (φ, ϕ). Conversely, an r -property
(φ, ϕ) ∈ 2Σ

∗×Σω is said to be specifiable by an automa-
ton A if the set of finite (resp. infinite) execution se-
quences accepted by the automaton A is φ (resp. ϕ).

Example 2 (Streett Automata). In Fig. 3 are represented
Streett plain-automata for the properties presented in
Example 1.

– AΠ1 is a safety automaton, its set of recurrent states
is empty, its set of persistent states is P = {1, 2, 3}.
A finite sequence is accepted if its run ends in either
states 1, 2 or 3, meaning that, if a grant happened
there was at least one request previously. An infinite
sequence is accepted if the only states visited infinitely
often are states 1, 2 or 3, meaning that requests have
been made and they were followed by only grants.
– AΠ2 is a guarantee automaton, its set of persistent
states is empty, its set of recurrent states is R = {3}.
A finite sequence is accepted if its run ends in state 3.
An infinite sequence is accepted if the state 3 is visited
infinitely often. In both cases, it means that requests
have been issued and then have been granted.
– AΠ3 is a response automaton, its set of persistent
states is empty, its set of recurrent states is R = {1}.
A finite sequence is accepted if its run ends in state
1, meaning that every request has been followed by a
grant (in this order). An infinite sequence is accepted
if it visits the state 1 infinitely often, meaning that
this infinite sequence contains a succession of action
sequences “one request followed by one grant”.
– AΠ4 is a persistence automaton, its set of recurrent
states is empty, its set of persistent states is P =
{3, 4}. A finite sequence is accepted if its run ends
in state 3 or 4, meaning that a first successful request
has been made and, after that, the user performs only
successful requests (if he makes a requests, this request
is granted). An infinite sequence is accepted if it visits
infinitely often only states 3 and 4, meaning that after
a first successful request all user’s requests have been
granted.

10 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

1 2 3

4

r

g

r

g

r

g

Σ

1 2 3

4

r

g

r

g

Σ

Σ

1 2

3

r

g
g

r

Σ

1 2

3

4

5

6

r

g,d

d
g

r

r

g,d

g

r d r

d,g

Σ

AΠ1 for Π1,
P = {1, 2, 3}, R = ∅

AΠ2 for Π2,
R = {3}, P = ∅

AΠ3 for Π3,
R = {1}, P = ∅

AΠ4 for Π4, P = {3, 4}, R = ∅

Fig. 3. Examples of Streett automata

P P

P
Safety

R

R R
Guarantee

R R

R R
Response

P P

P P
Persistence

Fig. 4. Schematic illustrations of the shapes of Streett automata for basic classes

In Section 4.5 we link the syntactic characterizations on
the automata to the semantic characterization of the
properties they specify.

4.3.3 From a DFA to a Streett automaton

We now introduce four transformations allowing to ob-
tain a Streett automaton, given a deterministic finite-
state automaton and a “pattern” for this underlying prop-
erty. These patterns are inspired from the different clas-
ses of the Safety-Progress hierarchy. These simple trans-
formations correspond, in the automata view, to the op-
erators in the language view and the temporal modali-
ties in the logical view6. We start by first defining those
transformations and then prove their soundness.

A deterministic finite-state automaton (DFA) [23], is
given relatively to an alphabet Σ, and is here formally
defined as a tuple (Q, q

init
,−→, F) where Q is a finite set

of states, q
init

∈ Q is the initial state, −→: Q×Σ → Q is
the transition function, and F ⊆ Q is the set of accepting
states.

Definitions of the transformations. In the following defi-

nitions, Aψ = (QAψ , q
Aψ
init ,−→Aψ , F

Aψ) designates a com-
plete DFA recognizing a finitary regular property ψ. We
define a transformation for each basic class of the hier-
archy.

Synthesis of safety automata. For this class of r -proper-
ties, the transformation is defined as follows:

6 i.e., operators A,E,R, P (and their finitary versions) of the
language view and the temporal modalities � ,♦ ,� ♦ ,♦ � of
the logical view.

Definition 9 (DFA to Streett safety automaton).
The transformation of Aψ into a Streett safety automa-
ton is DFA2S_Saf(Aψ) = (QAΠ , qAΠ

init
,→AΠ , {(∅, P)})

and defined by:

– QAΠ = FAψ ∪ {sink}, where sink /∈ QAψ ,

– qAΠinit = q
Aψ
init if q

Aψ
init ∈ FAψ , and sink otherwise,

– →AΠ is defined as the smallest relation verifying:

– q
e

−→AΠ q′ if q ∈ FAψ ∧ q′ ∈ FAψ ∧ q
e

−→Aψ q
′
(TSafe1)

– q
e

−→AΠ sink if ∃q′ ∈ QAψ , q′ /∈ FAψ ∧ q
e

−→Aψ q′

(TSafe2),
– ∀e ∈ Σ, sink

e
−→AΠ sink (TSafe3),

– P = ReachAΠ (qAΠinit) \ {sink}, (m = 1).

One can remark that the resulting automaton is indeed
a Streett safety automaton since R = ∅ and there is
no transition from the states in P to the states in P .
This transformation adds a sink state and modifies the
transition function in order to redispatch the transitions
outgoing from accepting states to the sink state. Fur-
thermore, the transitions outgoing from a non-accepting
state have been removed. The set of persistent states is
the set of accepting states of the DFA.

Moreover, according to the syntactic restrictions of
the obtained Streett safety automata, the following prop-
erty holds: for a sequence σ ∈ Σω and an automaton re-
sulting of the transformation AΠ , if sink ∈ vinf (σ,AΠ),
then vinf (σ,AΠ) = {sink}; else vinf (σ,AΠ) ⊆ P .

Synthesis of Streett guarantee automata. For this class
of r -properties, the transformation is defined as follows:

Definition 10 (DFA to Streett guarantee automa-
ton). The transformation of Aψ into a Streett guar-
antee automaton is DFA2S_Guar(Aψ) = (QAΠ , qAΠ

init
,

→AΠ , {(R, ∅)}) and defined by:

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 11

q = qo qi = ql qj

Fig. 5. Principle for tagging recurrent states in DFA2S_Res

– QAΠ is the smallest subset of QAψ containing the reach-
able states from the initial state qAΠinit with −→AΠ (defined
below),

– qAΠinit = q
Aψ
init ,

– →AΠ is defined as the smallest relation verifying:

– q
e

−→AΠ q if ∃q′ ∈ QAψ , q
e

−→Aψ q
′∧q ∈ FAψ (TGuar1),

– q
e

−→AΠ q′ if q /∈ FAψ ∧ q
e

−→Aψ q
′
(TGuar2),

– R = FAψ , (m = 1).

One may remark that the resulting automaton is indeed
a Streett guarantee automaton since P = ∅ and there
is no transition from the R-states to the R-states. This
automaton may not be minimal regarding the number
of R-states. They can be merged into one unique state
since they are all equivalent w.r.t. property recognition.
This transformation modifies the transition function in
the following manner: outgoing transitions from the ac-
cepting states (to an accepting state or not) are modi-
fied into a loop on the same state. Indeed, when a run
reaches a state in F , this suffix suffices in order to satisfy
the guarantee property. The initial state is not modified,
and the set of states of the Streett automaton is defined
as the smallest set of reachable states from the initial
state with the new transition function.

Synthesis of Streett response automata. For this class of
r -properties, the transformation is defined as follows:

Definition 11 (DFA to Streett response automa-
ton). The transformation of Aψ into a Streett response
automaton is DFA2S_Resp(Aψ) = (QAΠ , qAΠ

init
,→AΠ ,

{(R, ∅)}) and defined by:

– QAΠ = QAψ ,

– qAΠinit = q
Aψ
init ,

– →AΠ=→Aψ ,

– R = {q ∈ FAψ | ∃l > 0, ∃q0, . . . , ql ∈ QAψ , (1) ∧ (2) } ∪
{q ∈ FAψ | q −→Aψ q}, where

∀j ∈ [0, l − 1], qj −→Aψ qj+1 (1)

∃i ∈ [0, l], ∃j ∈ [i, l − 1], qj ∈ FAψ ∧ qi = ql ∧ q0 = q (2)

The resulting automaton is indeed a Streett response
automaton since P = ∅. This transformation does not
modify the set of states nor the transition function. It
marks as recurrent states (cf. Fig. 5) every accepting
state of the DFA s.t. it is possible from this state to
reach a cycle containing at least one accepting state.

q = qo qi = ql qi+1

ql−1

Fig. 6. Principle for tagging persistent states in DFA2S_Per

Synthesis of Streett persistence automata. For this class
of r -properties, the transformation is defined as follows:

Definition 12 (DFA to Streett persistence automa-
ton). The transformation of Aψ into a Streett per-
sistence automaton is DFA2S_Per(Aψ) = (QAΠ , qAΠ

init
,

→AΠ , {(∅, P)}) and defined by:

– QAΠ = QAψ ,

– qAΠinit = q
Aψ
init ,

– →AΠ=→Aψ ,

– P = {q ∈ FAψ | ∃l > 0, ∃q0, . . . , ql ∈ QAψ , (1) ∧ (3) } ∪
{q ∈ FAψ | q −→Aψ q}, where

∃i ∈ [0, l], ∀j ∈ [i, l − 1], qj ∈ FAψ ∧ qi = ql ∧ q0 = q (3)

The resulting automation is indeed a Streett persistence
automaton since R = ∅. This transformation does not
modify the set of states nor the transition function. It
marks (cf. Fig. 6) as persistent state every accepting
state of the DFA from which it is possible to reach a
cycle of accepting states.

Soundness of the transformations. Given a finitary prop-
erty ψ, defining a regular language over an alphabet Σ
and specified by a DFA Aψ, the safety (resp. guarantee,
response, persistence) r -property (Xf (ψ), X(ψ)) where
X ∈ {A,E,R, P} is specified by the Streett automaton
obtained by the transformation DFA2S specific to safety
(resp. guarantee, response, persistence) properties. This
is stated formally by the following theorem:

Theorem 1 (Soundness of the transformations of
DFAs to Streett automata). The transformation
DFA2S_Saf (resp. DFA2S_Guar , DFA2S_Resp,
DFA2S_Per) in the automata view “corresponds” to the
operator Af and A (resp. Ef and E, Rf and R, Pf and
P) in the language view. Formally, when L(Aψ) = ψ,

AΠ = DFA2S_Saf (Aψ) ⇒ L(AΠ) = (Af (ψ), A(ψ))
AΠ = DFA2S_Guar(Aψ) ⇒ L(AΠ) = (Ef (ψ), E(ψ))
AΠ = DFA2S_Resp(Aψ) ⇒ L(AΠ) = (Rf (ψ), R(ψ))
AΠ = DFA2S_Per(Aψ) ⇒ L(AΠ) = (Pf (ψ), P (ψ))

Proof. Proofs are conducted for each class of properties
and the associated transformation by using the accep-
tance criteria and examining runs of accepted sequences.
The complete proof can be found in Appendix A.1.2. ⊓⊔

Remark 1. Let us remark that these transformations may
entail a loss of information. It is in general not possible to

12 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

find again the finitary language from which a Streett au-
tomaton has been built. Consider for example the Streett
guarantee automaton represented on Fig. 3. There exists
an infinite number of finitary languages from which this
automaton can be constructed. Indeed, to obtain them,
it suffices to re-transform this Streett automaton into a
minimal DFA by forgetting accepting pairs and chang-
ing the R-state into an accepting state. Then, from this
accepting state, we can add arbitrary transitions. The
automata produced by doing so will always be trans-
formed by DFA2S_Guar into AΠ2.

4.4 Characterizing states of Streett automata

To better identify particular execution sequences on a
Streett automaton we characterize some subsets of its
states in terms of reachability of distinguished states.
More precisely, the set PA = {GoodA,GoodA

c
,BadA

c
,

BadA} is a partition of QA, s.t. GoodA, GoodA
c

, BadA
c

,
BadA designate respectively the good (resp. currently
good, currently bad, bad) states. The set PA is defined
as follows:

– q is in GoodA iff it terminates an accepted sequence and
every sequence starting from q is accepted:

GoodA def

= {q ∈
⋂m

i=1
(Ri∪Pi) | ReachA(q) ⊆

⋂m

i=1
(Ri∪Pi)};

– q is in GoodA
c iff it terminates an accepted sequence and

there exist non accepted sequences starting from q:

GoodA
c

def

= {q ∈
⋂m

i=1
(Ri∪Pi) | ReachA(q) 6⊆

⋂m

i=1
(Ri∪Pi)};

– q is in BadA
c iff it terminates a non accepted sequence and

there exist accepted sequences starting from q:

BadA
c

def

= {q ∈
⋃m

i=1
(Ri∩Pi) | ReachA(q) 6⊆

⋃m

i=1
(Ri∩Pi)};

– q is in BadA iff it terminates a non accepted sequence and
every sequence starting from q is not accepted:

BadA def

= {q ∈
⋃m

i=1
(Ri∩Pi) | ReachA(q) ⊆

⋃m

i=1
(Ri∩Pi)}.

The subsets are illustrated for basic classes in Fig. 7.

Example 3 (Characterization of Streett automata states).
We illustrate the characterization on the states of the
Streett automata presented in Example 2:

– BadAΠ1 = {4}, GoodAΠ1

c = {1, 2, 3},
– BadAΠ2 = {4}, BadAΠ2

c = {1, 2}, GoodAΠ2 = {3},
– BadAΠ3 = {3}, BadAΠ2

c = {2}, GoodAΠ3

c = {1},
– BadAΠ4 = {5}, BadAΠ4

c = {1, 2, 6}, GoodAΠ4

c = {3, 4}.

Remark 2. For a Streett automaton AΠ , all states in
BadAΠ (resp. GoodAΠ) are equivalent w.r.t. property
recognition - they can be merged into one single state.

This characterization of states will be useful in the fol-
lowing sections when characterizing monitorable proper-
ties and when synthesizing monitors.

4.5 Summary

A graphical representation of the Safety-Progress hier-
archy of properties is depicted in Fig. 8. A link between
two classes means that the higher class contains strictly

Safety

Safety Guarantee

Reactivity

Response Persistence

Obligation

unrestricted automata

Progress

R = ∅, P 9 P
(Af (ψ), A(ψ))

P = ∅, R9 R
(Ef (ψ), E(ψ))

(Rf (ψ), R(ψ)) (Pf (ψ), P (ψ))

Pi 9 Pi, Ri 9 Ri

⋂

i[Safety i ∪Guaranteei]

R = ∅

⋂

i[Responsei ∪ Persistencei]

P = ∅

Fig. 8. The Safety-Progress classification of r -properties

Language view Automata view

“basic block” ψ ⊆ Σ∗ A (DFA)

r-property (Xf (ψ), X(ψ)) DFA2S_X (A)
X ∈ {A,E,R, P} X ∈ {Saf .,Guar .,

Resp.,Persit .}

Table 1. Ways to specify properties according to the views

Language view Automata view

Finite seq ∈ Xf (ψ) Finite seq criterion
(Def. 2) (Def. 7)

Infinite seq ∈ X(ψ) Infinite seq criterion
(Def. 3) (Def. 6)

Table 2. Recognizing criteria according to the considered view

the lower one. Furthermore, for each class, we have re-
called and uniformly extended the characterizations in
the language-theoretic and automata views.

In Table 1 is represented each “basic block”, i.e., the
element used to build an r -property. In the language
view, r -properties are built from a finitary language ψ,
and using operators Xf , and X, with X ∈ {A,E,R, P}.
In the automata view, a finite-state automaton is trans-
formed, by one of the transformations DFA2S specific
to a class of properties, into a Streett automaton which
recognizes (Xf (ψ), X(ψ)) according to the class of prop-
erties.

Remark 3. It is worth noticing that property interpre-
tation of finite sequences extends to infinite sequences
in a consistent way, depending on the class of properties
under consideration:

– for a safety property Π, ∀i ∈ N, Π(σ···i) ⇒ Π(σ),
– for a guarantee propertyΠ, ∃i ∈ N, Π(σ···i) ⇒ ¬Π(σ),

– for a response property Π,
∞

∃ i ∈ N, Π(σ···i) ⇒ Π(σ),

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 13

P

Good

P

Goodc

P

Bad

R

Good

R

Bad

R

Badc

R

Good

R

Goodc

R

Bad

R

Badc

P

Good

P

Goodc

P

Bad

P

Badc

Safety Guarantee Response Persistence

Fig. 7. Characterization of states for basic classes

– for a persistence property Π, ¬(
∞

∃ i ∈ N,¬Π(σ···i)) ⇒
¬Π(σ).

5 Monitorability w.r.t. the SP classification

As stated in the introduction, studying the question of
monitorability amounts to studying the expressiveness
of runtime verification, i.e., characterizing the classes of
properties that can be verified at runtime. In this section
we first recall and extend existing monitorability results
in the Safety-Progress classification of properties. Sec-
ond, we propose to parameterize the classical definition
with a truth-domain. Third, we propose an alternative
definition of monitorability and characterize monitorable
properties according to this new definition.

In fact, characterizing the set of “monitorable” prop-
erties depends on several parameters: the property se-
mantics for finite sequences, the set of monitor verdicts
we consider, and the exact definition of monitoring.

5.1 Monitorable properties according to the classical
definition of monitorability

We express the classical definition of monitorability given
by Pnueli and Zaks in the SP framework introduced in
the previous section. Then, we characterize the set of
monitorable properties according to this classical defini-
tion.

5.1.1 The classical definition of monitorability

The main objective of monitoring, in its classical def-
inition, is to evaluate an (infinitary) property ϕ on a
possibly infinite execution sequence from one of its fi-
nite prefix. Intuitively, the idea is to be able to detect
verdicts, i.e., find an evaluation, w.r.t. an infinitary prop-
erty, from a finite observation of a system behavior. This
is formalized as follows for r -properties:

Definition 13 (Positive/Negative determinacy of
an r-property [32]). Let σ ∈ Σ∗, an r -property Π ⊆
Σ∗ ×Σω is said to be:

– negatively determined by σ if ∀µ ∈ Σ∞,¬Π(σ · µ);
– positively determined by σ if ∀µ ∈ Σ∞, Π(σ · µ).

An r -property is negatively (resp. positively) determined
if every possible future continuation (finite or infinite)
does not (resp. does) satisfy the property. The practi-
cal meaning is the following: when a monitor observes
a system in order to check a property, if this property
is negatively or positively determined, then the observa-
tion of the system can be stopped. In this case, a monitor
emits the verdict ⊥ (resp. ⊤) after reading σ if the prop-
erty is negatively (resp. positively determined) by σ. The
obtained verdict is definitive. In others cases, a monitor
issues the value “?”, meaning that no definitive verdict
can be produced.

Definition 14 (Monitorable r-properties, “classi-
cal” definition [32]). An r -property Π is:

– σ-monitorable, if there exists a (finite) µ ∈ Σ∗ s.t. Π
is positively or negatively determined by σ · µ;

– monitorable, if it is σ-monitorable for every σ ∈ Σ∗.

The set of monitorable properties, according to the clas-
sical definition is noted MPc . An r -property is moni-
torable if, for any execution sequence that can be ob-
served, a possible continuation of this sequence deter-
mines negatively or positively the property. One can
notice that the classical definition of monitorability is
bound to an implicit 3-valued truth-domain {⊥, ?,⊤}
where the truth-values are issued by a monitor as de-
scribed previously.

Remark that the classical definition of monitorabil-
ity is hard to use in practice. So a characterization of
monitorable properties is needed in practice.

5.1.2 Characterization of monitorable properties
according to the classical definition

One of our first objectives is to characterize the sub-
set of monitorable properties within the Safety-Progress
classification.

We first enunciate a lemma that will be used later
on. This lemma states that the set of MPc-monitorable
properties is closed under Boolean operations.

Lemma 2 (Closure of monitorable properties un-
der boolean operations). Given two r-properties Π1,
Π2, we have:

Π1, Π2 ∈ MPc ⇒ Π1 ∧Π2 ∈ MPc ,
Π1, Π2 ∈ MPc ⇒ Π1 ∨Π2 ∈ MPc ,

Π1 ∈ MPc ⇒ ¬Π1 ∈ MPc .

14 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

Proof. The complete proof is given in Appendix A.2.1.
Let us consider two r -properties Π1, Π2 ∈ MPc .

– The proof of Π1∧Π2 ∈ MPc consists in showing that
Π1 ∧Π2 is σ-monitorable for any sequence σ ∈ Σ∗.
Let σ ∈ Σ∗, let us exhibit an extension µ ∈ Σ∗ s.t.
Π1∧Π2 is negatively or positively determined by σ·µ.
As Π1 is monitorable, there exists a sequence µ1 s.t.
Π1 is positively or negatively determined by σ · µ1.
Then, as Π2 is monitorable, there exists a sequence
µ2 s.t. Π1∧Π2 is negatively or positively determined
by σ · µ1 · µ2. Then, one has to analyze the different
Boolean combinations to obtain the expected result.

– The proof of Π1 ∨Π2 ∈ MPc is similar.
– The proof of ¬Π1 ∈ MPc is straightforward by notic-

ing that for any sequence σ ∈ Σ∗, if Π1 is positively
(resp. negatively) determined by σ, then ¬Π is neg-
atively (resp. positively) determined by σ.

⊓⊔

We are now able to establish that the set of monitorable
properties according to the classical definition strictly
contains the set of obligation properties.

Theorem 2 (Obligation(Σ) ⊂ MPc). The obligation
properties are strictly contained in the set of monitorable
properties.

Proof. The formal proof can be found in Appendix A.2.2
and uses the following facts:

– Safety and guarantee properties are monitorable.
– The set of obligation properties is the union of the
sets of k-obligation properties for k ≥ 1 (Lemma 1).

– Union and intersection of two monitorable properties
are monitorable (Lemma 2).

– Example 6 shows that the inclusion is strict.
⊓⊔

Thus, we have extended the previous bound established
by Bauer et al. in [3]7 stating that

Safety(Σ) ∪Guarantee(Σ) ⊂ MPc .

Indeed, the set of obligation properties is a strict super
set of the union of safety and guarantee properties.

Example 4 (Classical monitoring of an obligation prop-
erty). We go back to the example presented in the in-
troduction, defined using two atomic propositions p or
q, stating that p should always hold or q should eventu-
ally hold. This is a 1-obligation r -property8, defined as
the disjunction of a safety r -property (“p should always
hold”) and a guarantee r -property (“q should eventually
hold”). According to the classical definition of monitora-
bility, this property is monitorable. Indeed, for any finite
sequence σ, this property can be positively determined
by σ · {p, q} or by σ · {p, q}, i.e., by completing σ with
an event in which q is true.

7 In [3], guarantee properties are named co-safety properties.
8 Seen in the logical view, this property can be defined by the

temporal logic formula �p ∨ ♦q.

1 2

req
ack ,oth

ack

req ,oth

Fig. 9. Non-monitorable response property - R = {1}, P = ∅

1 2 3

req
ack ,oth

ack

oth Σ

req

Fig. 10. Monitorable response property - R = {1}, P = ∅

Beyond Obligation properties. Following the classical def-
inition of monitorability, it is possible to show that there
exist non-monitorable and monitorable properties for su-
per classes of the Obligation class. The above two proper-
ties are pure response properties, one is not monitorable,
the other one is.

Example 5 (Non-monitorable response property [3]). The
(response) property “Every request is eventually followed
by an acknowledgement”9 is not monitorable. This prop-
erty is represented by the Streett (response) automa-
ton depicted in Fig. 9 with R = {1}. Its alphabet is
Σ = {req , ack , oth} where req (resp. ack, oth) denotes
the request (resp. the acknowledgment, any other event).
Using the acceptance criteria for finite and infinite se-
quences, one can reasonably be convinced that this au-
tomaton defines the considered property. Indeed, a finite
sequence is accepted if and only if previous requests have
been acknowledged. An infinite sequence is accepted if
and only if state 1 is visited infinitely often which means
for an infinite sequence that requests have been acknowl-
edged.

For this property, there are two limitations for mon-
itoring using the classical definition of monitorability.
First, it is impossible to distinguish correct (ending in
state 1) and incorrect finite sequences (ending in state
2): both evaluate to “?”. Second, for all finite sequences,
it is never possible to decide ⊤ or ⊥ since every finite
sequence can be extended to correct or incorrect infi-
nite continuations. In other words, it is never possible to
satisfy or falsify this property with a finite observation.

Example 6 (Monitorable response property). The (res-
ponse) property “Every request should be acknowledged,
and it is forbidden to send two successive requests (with-
out acknowledgment)” is monitorable. This property is
represented by the Streett response automaton depicted
in Fig. 10 with R = {1} and the same alphabet Σ as in

9 This property can be expressed in an event-based LTL as
�(req ⇒ ♦ack).

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 15

Example 5. Notice that this property is indeed a pure
response property: it cannot be represented by a finite-
state Streett obligation automaton. Intuitively, given an
execution sequence, this r -property can always be neg-
atively determined by one of its continuations. Indeed,
for any σ ∈ Σ∗, the property is negatively determined
by σ · req · req , and is thus σ-monitorable.

Thus there exist monitorable (pure) response properties.
Consequently, using Lemma 2, there exist also moni-
torable pure persistence and reactivity properties. In-
deed, monitorable properties are closed under Boolean
operations.

5.2 Parametrization of the classical definition of
monitorability

As we will see, the characterization of monitorable prop-
erties may also depend on a truth-domain B we consider
when evaluating an execution sequence. Thus we param-
eterize the classical definition of monitorable properties
with a truth-domain.

The first truth-domain we have studied is a 3-valued
truth-domain B3

def

= {⊥, ?,⊤}. This truth-domain is in-
herent in the classical definition. The value “⊥” is used
to express property violation when the property is nega-
tively determined. The value “⊤” is used to express prop-
erty satisfaction when the property is positively deter-
mined. The value “?” is used to express that no verdict
can be produced. B3 can be viewed as a complete lat-
tice, whose minimal value is ⊥ and maximal value is ⊤.
Boolean operators ∨ and ∧ are then defined respectively
as upper and lower bounds.

The classical definition of monitorability is purposed
to the detection of verdicts for infinitary properties, i.e.,
to detect either ⊤ or ⊥. This definition can be param-
eterized by a truth-domain B containing at least one of
these two elements:

Definition 15 (Parameterized classical monitora-
bility). For a truth-domain B s.t. B ∩ {⊥,⊤} 6= ∅, an
r -property Π is:

– σ-monitorable with B, if there exist b ∈ B and a
(finite) µ ∈ Σ∗ s.t.
– b = ⊥ and Π is negatively determined by σ ·µ, or
– b = ⊤ and Π is positively determined by σ · µ;

– monitorable with B if it is σ-monitorable with B for
every σ ∈ Σ∗.

For a truth-domain B, we will note MP(B) the set of
monitorable properties, according to the definition of pa-
rameterized classical monitorability. We now tackle the
question of how the underlying considered truth-domain
may influence the class of monitorable properties, ac-
cording to a truth-domain derived from B3.

Remark 4 (MPc = MP(B3)). The previous parameter-
ized definition of classical monitorability amounts to the

classical definition given by Pnueli and Zaks when in-
stantiated with B3.

Remark 5 (Finer truth-domains). According to Defini-
tion 15, we can notice that adding further truth-values to
B3 has no influence on the set of monitorable properties.
That is: ∀B : B ⊃ B3 ⇒ MP(B) = MP(B3).

This latest remark shows a first limitation of the defi-
nition of (parameterized) classical monitorability: con-
sidering finer truth-domains, as it could be required in
specific application domains, will not increase the set of
monitorable properties. This is one of the motivations to
introduce an alternative definition of monitorability (in
Section 5.3).

Monitorability with a truth-domain of cardinality 2. Re-
straining B3 to a truth-domain of cardinality 2 allows
only either positive or negative determinacy, and hence
reduces the set of monitorable properties. Indeed, the
purpose of the monitor is then either to detect only
bad behaviors or only good behaviors (but not both).
In the sequel we consider two subsets of B3, namely

B⊥
2

def

= {⊥, ?} and B⊤
2

def

= {?,⊤}.
However, there is no simple characterization of these

properties in the Safety-Progress hierarchy. Intuitively
one may think that with B⊥

2 = {⊥, ?}, the set of moni-
torable properties would be the set of safety properties.
Actually, there are numerous safety properties which
can never be negatively determined. For example, the
r -property true = (Σ∗, Σω) = (Af (Σ

∗), A(Σ∗)) can-
not be negatively determined nor falsified. Moreover all
safety properties which are valid forever for execution
sequences longer than a given k ∈ N are not σ − B⊥

2 -
monitorable when |σ| > k. For these kinds of properties
a monitor would produce only verdict sequences contain-
ing “?” when evaluating an execution sequence. Similarly,
there exist many guarantee properties that cannot be
positively determined, and therefore are not monitorable
with B⊤

2 = {?,⊤}.
Regarding these sets of monitorable properties, it ap-

pears that there is no simple characterization, in terms
of classes of the Safety-Progress classification. However,
in Section 5.4, we will provide a syntactic criterion on
Streett automata in order to decide whether the r -proper-
ty recognized by a given automaton is monitorable ac-
cording to the mentioned truth-domains.

5.3 Monitorable properties according to an alternative
definition of monitorability

The interest of previous definitions of monitorability is
due to two facts: the underlying truth-domain is 2-valued
or 3-valued and the aim is the detection of verdict of
infinitary properties. Although it is possible to give a
semantics to all reactive properties with either a 2-valued
or 3-valued truth-domain, the question is whether those

16 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

values make sense for some properties in a monitoring
context.

As noticed in [3,26], it seems interesting to investi-
gate further the set of monitorable properties, and to
answer more precisely questions like “what verdict to is-
sue if the program execution stops here”. This means a
better distinction between finite sequences which evalu-
ate to “?” in a 2-valued or a 3-valued truth-domain.

Hence, the authors of [3,26] proposed to consider a
4-valued truth-domain B4 = {⊥,⊥c,⊤c,⊤}. The truth-
value ⊤c (resp. ⊥c) denotes “currently true” (resp. “cur-
rently false”) and it expresses “Π-satisfaction (resp. Π-
violation) if the program execution stops here”. Boolean
operators ∨ and ∧ are defined in [3]. Using B4 leads to
an alternative definition of monitoring. This new defini-
tion leverages the evaluation of finite sequences in the
Safety-Progress classification framework.

5.3.1 Property evaluation in a truth-domain

We first introduce how, given an r -property, we evaluate
an execution sequence in the truth-domains we consid-
ered so far.

Definition 16 (Property evaluation w.r.t. a truth-
domain). For each of the possible truth-domain B, we
define the evaluation functions [[·]]B(·) : 2

Σ∗×Σω ×Σ∗ →
B as follows:

For B⊥
2 :

[[Π]]B⊥
2
(σ) = ⊥ if ∀µ ∈ Σ∞,¬Π(σ · µ);

[[Π]]B⊥
2
(σ) = ? otherwise.

For B⊤
2 :

[[Π]]B⊤
2
(σ) = ⊤ if ∀µ ∈ Σ∞, Π(σ · µ);

[[Π]]B⊤
2
(σ) = ? otherwise.

For B3:

[[Π]]B3
(σ) = ⊥ if ¬Π(σ) ∧ ∀µ ∈ Σ∞,¬Π(σ · µ);

[[Π]]B3
(σ) = ⊤ if Π(σ) ∧ ∀µ ∈ Σ∞, Π(σ · µ);

[[Π]]B3
(σ) = ? otherwise.

For B4:

[[Π]]B4
(σ) = [[Π]]B3

(σ) if [[Π]]B3
(σ) = ⊥∨ [[Π]]B3

(σ) = ⊤,
[[Π]]B4

(σ) = ⊤c if [[Π]]B3
(σ) = ? ∧Π(σ),

[[Π]]B4
(σ) = ⊥c if [[Π]]B3

(σ) = ? ∧ ¬Π(σ).

Remark 6. The defined property evaluation w.r.t. B4 is
similar to the semantics of the LTL variant RV-LTL de-
fined in [4].

5.3.2 An alternative definition of monitorability

Intuitively, the monitorability notion we propose relies
on the ability for a given monitor to distinguish between
good and bad finite execution sequences with respect to
a property Π.

Definition 17 (Alternative Monitorability). An r -
property Π = (φ, ϕ) is said to be monitorable with the
truth-domain B, or B-monitorable if

∀σgood ∈ φ, ∀σbad ∈ φ, [[Π]]B(σgood) 6= [[Π]]B(σbad).

We note MP∗(B), the set of monitorable properties with
truth-domain B according to this definition.

Thus, an r -property is monitorable with a given truth-
domain B if and only if evaluations of good and bad finite
execution sequences lead to distinct values. Remark that
this definition seemingly does not rely on the infinitary
part of the r -property (although this infinitary part is
taken into account in the evaluation function).

5.3.3 Characterization of monitorable properties

Lemma 3 (MP∗(B3), safety, and guarantee prop-
erties). The set of monitorable properties (according to
Definition 17) with B3 is included in the union of safety
and guarantee properties. Formally:

MP∗(B3) ⊆ Safety(Σ) ∪Guarantee(Σ).

Proof. The formal proof can be found in Appendix A.2.3.
It is done by reductio ad absurdum and supposing the
existence of an r -property Π = (φ, ϕ) defined on Σ
which is neither a safety nor a guarantee r -property. The
proof shows the existence of two execution sequences,
one good, the other one bad, for Π s.t. these sequences
are evaluated to “?”. ⊓⊔

Theorem 3 (Multi-valued characterization of al-
ternative monitorability). The sets of monitorable
properties according to the truth-domains considered so
far are the following:

(i) MP∗(B⊥
2) = Safety(Σ),

(ii) MP∗(B⊤
2) = Guarantee(Σ),

(iii) MP∗(B3) = Safety(Σ) ∪Guarantee(Σ),
(iv) MP∗(B4) = Reactivity(Σ).

The proof can be found in Appendix A.2.4.

Example 7 (Alternative monitoring of an obligation prop-
erty). Let us go back again to the property considered in
the introduction, stating that “p should always hold or q
should eventually hold”. We examine again the execution
sequences: σgood = {p, q}·{p, q} and σbad = {p, q}·{p, q}.
Considering B3, we have [[Π]]B3

(σgood) = [[Π]]B3
(σbad) =

?. Thus, Π is not B3-monitorable. However, Π is B4-
monitorable and [[Π]]B4

(σgood) = ⊤c and [[Π]]B4
(σbad) =

⊥c.

This example shows how the finite sequence semantics
leverages the interest of monitoring certain properties.
Furthermore, it shows that under our definition of mon-
itoring, ambiguous situations, such as those encountered
with the classical definition, are avoided.

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 17

Our definition of monitorability has the advantage of
being able to identify the properties which should not be
monitored with a truth-domain “not fine enough”. Indeed
the last property shows that if we build a monitor for
such a property with the truth-domain B3, this monitor
would produce an evaluation “?” for correct and incorrect
execution sequences w.r.t. the property. This seems not
desirable to us.

Furthermore, we have shown in Section 4.4 that, for a
given finite sequence σ and an r -property Π, [[Π]]B4

(σ)
is easy to compute from the set of states of a Streett
automaton recognizing Π.

5.4 Characterizations in the automata view

Although some sets of monitorable properties we con-
sidered cannot be precisely expressed in terms of Safety-
Progress classes, it is still possible to characterize them
with some syntactic criteria on Streett automata. It re-
lies on the characterization of the states of Streett au-
tomata introduced in Section 4.4.

Property 3 (Correspondence between Streett au-
tomata states and B4). Given a Streett m-automaton
recognizing an r -property Π and a sequence σ ∈ Σ∗ of
length n s.t. run(σ,AΠ) = q0 · · · qn, we have:

qn ∈ GoodAΠ ⇔ [[Π]]B4
(σ) = ⊤,

qn ∈ GoodAΠ

c
⇔ [[Π]]B4

(σ) = ⊤c,
qn ∈ BadAΠ

c
⇔ [[Π]]B4

(σ) = ⊥c,
qn ∈ BadAΠ ⇔ [[Π]]B4

(σ) = ⊥.

Proof. The proof is given in Appendix A.2, it uses the
acceptance criteria of Streett automata to establish the
correspondence. ⊓⊔

Remark 7 (Correspondance with B3, B⊥
2 , and B⊤

2). From
Property 3 and Definition 16, one can easily deduce a
correspondence between the set of states and the evalu-
ation in the truth-domain of a lower cardinality:

– For B3:
– qn ∈ GoodAΠ ⇔ [[Π]]B3

(σ) = ⊤,
– qn ∈ GoodAΠ

c
∪ BadAΠ

c
⇔ [[Π]]B3

(σ) =?,
– qn ∈ BadAΠ ⇔ [[Π]]B3

(σ) = ⊥.
– For B⊤

2 :
– qn ∈ GoodAΠ ⇔ [[Π]]B⊤

2
(σ) = ⊤,

– qn ∈ GoodAΠ

c
∪ BadAΠ

c
∪ BadAΠ ⇔ [[Π]]B⊤

2
(σ) = ?.

– For B⊥
2 :

– qn ∈ BadAΠ ⇔ [[Π]]B⊥
2
(σ) = ⊥,

– qn ∈ BadAΠ ∪GoodAΠ

c
∪ BadAΠ

c
⇔ [[Π]]B⊥

2
(σ) = ?.

Now we are able to give an exact characterization of
monitorable properties in the automata view.

Theorem 4 (Automata view of classical monito-
rability). The r-property Π recognized by the Streett
m-automaton AΠ = (QAΠ , qAΠ

init
,→AΠ , {(R1, P1), . . . ,

(Rm, Pm)}) is

(i) MP(B⊥
2)-monitorable iff

∀q ∈ Reach(qAΠinit),Reach(q) ∩ BadAΠ 6= ∅;
(ii) MP(B⊤

2)-monitorable iff
∀q ∈ Reach(qAΠinit),Reach(q) ∩GoodAΠ 6= ∅;

(iii) MP(B3)-monitorable iff
∀q ∈ Reach(qAΠinit),Reach(q) ∩ (BadAΠ ∪GoodAΠ) 6= ∅.

Proof. This property is established by noticing first that
it is a consequence of Property 3 and second that we
are considering deterministic and complete Streett au-
tomata. Thus, the two following facts are equivalent:

– from every accessible state, a bad (resp. good, bad or
good) is reachable;

– every finite sequence has a continuation that deter-
mines negatively (resp. positively, negatively or pos-
itively) the underlying property.

⊓⊔

Example 8 (Automata view of lassical monitorability). We
illustrate the use of the previous theorem to state whether
the properties of Example 2 (Fig. 3), with their provided
automata, are monitorable according to the classical def-
inition:

– The propertyΠ1 specified by AΠ1 is B⊥
2 -monitorable,

and thus B3-monitorable; but not B⊤
2 -monitorable.

– The property Π2 specified by AΠ2 is B⊤
2 -monitorable

and B⊥
2 -monitorable, and thus B3-monitorable.

– The propertyΠ3 specified by AΠ3 is B⊥
2 -monitorable,

and thus B3-monitorable, but not B⊤
2 -monitorable.

– The propertyΠ4 specified by AΠ4 is B⊥
2 -monitorable,

and thus B3-monitorable, but not B⊤
2 -monitorable.

Theorem 5 (Automata view of alternative moni-
torability). The r-property Π recognized by the Streett
m-automaton AΠ = (QAΠ , qAΠ

init
,→AΠ , {(R1, P1), . . . ,

(Rm, Pm)}) is

(i) MP∗(B⊥
2)-monitorable iff BadAΠ =

⋃m

i=1
Ri ∩ Pi;

(ii) MP∗(B⊤
2)-monitorable iff GoodAΠ =

⋂m

i=1
Ri ∪ Pi;

(iii) MP∗(B3)-monitorable iff

∄q ∈ Reach(qAΠ
init

) ∩
⋂m

i=1
Ri ∪ Pi,

∄q′ ∈ Reach(qAΠ
init

) ∩
⋃m

i=1
Ri ∩ Pi,

q ∈ GoodAΠ
c ∧ q′ ∈ BadAΠ

c .

Proof. The proof is conducted in three steps:

(i) The expressed condition generalizes the syntactic re-
striction of Streett safety automata and is also a con-
dition when a given not minimal Streettm-automaton
is recognizing a safety property and can be minimized
so as to be represented as a Streett safety automaton.

(ii) The expressed condition generalizes the syntactic re-
striction of Streett guarantee automata and is also
a condition when a given not minimal Streett m-
automaton is recognizing a guarantee property and
can be minimized so as to be represented as a Streett
safety automaton.

18 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

Response Persistence

Guarantee

Obligation

Safety

Progress

Safety

Reactivity

MP(B3) = MPc

MP(B⊥
2) MP(B⊤

2)

MP∗(B3)

MP∗(B⊥
2) MP∗(B⊤

2)

MP∗(B4)

Fig. 11. Monitorable r -properties in the Safety-Progress classifi-
cation

(iii) The third condition can be established using the
two following facts:
– An r -property is not monitorable according to

this theorem if and only if for two sequences, a
good and a bad sequences evaluate to “?”. Other
evaluations are not simultaneously possible for a
bad and good sequences.

– We are considering deterministic and complete
Streett automata.

⊓⊔

5.5 Summary

We depict in Fig. 11 the main results obtained in this
section, which can be summarized as follows:

– The classes of monitorable properties, according to
the classical definition, are:
– MP(B⊤

2), which can not be compared directly
with any other class;

– MP(B⊥
2), which can not be compared directly

with any other class;
– and MP(B3) = MPc which contains strictly the

class of obligation properties.
– The classes of monitorable properties, according to

the new definition we introduced are:
– MP∗(B⊥

2) is the set of safety r -properties;
– MP∗(B⊤

2) is the set of guarantee r -properties;
– MP∗(B3) is strictly contained in the class of obli-

gation r -properties and is the union of the sets of
safety and guarantee properties;

– and MP∗(B4) is the set of reactivity r -properties.

Remark that using the truth-domain B4 does not add
any expressiveness to the classical definition of monito-
rability (i.e., MP(B4) = MP(B3)). Indeed, this definition
is bound to the notion of positive and negative determi-
nacy. However using this domain would permit to better
distinguish execution sequences and to avoid ambiguity
exposed in Example 4. Note also that some obligation
properties (between MP(B3) and MP∗(B3)) should not
be monitored unless with a truth-domain equipped with

an interpretation of finite sequences allowing to distin-
guish good and bad finite sequences (e.g., with truth-
values ⊥c and ⊤c).

Remark 8. One can notice that the monitorability re-
sults expressed in the automata view (i.e., Theorems 4
and 5) hold only for regular r -properties. Whereas the re-
sults that were not expressed in the automata view (i.e.,
Lemma 2, Theorems 2 and 3) hold for all r -properties
(e.g., regular, context-free, context-sensitive, recursively
enumerable), independently from any computability con-
straint on their recognizing mechanisms.

6 Enforceability w.r.t. the SP classification

Now we address the question of the expressiveness of
runtime enforcement, that is, we characterize the class
of enforceable properties. In Section 3, we have seen that
the previous proposed classes were delineated accord-
ing to the mechanism used to enforce the properties.
Such mechanisms should obey the soundness and trans-
parency constraints. We choose here to take an alter-
native approach. Indeed we believe that the set of en-
forceable properties can be characterized independently
from any enforcement mechanism complying to these
constraints, provided that this memory is unbounded
but finite. This will give us an upper-bound of the set of
enforceable properties with any enforcement mechanism.

6.1 Enforcement criteria

The enforcement constraints exposed in Section 3, name-
ly soundness and transparency, express a relation be-
tween the input sequence (submitted to an enforcement
monitor) and an output sequence (produced by this mon-
itor). We interpret these constraints in the following way:
if the input sequence already verifies the property, then
it should remain unchanged (up to a given equivalence
relation), otherwise its longest prefix satisfying the prop-
erty should be issued10.

A consequence is that an r -property (φ, ϕ) will be
considered as enforceable only if each incorrect infinite
sequence has a longest correct prefix. This means that
any infinite incorrect sequence should have only a finite
number of correct prefixes11. We give two enforcement
criteria, in the language and automata views.

Definition 18 (Enforcement criterion in the lan-
guage view). An r -property (φ, ϕ) is said to be en-
forceable if ∀σ ∈ Σω,

¬ϕ(σ) ⇒ (4)

∃σ′ ∈ Σ∗, σ′ ≺ σ ∧ ∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ⇒ ¬φ(σ′′)

10 An alternative interpretation could consist in correcting an
erroneous sequence by adding extra events.
11 Note that those criteria differ from the existence of bad pre-

fixes. Bad prefixes are sequences which cannot be extended to cor-
rect (finite or infinite) ones, i.e., sequences that determine nega-
tively the underlying property.

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 19

Alternatively, it is possible to express an enforcement
criterion for an r -property Π on its recognizing Streett
m-automaton AΠ . This criterion uses the set S(AΠ) of
(maximal and non-maximal) Strongly Connected Com-
ponents of AΠ . For an m-automaton AΠ and s an SCC

of AΠ , we define Is
def

= {i ∈ [1,m] | s ⊆ Ri ∧ s∩ Pi 6= ∅}.
Intuitively, Is is the set of accepting pairs of AΠ that
leads the infinite sequences, visiting infinitely often the
SCC s, to be rejected. The criterion is formally expressed
as follows:

Definition 19 (Enforcement criterion in the au-
tomata view). The r -property Π recognized by an
m-automaton AΠ is said to be enforceable if

∀s ∈ S(AΠ), Is 6= ∅ ⇒ ∃i ∈ Is, s ⊆ Pi (5)

Intuitively, this later enforcement criterion states that
for every non-accepting SCC s (s is non accepting be-
cause it contains at least one pair in [1,m] for which
the infinite acceptance criterion is not satisfied), then,
among these indexes, there is at least one index i s.t. all
states in the SCC s are in Pi.

Enforcement criteria of Definitions 18 and 19 are
equivalent, as stated below.

Property 4 (Equivalence between enforcement cri-
teria). Considering an r -property Π = (φ, ϕ), recog-
nized by a Streett m-automaton (QAΠ , qAΠ

init
, Σ,→AΠ ,

{(R1, P1), . . . , (Rm, Pm)}), we have:

(4) ⇔ (5).

Proof. We just give a sketch of the proof, the formal
proof can be found in Appendix A.3.1. The proof shows
the implications in both ways and uses the definitions
of the acceptance criteria of Streett automata for finite
and infinite sequences. Then one has to remark that:

– (4) expresses a condition on the set of infinite se-
quences that do not satisfy the r -property;

– (5) expresses a condition on the set of SCC s that
reject the sequences visiting s infinitely often.

As we are dealing with complete and deterministic au-
tomata, these conditions are equivalent. ⊓⊔

The set of enforceable r -properties, equivalently defined
by Definition 4 or Definition 5, is denoted EP . We will
now characterize EP w.r.t. the SP classification. We will
prove that EP is exactly the class of response proper-
ties. Note that the enforcement criterion in the automata
view is still useful as it provides a syntactic procedure
to determine whether a property is enforceable or not.

6.2 Enforceable properties

We start first by proving that response properties are
enforceable. Then, we give the intuition on the non-
enforceability of persistence properties by providing an
illustrative example. Then, we prove that the set of res-
ponse properties is exactly the set EP .

1 2

Σ \ {a}
a Σ \ {a}

a

Fig. 12. Non-enforceable persistence r -property

Theorem 6 (Response properties are enforceable).

Response(Σ) ⊆ EP

Proof. Indeed consider a response r -propertyΠ = (φ, ϕ)
and an execution sequence σ ∈ Σω. Π can be expressed
as (Rf (ψ), R(ψ)) for a given finitary language ψ. Let us
suppose that ¬ϕ(σ). It means that σ 6∈ R(ψ), i.e., σ has
finitely many prefixes belonging to ψ. Consider the set
S = {σ′ ∈ Σ∗ | ∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ¬ψ(σ′′)}
of finite sequences from which all finite continuations
do not satisfy ψ. As ¬R(ψ)(σ), this set is not empty.
Let us note σ0 the smallest element of S regarding ≺.
We have ∀σ′ ∈ Σ∗, σ0 ≺ σ′ ≺ σ ⇒ ¬ψ(σ′). Since
∀ψ′ ⊆ Σ∗, Rf (ψ

′) ⊆ ψ′ (cf. the definition of opera-
tors building finitary properties), it implies that ∀σ′ ∈
Σ∗, σ0 ≺ σ′ ≺ σ ⇒ ¬φ(σ′). Thus, Π is enforceable ac-
cording to Definition 18. ⊓⊔

A straightforward consequence is that safety, guarantee
and obligation r -properties are enforceable. We prove
that, in fact, pure persistence properties are not enforce-
able. Let us explain the intuition through an example.

For Σ ⊇ {a, b}, an example of pure persistence r -
property is Π = (Σ∗ · a+, Σ∗ · aω) stating that “it will
be eventually true that a always occurs”. One can notice
that this property is neither a safety, guarantee nor obli-
gation property. Π is recognized by the Streett automa-
ton AΠ depicted in Fig. 12 (with P = {1}). One can
understand the enforcement limitation intuitively with
the following argument: if this property was enforceable
it would imply that an enforcement monitor can decide
from a certain point that the underlying program will al-
ways produce the event a. However such a decision can
never be taken by a monitor without memorizing the
entire execution sequence beforehand. This is unrealistic
for an infinite sequence. More formally, as stated in Def-
inition 18, an r -property (φ, ϕ) is enforceable if for all
infinite execution sequences σ when ¬ϕ(σ), the longest
prefix of σ satisfying φ always exists. For the above au-
tomaton, the execution sequence σ′

bad = (a ·b)ω does not
satisfy the property whereas an infinite number of its
prefixes do (prefixes ending with a).

Applying enforcement criteria on persistence proper-
ties, it turns out that the enforceable persistence prop-
erties are in fact response properties.

Theorem 7 (Enforceable persistence properties
are response properties).

Persistence(Σ) ∩ EP ⊆ Response(Σ)

20 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

Proof. A persistence r -propertyΠ becomes non enforce-
able as soon as there exists a SCC of R-states containing
a P -state and a P -state on its recognizing automaton
AΠ (see Definition 19). Indeed, on a Streett automa-
ton it allows infinite invalid execution sequences with an
infinite number of valid prefixes. When removing this
possibility on a Streett automaton, the constrained au-
tomaton can be easily translated to a response automa-
ton. Indeed, the states visited infinitely often are then
either all in P or P , that is: ∀σ ∈ Σω, vinf (σ,AΠ)∩P 6=
∅ ⇔ vinf (σ,AΠ) ⊆ P . On such automaton there is no
difference between R-states and P -states. Consequently
by re-tagging P -states to R-states, this automaton rec-
ognizes the same property. The re-tagged automaton is
a response automaton. ⊓⊔

Corollary 1. Pure persistence properties are not en-
forceable:

(Persistence(Σ) \ Response(Σ)) ∩ EP = ∅

Proof. This is a direct consequence of Theorem 7. ⊓⊔

Theorem 8 (Enforceable m-reactivity properties
are response properties).

Reactivity(Σ) ∩ EP ⊆ Response(Σ)

Proof. The formal proof can be found in Appendix A.3.2.
The proof shows that an m-reactivity automaton which
is constrained by the enforcement criterion (Definition 19)
can be translated to an m-response automaton accepting
exactly the same sequences. Thus, the only enforceable
reactivity properties are the response ones. ⊓⊔

Corollary 2. Pure reactivity properties are not enforce-
able:

Reactivity(Σ) 6⊆ EP

Reactivity(Σ) \ (Persistence(Σ) ∪ Response(Σ)) ∩ EP = ∅

Proof. This is a direct consequence of Theorem 8. ⊓⊔

Corollary 3. Enforceable properties are exactly response
properties:

EP = Response(Σ)

Proof. It remains to prove that the set of enforceable
properties is included in the set of response properties.
Suppose that there exists an enforceable property which
is not a response one. Then, according to the definition
of the Safety-Progress hierarchy, this property would be
either a pure persistence or a pure reactivity property.
Consequently this property would not be enforceable.
⊓⊔

Example 9 (Enforceable and not enforceable properties).
We illustrate the enforcement criterion on the properties
introduced in Example 1 and represented by their Streett
automata described in Example 2 and depicted in Fig. 3.

– The properties Π1, Π2, Π3 are enforceable.

DFA2Streett

Device

(DFA)

Property

X

Streett2EMStreett2VM

(Streett Automaton)

Aψ

AΠ

A?Π A↓Π

ψ

Π = (Xf (ψ), X(ψ))

(EM)

X ∈ {A,E,R, P}

(VM)

Fig. 13. Automaton transformations

– The property Π4 is not enforceable; e.g., the infinite
sequence r · g · (r · d · r · g)ω is not accepted while this
sequence has an infinite number of correct prefixes:
e.g., all sequences belonging to r · g · (r · d · r · g)∗.

Being enforceable or not can be determined rather easily
either by observing the automata and using the accep-
tance criteria for finite and infinite sequences or by using
the criterion in the automata view.

7 Monitor synthesis

Now we show how it is possible to obtain easily a moni-
tor either for verifying or enforcing a property thanks to
the framework introduced in Section 4. Generally speak-
ing, a monitor is a device processing an input sequence
of events or states in an incremental fashion. It is pur-
posed to yield a property-specific decision according to
its goal. In (classic) runtime verification such a decision
is a truth-value taken from a truth-domain. This truth-
value states an appraisal of property satisfaction or vio-
lation by the input sequence. For runtime enforcement,
the monitor produces a sequence of enforcement opera-
tions. The monitor uses an internal memory and applies
enforcement operations to the input event and its current
memory so as to modify the input sequence and produce
an output sequence. The relation between the input and
output sequences should follow enforcement monitoring
constraints: soundness and transparency (Section 3.2).

In the following we consider a Streett m-automaton
AΠ = (QAΠ , qAΠ

init
,→AΠ , {(R1, P1), . . . , (Rm, Pm)}) and

Π the r -property recognized by AΠ . Moreover, we eval-
uate properties only in B4, and consequently we abbre-
viate [[Π]]B4

(·) by [[Π]](·).
The general monitor synthesis procedure is depicted

in Fig. 13. From a “pattern” X corresponding to one of
the basic classes of the hierarchy and a DFA Aψ recog-
nizing a finitary property ψ ⊆ Σ∗, DFA2S_X yields a
Streett automaton recognizing the r -property (Xf (ψ),
X(ψ)). Then using Streett2VM (resp. Streett2EM) one
is able to obtain a verification (resp. enforcement) mon-
itor for the r -property (Xf (ψ), X(ψ)).

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 21

7.1 Monitor: A general definition

A monitor is a procedure consuming events fed by an un-
derlying program and producing an appraisal in the cur-
rent state depending on the sequence read so far. Con-
sidered monitors are deterministic finite-state machines
producing an output in a relevant domain. This domain
will be refined for special-purpose monitors (verification
and enforcement). For verification monitors, this output
function gives a truth-value (a verdict) in B4 regarding
the evaluation of the current sequence relatively to the
desired property. For enforcement monitors (EMs), this
output function gives an enforcement operation inducing
a modification on the input sequence so as to enforce the
desired property.

Definition 20 (Monitor). A monitor A is a 5-tuple
(QA, qA

init
,−→A, X

A, ΓA) defined relatively to a set of
events Σ. The finite set QA denotes the control states
and qA

init
∈ QA is the initial state. The complete function

−→A: Q
A × Σ → QA is the transition function. In the

following we abbreviate −→A (q, a) = q′ by q
a

−→A q′.
The set of values XA depends on the purpose of the
monitor (verification or enforcement). The function ΓA :
QA → XA is an output function, producing values in
XA from states.

7.2 Synthesizing monitors for runtime verification

In the following12, we consider monitorable r -properties
Π and (φ, ϕ) in MP∗(B4).

Definition 21 (Verification monitor). A verification
monitor (VM) A? is a monitor with XA = B4.

Such monitors are independent from any specification
formalism, and can be easily adapted to the specification
formalism from which they are generated. We define, the
notion of verification sequence produced by a monitor
and what it means to verify a property for a monitor. It
amounts to define the verification performed by a VM
A? while reading an input σ ∈ Σ∗ (produced by PΣ)
and producing a sequence b ∈ B4

+.

Definition 22 (Sequence verification). The verifi-
cation function [[A?]](·) : Σ

∗ → B4
+, defining the verifi-

cation performed by A?, produces a verification sequence
while reading σ. This verification sequence is defined as
follows:

∀σ ∈ Σ∗, [[A?]](σ) = ΓA?(qA?

init
) · · ·ΓA?(qn) (6)

with qA?

init

σ0−→A?
q1

σ1−→A?
· · · qn−1

σn−1

−→A?
qn and |σ| = n.

12 The synthesis of Verification Monitors is presented for r -
properties in MP∗(B4) and can be adapted in a straightforward
manner for other sets of monitorable properties using the results
in Section 5.

Definition 23 (Monitor soundness). A monitor A?

is sound w.r.t. Π = (φ, ϕ) ∈ MP∗(B4) on PΣ , noted
Ver(A?, Π,PΣ), if

∀σ ∈ Exec(PΣ) ∩Σ
∗, last([[A?]](σ)) = [[Π]]B4

(σ).

where [[·]]B4
is defined in Definition 16.

This definition states that the verification sequence pro-
duced by A? matches the evaluation function of a se-
quences w.r.t. an r -property.

Using the set PAΠ of a Streett automaton AΠ , we
show how it is possible to obtain a verification monitor
for the r -property Π.

Definition 24 (Streett2VM transformation). Giv-
en a Streett m-automaton AΠ = (QAΠ , qAΠ

init
, Σ,−→AΠ ,

{(R1, P1), . . . , (Rm, Pm)}) recognizing Π ∈ MP∗(B4),
we define the transformation Streett2VM(AΠ) = (QAΠ ,
qAΠ
init

,→AΠ ,B4, Γ) s.t. Γ : QA? → B4 produces truth-
values from states depending on the set PAΠ : ∀q ∈ QAΠ ,

q ∈ GoodAΠ ⇒ Γ (q) = ⊤, q ∈ GoodAΠ
c ⇒ Γ (q) = ⊤c,

q ∈ BadAΠ
c ⇒ Γ (q) = ⊥c, q ∈ BadAΠ ⇒ Γ (q) = ⊥.

An r -property Π is verifiable on PΣ by a VM A?Π ob-
tained by the application of Streett2VM on the automa-
ton recognizing Π.

Example 10 (Verification Monitors). In Fig. 14 are rep-
resented VMs for the properties introduced in Exam-
ple 1, specified by Streett automata in Fig. 3, and syn-
thesized with the Streett2VM transformation.

Theorem 9 (Correctness of Streett2VM). Given
AΠ recognizing Π, we have:

Π ∈ MP∗(B4) ∧ A?Π = Streett2VM(AΠ)
⇒ Ver(A?Π , Π,PΣ)

Proof. The proof of this theorem relies on the correct-
ness of the computation performed while obtaining PAΠ

for AΠ (Property 3). ⊓⊔

7.3 Synthesizing monitors for runtime enforcement

In the remainder, we consider enforceable r -properties
(φ, ϕ) and Π ∈ EP , and a Streett m-automaton AΠ =
(QAΠ , qAΠ

init
, Σ,−→AΠ , {(R1, P1), . . . , (Rm, Pm)}) recog-

nizing Π. An EM is producing enforcement operations
depending on its current state.

Definition 25 (Enforcement monitor). An EM A!

is a 5-tuple (QA! , qA!

init
,−→A!

, Ops, Γ). Enforcement oper-
ations of Ops performed by the EM are aimed to operate
a modification of the internal memory and potentially
produce an output, i.e., each enforcement operation is a
function: Σ × Σ∗ → Σ∗ × Σ∗. Then Γ : QA↓ → Ops is
the output function, producing enforcement operations
from states.

22 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

⊤c ⊤c ⊤c

⊥

r

g

r

g

r

g

Σ

⊥c ⊥c ⊤

⊥

r

g

r

g

Σ

Σ

⊤c ⊥c

⊥

r

g
g

r

Σ

⊥c ⊥c

⊤c

⊤c

⊥

⊥c

r

g,d

d
g

r

r

g,d

g

r d r

d,g

Σ

A?Π1 A?Π2 A?Π3 A?Π4

Fig. 14. Examples of Verification Monitors

The considered enforcement operations allow enforce-
ment monitors either to halt the target program (when
the current input sequence irreparably violates the prop-
erty), or to store the current event in a memory de-
vice (when a decision has to be postponed), or to dump
the content of the memory device (when the target pro-
gram went back to a correct behavior), or to switch off
the monitor when all possible continuations of the cur-
rent input sequence are correct w.r.t. the property under
scrutiny13.

Definition 26 (Enforcement operations). We de-
fine a set of enforcement operations Ops = {halt , store,
dump, off } as follows: ∀e ∈ Σ ∪ {ǫΣ}, ∀m ∈ Σ∗,

halt(e,m) = (ǫΣ,m), store(e,m) = (ǫΣ,m · e),
dump(e,m) = (m · e, ǫΣ), off (e,m) = (m · e, ǫΣ).

where e designates the input event of the monitor and
m the memory device content.

Note that the off and dump operations have the same
definitions. From a theoretical perspective, the off is in-
deed not necessary. However, it has a practical interest.
In order to limit the monitor’s impact on the original
program (performance wise), it is of interest to know
when the monitor is not needed anymore.

We define the transformation performed by an EM A!

while reading an input sequence σ ∈ Σ∗ and producing
an output sequence o ∈ Σ∗.

Definition 27 (Sequence transformation). The se-
quence transformation function [[A!]](·) : Σ

∗ → Σ∗ relies
on the function [[A!]](·, ·, ·) : Σ

∗ ×QA! ×Σ∗ → Σ∗ defin-
ing the transformation performed on the current state
and the internal memory content: [[A!]](σ, q,m) is the
output sequence produced while reading σ from state q
and (initial) memory content m.

∀q ∈ QA! , ∀m ∈ Σ∗, [[A!]](ǫΣ, q,m) = ǫΣ (7)

[[A!]](e · σ, q,m) = o · [[A!]](σ, q
′,m′) (8)

with q
e

−→A!
q′ ∧ Γ (q′) = α ∈ Ops ∧ α(e,m) = (o,m′).

13 Although, dump and off have the same definition, distinguish-
ing them is useful in practice. Indeed, the off operation is intended
to be produced when all continuations of the current execution se-
quence are correct w.r.t. the property. It allows to determine when
the EM is not needed anymore. Consequently, it helps reducing the
performance impact on the underlying program

The empty sequence ǫΣ is transformed into itself by A!,
this is the case when the underlying program does not
produce any event (7). An execution sequence e · σ is
(incrementally) transformed according to the transition
fired by the input e: the current memory content and
the input e are applied to the enforcement operation of
the arriving-state transition, it induces a new memory
content and an output o (8).

We define now the notion of property-enforcement
by an EM. The notion of enforcement relates the input
sequence produced by the program and given to the EM
and the output sequence allowed by the EM (correct
w.r.t. the property under consideration)14.

Definition 28 (Property-Enforcement). For Π =
(φ, ϕ) ∈ EP , we say that A! enforces Π on PΣ , noted
Enf (A!, Π,PΣ), iff for any σ ∈ Exec(PΣ) ∩ Σ∗, there
exists o ∈ Σ∞, s.t. the following constraints hold:

[[A!]](σ, q
A!

init, ǫ) = o (9)

Π(σ) ⇒ σ = o (10)

¬Π(σ) ∧ Pref ≺(φ, σ) = ∅ ⇒ o = ǫ (11)

¬Π(σ) ∧ Pref ≺(φ, σ) 6= ∅ ⇒ o = Max (Pref ≺(φ, σ)) (12)

(9), (10), (11), and (12) ensure soundness and trans-
parency of A!: (9) stipulates that the sequence σ is trans-
formed by A! into a sequence o; (10) ensures that if σ
already satisfy the property then it is not transformed.
(11) ensures that, when no prefix of σ satisfies the prop-
erty, the EM outputs nothing (the empty sequence ǫΣ).
(12) ensures that, if some prefix of σ satisfies the prop-
erty, o is the longest prefix of σ satisfying the property.

Soundness comes from the fact that the produced
sequence o, when different from ǫΣ, always satisfies the
property φ. Transparency is ensured by the fact that cor-
rect execution sequences are not changed, and incorrect
ones are restricted to their longest correct prefix.

One may remark that it would have been possible to
set Max (Pref ≺(φ, σ)) to ǫΣ when Pref ≺(φ, σ) = ∅ and
merge the two last constraints. However, we choose to
distinguish explicitly the case in which Pref ≺(φ, σ) = ∅

14 In the general case, the comparison between input and output
sequences is performed up to some equivalence relation ≈⊆ Σ∞×
Σ∞. Note that the considered equivalence relation should preserve
the r -property under consideration.

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 23

as it highlights some differences when an EM produces
ǫΣ. Sometimes it corresponds to the only correct prefix
of the property. But it can also be an incorrect sequence
w.r.t. the property. In practice, when implementing an
EM for a system, this sequence can be “tagged” as incor-
rect15.

Finally, since we have to deal with potentially infi-
nite input sequences, the output sequence should be pro-
duced in an incremental way16: for each current prefix σ
of the input sequence read by the EM, the current out-
put o produced should be sound and transparent with
respect to Π and σ. This means that deciding whether a
finite sequence σ verifies Π or not should be computable
in a finite amount of time (and reading only a finite con-
tinuation of σ).

We synthesize EMs from Streett automata in the
framework of r -properties. This transformation was pre-
viously introduced in the form of several transforma-
tions [15,18]. Here we generalize those transformations
into a unique one.

Definition 29 (Streett2EM transformation). The
transformation Streett2EM(AΠ) = (QAΠ , qAΠ

init
,−→AΠ ,

Ops, Γ) is defined s.t. Γ : QA!Π → Ops produces en-
forcement operations: ∀q ∈ AΠ ,

q ∈ GoodAΠ ⇒ Γ (q) = off ; q ∈ Good
AΠ
c ⇒ Γ (q) = dump;

q ∈ Bad
AΠ
c ⇒ Γ (q) = store ; q ∈ BadAΠ ⇒ Γ (q) = halt .

Example 11 (Enforcement Monitors). Fig. 15 represents
EMs for the properties introduced in Example 1, speci-
fied by Streett automata in Fig. 3, and synthesized with
the Streett2EM transformation.

An r -property Π ∈ EP is enforceable on PΣ by an EM
obtained by the application of Streett2EM on the au-
tomaton recognizing Π.

Theorem 10 (Correctness of Streett2EM). Given
AΠ recognizing Π ∈ EP , we have:

A!Π = Streett2EM(AΠ) ⇒ Enf (A!Π , Π,PΣ).

Proof. Correctness of the general transformation relies
on the correctness (proved in [15]) of the transforma-
tions specific to each class of properties. Indeed, this
general transformation reduces to the specific transfor-
mation when applied to a specific class of properties. ⊓⊔

Such a unified transformation is useful in practice (from
an implementation point of view) as it can be applied
to any Streett automaton (regardless of the class of the
recognized property).

15 This latter case is avoided in [28] by assuming that properties
under consideration always contain ǫΣ .
16 From a more general perspective, we can see this limitation

from a runtime verification point of view. Verifying infinitary prop-
erties at runtime on a produced execution sequence, in essence,
should be done by checking finite prefixes of the current sequence.

7.4 Discussion

One of the important challenges in runtime verification
is the practical interest of the specification formalism.
An ideal specification language should be easy to use by
end-users. Moreover, a desirable feature, advocated by
this paper, is the need for addressing both infinite and
finite execution sequences.

One could reproach the two following facts to the
proposed synthesis approach:

– First, several mechanisms are needed: DFAs, Streett
automata, and finally verification and enforcement
monitors.

– Second, one may question the usefulness of the DFA
to Streett transformations. Arguably, it would be pos-
sible to generate monitors directly for properties spec-
ified by Streett automata (written by hand or gener-
ated from temporal logic formula).

In our point of view, using the DFA2Streett transfor-
mations in the synthesis process has the three following
advantages:

– The DFA2Streett transformations complete the pic-
ture of the Safety-Progress classification, by provid-
ing constructive tools in the automata view that are
the counterparts of the language-theoretic operators
(A, E,R, P , Af , Ef , Rf , Pf) in the language view.

– The direct translation from a supposed ideal speci-
fication formalism to a Streett automaton would be
difficult. This formalism would have to address both
finite and infinite behaviors, requiring a design ex-
pertise. It is likely that such a translation would be
error-prone or lead to ambiguous specifications.

– One of the underlying arguments for using our ap-
proach is that the end-user is only required to spec-
ify a finite behavior and indicate the wished pattern
(used with the finitary property). Thus, the infinite
behavior is comprehended by the user by only seeing
patterns like “always”, “at least once”, “regularly”, or
“persistently”. The user is thus kept from specifying
the infinite behavior with Streett automata.

A complex translation is avoided, replaced by two sim-
pler transformations, and the required work from the
user seems to be simpler.

8 Conclusion and future work

Conclusion. We have extended the Safety-Progress clas-
sification of properties in a runtime validation context.
This hierarchical organization of properties turned out
to be a convenient framework for specifying properties
purposed to be used at runtime. We addressed in a uni-
fied way the problem of monitorability and enforceability
of properties at runtime using this general framework.

24 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

dump dump dump

halt

r

g

r

g

r

g

Σ

dump dump off

halt

r

g

r

g

Σ

Σ

dump store

halt

r

g
g

r

Σ

store store
dump

dump

halt

store

r

g,d

d
g

r

r

g,d

g

r d r

d,g

Σ

A!Π1 A!Π2 A!Π3 A!Π4

Fig. 15. Examples of Enforcement Monitors

We provided the first exact characterization of moni-
torable properties according to the classical definition of
monitorability proposed by Pnueli and Zaks. We gen-
eralized the classical definition of monitorability by pa-
rameterizing it by a truth-domain. We introduced a new
definition of monitorability based on distinguishability
of good and bad execution sequences. This definition
is based on positive and negative determinacy as well.
However, we believe that it better corresponds to prac-
tical needs and tool implementations and fits better in
the hierarchy of properties. Moreover, this alternative
definition is able to better distinguish equivocal situa-
tions that a monitor would have to face off without a
finite sequence interpretation. Furthermore, we have de-
lineated the set of enforceable properties w.r.t. the SP
classification. This set of properties was characterized in-
dependently from any enforcement mechanism. It is thus
an upper-bound for the set of properties that could be
addressed by any enforcement mechanism. Furthermore,
we have given general synthesis procedures to generate
runtime and enforcement monitors in this framework.

Future work. The proposed approach raises new research
perspectives and open questions. First, it seems interest-
ing to consider this approach in the testing perspective.
A monitor (passively) observes the execution of the pro-
gram. Notably it has no control on the produced events
and their sequencing. In a testing context, the notion
of controllable event is introduced. An interesting issue
would be to characterize the set of testable properties
in the SP framework, as it was initiated in [14]. Note
that the definitions of positive and negative determi-
nacy is rather appropriate in this context. Indeed, in a
test campaign one is concerned with the set of all execu-
tion sequences that can be produced by the underlying
program. Notions of positive and negative determinacy
seem to be a first approximation of the set of possible
future execution sequences of a program.

An additional issue to take into consideration is to
deal with a reduced observability on the system under
scrutiny. In practical situations, the desired property
may refer to events out of the observation scope of a
monitor. Similarly, it seems interesting to see how it is
possible to characterize the set of properties for which
other runtime-verification derived techniques can be ap-
plied (e.g., runtime reflection [26]).

Another research perspective is to relax the sound-
ness and transparency constraints or consider different
definitions of runtime enforcement. Specific enforcement
mechanisms shall be designed. For instance, augmented
enforcers may enjoy more handling abilities on the se-
quences submitted in input. It seems interesting to see
the impact on the set of enforceable properties.

Furthermore, an interesting question would be to in-
vestigate how the automata-view of the SP classification
transposes to other sets of properties such as context-
free languages. The classification used in this paper fo-
cuses on regular properties. In the quest of expressive-
ness for specification languages, relying on a classifica-
tion appears as a good way to delineate monitorable and
enforceable properties.

Finally, the question of expressiveness is somehow
also related to parametric properties, i.e., the properties
expressed using events with formal parameters whose
concrete values are obtained at runtime. Lots of runtime
verification frameworks now handle parametric proper-
ties. Among them, two kinds of approaches can be dis-
tinguished in state-of-the-art frameworks:

– RuleR [2] is able to handle expressive parametric
specifications thanks to a general approach based on
rule rewriting,

– MOP [8] has been recently leveraged with the so-
called slicing approach to monitor some form of para-
metric specification in a more efficient way.

It is rather clear that being able to express paramet-
ric properties is an asset in runtime verification and is
surely desirable from a practical point of view. Now, as
runtime verification is always concerned with efficiency,
one question is to find the right balance between the
gained expressiveness and the induced overhead. That
is, a runtime verification framework should be chosen so
as to meet the just needed level of expressiveness to spec-
ify the requirements. Moreover, another related question
is to investigate whether it is more efficient to enhance
expressiveness by considering parametric properties or
using a more expressive specification formalism.

Acknowledgements. The authors of the paper would like to
gratefully thank Howard Barringer, Klaus Havelund, Thierry
Jéron, Hervé Marchand, and the anonymous reviewers for
their helpful remarks.

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 25

References

1. Bowen Alpern and Fred B. Schneider. Defining liveness.
Inf. Process. Lett., 21(4):181–185, 1985.

2. Howard Barringer, David E. Rydeheard, and Klaus
Havelund. Rule systems for run-time monitoring: from
eagle to ruler. J. Log. Comput., 20(3):675–706, 2010.

3. Andreas Bauer, Martin Leucker, and Christian Schall-
hart. Runtime verification for LTL and TLTL. Technical
Report TUM-I0724, Institut für Informatik, Technische
Universität München, December 2007.

4. Andreas Bauer, Martin Leucker, and Christian Schall-
hart. Comparing ltl semantics for runtime verification.
Journal of Logic and Computation, 20(3):651–674, 2010.

5. Edward Chang, Zohar Manna, and Amir Pnueli. The
Safety-Progress Classification. Technical report, Stan-
ford University, Dept. of Computer Science, 1992.

6. Edward Y. Chang, Zohar Manna, and Amir Pnueli.
Characterization of temporal property classes. In Au-
tomata, Languages and Programming, pages 474–486,
1992.

7. Feng Chen and Grigore Roşu. MOP: An Efficient and
Generic Runtime Verification Framework. In Object-
Oriented Programming, Systems, Languages and Appli-
cations(OOPSLA’07), pages 569–588. ACM press, 2007.

8. Feng Chen and Grigore Roşu. Parametric trace slicing
and monitoring. In Stefan Kowalewski and Anna Philip-
pou, editors, TACAS, volume 5505 of Lecture Notes in
Computer Science, pages 246–261. Springer, 2009.

9. Edmund M. Clarke and Jeannette M. Wing. Formal
methods: State of the art and future directions. ACM
Computing Surveys, 28:626–643, 1996.

10. Patrick Cousot and Radhia Cousot. Abstract interpreta-
tion and application to logic programs. Journal of Logic
Programing, 13(2-3):103–179, 1992.

11. Marcelo d’Amorim and Grigore Roşu. Efficient monitor-
ing of ω-languages. In Proceedings of 17th International
Conference on Computer-aided Verification (CAV’05),
volume 3576 of Lecture Notes in Computer Science, pages
364 – 378. Springer, 2005.

12. E. Allen Emerson and Edmund M. Clarke. Charac-
terizing correctness properties of parallel programs us-
ing fixpoints. In Proceedings of the 7th Colloquium on
Automata, Languages and Programming, pages 169–181.
Springer-Verlag, 1980.

13. Yliès Falcone. You should better enforce than verify.
In Howard Barringer, Yliès Falcone, Bernd Finkbeiner,
Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore
Roşu, Oleg Sokolsky, and Nikolai Tillmann, editors, RV,
volume 6418 of Lecture Notes in Computer Science, pages
89–105. Springer, 2010.

14. Yliès Falcone, Jean-Claude Fernandez, Thierry Jéron,
Hervé Marchand, and Laurent Mounier. More
Testable Properties. In Alexandre Petrenko, Adenilso
da Silva Simão, and José Carlos Maldonado, editors,
ICTSS, volume 6435 of Lecture Notes in Computer Sci-
ence, pages 30–46. Springer, 2010.

15. Yliès Falcone, Jean-Claude Fernandez, and Laurent
Mounier. Synthesizing Enforcement Monitors wrt. the
Safety-Progress Classification of Properties. In ICISS
’08: Proceedings of the 4th International Conference on
Information Systems Security, pages 41–55. Springer-
Verlag, 2008.

16. Yliès Falcone, Jean-Claude Fernandez, and Laurent
Mounier. Enforcement Monitoring wrt. the Safety-
Progress Classification of Properties. In SAC ’09: Pro-
ceedings of the 2009 ACM symposium on Applied Com-
puting, pages 593–600, New York, NY, USA, 2009. ACM.

17. Yliès Falcone, Jean-Claude Fernandez, and Laurent
Mounier. Runtime verification of safety-progress prop-
erties. In Saddek Bensalem and Doron Peled, editors,
RV, volume 5779 of Lecture Notes in Computer Science,
pages 40–59. Springer, 2009.

18. Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez,
and Jean-Luc Richier. Runtime enforcement monitors:
composition, synthesis, and enforcement abilities. For-
mal Methods in System Design, 2011.

19. Philip W. L. Fong. Access control by tracking shallow ex-
ecution history. In Proceedings of the 2004 IEEE Sympo-
sium on Security and Privacy, pages 43–55. IEEE Com-
puter Society Press, 2004.

20. Kevin W. Hamlen, Greg Morrisett, and Fred B. Schnei-
der. Computability classes for enforcement mechanisms.
ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006.

21. Klaus Havelund and Allen Goldberg. Verify your runs.
In Verified Software: Theories, Tools, Experiments: First
IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich,
Switzerland, October 10-13, 2005, Revised Selected Pa-
pers and Discussions, pages 374–383. Springer-Verlag,
2008.

22. Klaus Havelund and Grigore Roşu. Efficient monitor-
ing of safety properties. Software Tools and Technology
Transfer, 2002.

23. John E Hopcroft and Jeffrey D. Ullman. Introduc-
tion to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, 1979.

24. Orna Kupferman and Moshe Y. Vardi. Model checking
of safety properties. Formal Methods in System Design,
19(3):291–314, 2001.

25. Leslie Lamport. Proving the correctness of multiprocess
programs. IEEE Trans. Softw. Eng., 3(2):125–143, 1977.

26. Martin Leucker and Christian Schallhart. A brief account
of runtime verification. Journal of Logic and Algebraic
Programming, 78(5):293–303, may/june 2008.

27. Jay Ligatti, Lujo Bauer, and David Walker. Enforcing
Non-safety Security Policies with Program Monitors. In
ESORICS, pages 355–373, 2005.

28. Jay Ligatti, Lujo Bauer, and David Walker. Run-time
enforcement of nonsafety policies. ACM Transactions on
Information and System Security, 12(3):1–41, January
2009.

29. Zohar Manna and Amir Pnueli. A hierarchy of temporal
properties (invited paper, 1989). In PODC ’90: Proceed-
ings of the ninth annual ACM symposium on Principles
of distributed computing, pages 377–410, New York, NY,
USA, 1990. ACM.

30. Fabio Martinelli and Ilaria Matteucci. Through modeling
to synthesis of security automata. Electron. Notes Theor.
Comput. Sci., 179:31–46, 2007.

31. Ilaria Matteucci. Automated synthesis of enforcing
mechanisms for security properties in a timed setting.
Electron. Notes Theor. Comput. Sci., 186:101–120, 2007.

32. Amir Pnueli and Aleksandr Zaks. PSL model checking
and run-time verification via testers. In Jayadev Misra,
Tobias Nipkow, and Emil Sekerinski, editors, FM, volume

26 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

4085 of Lecture Notes in Computer Science, pages 573–
586. Springer, 2006.

33. Grigore Roşu, Feng Chen, and Thomas Ball. Synthe-
sizing monitors for safety properties – this time with
calls and returns –. In Workshop on Runtime Verifica-
tion (RV’08), volume 5289 of Lecture Notes in Computer
Science, pages 51–68. Springer, 2008.

34. Runtime Verification. http://www.runtime-
verification.org, 2001-2010.

35. Fred B. Schneider. Enforceable security policies. ACM
Transaction in Information System Security, 3(1):30–50,
2000.

36. Robert S. Streett. Propositional dynamic logic of looping
and converse. In STOC ’81: Proceedings of the thirteenth
annual ACM symposium on Theory of computing, pages
375–383. ACM, 1981.

37. Mahesh Viswanathan and Moonzoo Kim. Foundations
for the run-time monitoring of reactive systems - Funda-
mentals of the MaC language. In Zhiming Liu and Keijiro
Araki, editors, ICTAC, volume 3407 of Lecture Notes in
Computer Science, pages 543–556. Springer, 2004.

A Proofs

A.1 Proofs for Section 4

A.1.1 Proof of Property 2: Closure of r -properties

We prove the two facts in order:

1 We have either φ(σ) or ϕ(σ), i.e., all prefixes σ′ of
σ belong to ψ. Necessarily, all prefixes σ′′ of σ′ also
belong to ψ, that is ψ(σ′′). By definition, that means
σ′ ∈ Af (ψ), i.e., φ(σ′) and Π(σ′).

2 Π(σ) implies that σ has at least one prefix σ0 � σ
belonging to ψ: σ ∈ Ef (ψ). Then, any continuation
of σ built using any finite or infinite sequence σ′ has
at least the same prefix belonging to ψ. If σ′ ∈ Σ∗,
we have σ0 � σ � σ·σ′ and σ·σ′ ∈ Ef (ψ). If σ′ ∈ Σω,
we have σ0 � σ ≺ σ · σ′ and σ · σ′ ∈ E(ψ).

⊓⊔

A.1.2 Proof of Theorem 1: Soundness of the
transformations of DFAs to Streett automata

Considering a DFA Aψ = (QAψ , q
Aψ
init ,→Aψ , F) (we omit

the superscript of F for the sake of clarity), s.t. L(Aψ) =
ψ, we have to prove that:

AΠ = DFA2S_Saf (Aψ) ⇒ L(AΠ) = (Af (ψ), A(ψ))
AΠ = DFA2S_Guar(Aψ) ⇒ L(AΠ) = (Ef (ψ), E(ψ))
AΠ = DFA2S_Resp(Aψ) ⇒ L(AΠ) = (Rf (ψ), R(ψ))
AΠ = DFA2S_Per(Aψ) ⇒ L(AΠ) = (Pf (ψ), P (ψ))

In the following proofs, for a finite sequence σ of length
n, we may use the notion of run of σ on Aψ or on a
Streett automaton AΠ obtained by the transformations.
We note:

– run(σ,Aψ) = q0 · · · qn,
– run(σ,AΠ) = q′0 · · · q

′
n.

For Safety properties. We show that the r -property ac-
cepted by AΠ (obtained using DFA2S_Saf) is exactly
(Af (ψ), A(ψ)).

Let σ ∈ Σ∞ s.t. (Af (ψ), A(ψ))(σ), let us prove that
the sequence σ is accepted by AΠ . We have two cases:
σ is a finite sequence or not.

– Let us consider σ ∈ Σ∗ s.t. |σ| = n, then by defini-
tion of r -properties: σ ∈ Af (ψ), i.e., every prefix of σ
belongs to ψ. Let us examine run(σ,Aψ) = q0 · · · qn.
As L(Aψ) = ψ, we have ∀i ∈ [0, n], qi ∈ F . By defini-
tion of the transformation DFA2S_Saf, we have ∀i ∈
[0, n], qi ∈ P . According to (TSafe1), we have run(σ,AΠ) =
q0 · · · qn. Using the acceptance criterion for finite se-
quences, σ is accepted by AΠ .

– Let σ ∈ Σω, then by definition of r -properties: σ ∈
A(ψ), i.e., every finite prefix of σ belongs to ψ. Let us
suppose that σ is not accepted by AΠ . According to
the acceptance criterion for infinite sequences (Defini-
tion 6), we would have vinf (σ,AΠ) 6⊆ P (as AΠ is a
safety automaton, R = ∅). By definition of the trans-
formation DFA2S_Saf and the shape of the obtained
automaton AΠ , we have vinf (σ,AΠ) = {sink}. Using
(TSafe2), we know that there exists a smallest prefix σ′

of σ, s.t. the run of σ′ on AΠ reaches the state sink . By
the definition of DFA2S_Saf , we can deduce that the
run of σ′ on Aψ ends in a state in F . As L(Aψ) = ψ,
σ′ /∈ ψ. We obtain a contradiction with σ ∈ A(ψ), and
σ is actually accepted by AΠ .

Let σ be a sequence accepted by AΠ , let us prove that
σ ∈ (Af (ψ), A(ψ)). We distinguish again two cases: σ is
a finite sequence or not.

– Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the accep-
tance criterion for finite sequences of Streett automata
(Definition 7), we have q′n ∈ P . As AΠ is a safety au-
tomaton, we can deduce that ∀i ∈ [0, n], q′i ∈ P . Fol-
lowing the definition of DFA2S_Saf , we find that all
the states visited during the run of σ on Aψ are in
F : ∀i ∈ [0, n], qi ∈ F (and qi = q′i). By definition of
the acceptance criterion for DFAs, we can deduce that
every prefix of σ is accepted by Aψ. As L(Aψ) = ψ,
we can deduce that all prefixes of σ belong to ψ, i.e.,
σ ∈ Af (ψ).

– If σ ∈ Σω, then by definition of the acceptance crite-
rion for infinite sequences (Definition 6), we know that
vinf (σ,AΠ) ⊆ P . Let us suppose that σ /∈ A(ψ), by def-
inition of the operator A (see Definition 2), there exists
a strict prefix σ′ of σ not belonging to ψ. Let n′ = |σ′|.
As L(Aψ) = ψ, the run of σ′ on Aψ, run(σ′,Aψ) =

q0 · · · qn′ , satisfies q0 = q
Aψ
init ∧ qn′ /∈ F . According to the

definition of the transformation DFA2S_Saf and the
rule (TSafe2), we have q′n′ = sink /∈ P . Furthermore, us-
ing (TSafe3), every continuation of σ′ has its run ending
in sink . We deduce that vinf (σ,AΠ) = {sink} 6⊆ P .
Which is a contradiction with the initial hypothesis,
and gives us σ ∈ A(ψ).

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 27

⊓⊔

For Guarantee properties. We show that the sets of se-
quences accepted by AΠ obtained by DFA2S_Guar are
exactly (Ef (ψ), E(ψ)).

Let σ ∈ Σ∞ s.t. (Ef (ψ), E(ψ))(σ), let us prove that
the sequence σ is accepted by AΠ . We have two subcases:
σ is a finite sequence or not.

– Let us consider σ ∈ Σ∗ s.t. |σ| = n, then by definition
of r -properties: σ ∈ Ef (ψ), i.e., σ has at least one prefix
which belongs to ψ. Let us consider Ssat = {σ′ ∈ Σ∗ |
σ′ � σ∧σ′ ∈ ψ}, the set of prefixes of σ which belong to
ψ. As σ ∈ Ef (ψ), we can deduce that Ssat 6= ∅, Ssat has
thus a smallest element σmin. Let n′ = |σmin|. We have,
by definition of σmin, ∀σ

′ ∈ Σ∗, σ′ ≺ σmin ⇒ σ′ /∈ ψ.
Let us examine run(σmin,Aψ) = q0 · · · qn′ . As L(Aψ) =
ψ, we have ∀i ∈ [0, n′ − 1], qi /∈ F ∧ qn′ ∈ F . According
to (TGuar2), we have run(σmin,AΠ) = q0 · · · qn′ with
∀i ∈ [0, n′−1], qi /∈ R∧qn′ ∈ R. Following (TGuar1), we
have ∀i ∈ [n′, n], qi ∈ R. According to the acceptance
criterion for finite sequences, σ is accepted by AΠ .

– Let σ ∈ Σω, then by definition of r -properties: σ ∈
E(ψ), i.e., (at least) one finite prefix of σ belongs to ψ.
Let us suppose that σ is not accepted by AΠ . According
to the acceptance criterion for infinite sequences (Def-
inition 6), we have vinf (σ,AΠ) ∩ R = ∅ (as AΠ is a
guarantee automaton, P = ∅). In other words, we have
vinf (σ,AΠ) ⊆ R. As AΠ is a guarantee automaton,
every state visited by the run of σ on AΠ is in R. In-
deed, according to the shape of the transition function
of guarantee automata, if a state of R is visited, we have
vinf (σ,AΠ)∩R 6= ∅. Let us consider now the prefixes of
σ. During the run of these prefixes on AΠ , none of them
visits an R-state. It follows that, according to (TGuar2),
none of the runs on AΠ of these prefixes visits a state
in F . As L(Aψ) = ψ, we deduce that none of the pre-
fixes of σ belongs to ψ. We obtain a contradiction with
σ ∈ E(ψ), and consequently σ is actually accepted by
AΠ .

Let σ be a sequence accepted by AΠ , let us prove that
σ ∈ (Ef (ψ), E(ψ)). We distinguish two cases: σ is a finite
sequence or not.

– Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the ac-
ceptance criterion for finite sequences (Definition 7), we
have qn ∈ R. Let us suppose that σ /∈ Ef (ψ), i.e., none
of the prefixes of σ belongs to ψ. As L(Aψ) = ψ, the
run of σ on Aψ satisfies: ∀i ∈ [0, n], qi /∈ F . Starting

from q
Aψ
init = qAΠ

init
/∈ R, and using (TGuar2), we find that

run(σ,AΠ) = q′0 · · · q
′
n with ∀i ∈ [0, n], q′i /∈ R. This is

a contradiction with q′n ∈ R, and thus σ ∈ Ef (ψ).
– Let σ ∈ Σω, then by definition of the acceptance crite-

rion for infinite sequences (Definition 6), we have vinf (σ,
AΠ)∩R 6= ∅. As AΠ is a guarantee automaton, it means
that vinf (σ,AΠ) ⊆ R. According to the shape of the
transition function for guarantee automata, it means
that there is a prefix σ′ of σ on AΠ for which the run

switches from states in R to states in R. More formally,
∃σ′ ∈ Σ∗, σ′ ≺ σ ∧ |σ′| = n′ ∧ ∀i ∈ [0, n′ − 1], q′i ∈
R ∧ ∀i ≥ n′, q′i ∈ R. Let us suppose that σ /∈ E(ψ),
i.e., σ has no prefix belonging to ψ. As L(Aψ) = ψ, the
run of σ on Aψ satisfies: ∀i ∈ N, qi /∈ F . Similarly to
the finitary case, and according to the transformation
DFA2S_Guar (TGuar2), it would question the existence
of σ′. We deduce that σ ∈ E(ψ).
⊓⊔

For Response properties. We show that the r -property
accepted by AΠ , obtained with DFA2S_Resp is exactly
(Rf (ψ), R(ψ)).

Let σ ∈ Σ∞ s.t. (Rf (ψ), R(ψ))(σ), let us prove that
the sequence σ is accepted by AΠ . We have two subcases:
σ is a finite sequence or not.

– Let σ ∈ Σ∗, thus σ ∈ Rf (ψ). Proving that σ is accepted
by AΠ amounts to show that the run of σ on AΠ ,
i.e., run(σ,AΠ), ends in a R-state (i.e., q′n ∈ R). First
of all, let us remark that σ ∈ Rf (ψ) gives us ψ(σ).
Furthermore, as L(Aψ) = ψ, we can deduce that qn ∈
F . As σ ∈ Rf (ψ), ∀n ∈ N, ∃σ′ ∈ Σ∗, σ ≺ σ′ ∧ |σ′| ≥
n ∧ ψ(σ′) (cf. Definition 3).
Let n′ = |F | be the number of accepting states of Aψ.
Now let us consider the set S = {σ” ∈ Σ∗ | σ ≺
σ′′ ∧ |{σ′ ∈ Σ∗ | σ ≺ σ′ ≺ σ′′ ∧ σ′ ∈ ψ}| > n′}. This set
contains the sequences which are continuations of σ and
have at least n′ prefixes longer than σ and belonging
to ψ. As σ ∈ Rf (ψ), we know that S 6= ∅, thus S has a
smallest element σmin. Let us examine the run of σmin
on Aψ: run(σ,Aψ) = run(σ,AΠ) = q0 · · · q|σmin| =
q0 · · · qn · · · q|σmin|. Between qn and q|σmin|, there are
at least n′ +1 accepting states. As |F | = n′, two states
between qn and q|σmin| are identical. Moreover, we have
∀i ∈ [n, |σmin|−1], qi →Aψ qi+1. Which allows us to de-
duce, using the definition of DFA2S_Resp that qn = q′n
is tagged as a R-state. According to the acceptance cri-
terion for finite sequences, σ is accepted by AΠ .

– Let σ ∈ Σω, thus σ ∈ R(ψ), i.e., ∀σ′ ∈ Σ∗, ∃σ′′ ∈
Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ψ(σ′′) holds for σ. Let us examine
the run of σ on AΠ , we will show that this run visits at
least one R-state infinitely often. Indeed, let us consider
a prefix σ′ of σ, we can find an unbounded number of σ′-
continuations σ′′, s.t. ψ(σ′′). Furthermore, for each of
these continuations, it is possible to find an unbounded
number of continuations σ′′′ s.t. ψ(σ′′′). Using L(Aψ) =
Aψ, the runs of the sequences σ′′ and the sequences
σ′′′ on the automaton Aψ end on a F -state. Using the
same reasoning as the one used for finite sequences, the
state on which the run of σ′′ on AΠ is a R-state. Thus
we can build a series (σi)i∈N of σ-prefixes (of strictly
growing length) s.t. the run of each σi ends in a R-state.
Thus an infinite number of prefixes of σ go through a
R-state. As |R| ∈ N, there exists a state in R visited
infinitely often during the run of σ on AΠ . According
to the acceptance criterion for infinite sequences, σ is
accepted by AΠ .

28 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

Let σ be a sequence accepted by AΠ , let us prove that
σ ∈ (Rf (ψ), R(ψ)). We distinguish again two cases: σ is
a finite sequence or not.

– Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the ac-
ceptance criterion for finite sequences (Definition 7), we
have q′n ∈ R. According to the definition of the trans-
formation DFA2S_Resp, we deduce that qn ∈ F and
∃q0, . . . , ql ∈ QAψ , ∃e0, . . . , el ∈ Σ,

∀j ∈ [0, l − 1], qj
ei−→Aψ qj+1 (13)

∃i ∈ [0, l], ∃j ∈ [i, l − 1], qj ∈ F ∧ qi = ql ∧ q0 = q (14)

Thus we can build a series (σj)j∈N of σ-continuations
s.t. ∀j ∈ N, ψ(σj) and σj is defined as σj = σ · e0 · · · ei ·
(ei+1 · · · el−1·e0 · · · ei)

j . This series exhibits strictly grow-
ing continuations of σ belonging to ψ. According to
the definition of the operator Rf , we can deduce that
σ ∈ Rf (ψ).

– Let σ ∈ Σω, then by definition of the acceptance crite-
rion for infinite sequences (Definition 6), we have vinf (σ,
AΠ)∩R 6= ∅. Thus, σ has an infinite number of prefixes
for which the run ends in a R-state. Using the defini-
tion of DFA2S_Resp, we know that all these prefixes
are accepted by Aψ (as by definition the ending state
of their run is a R-state). Using L(Aψ) = ψ, we know
that all these prefixes belong to ψ and have an unre-
stricted number of continuations belonging to ψ. We
can deduce that σ ∈ R(ψ).
⊓⊔

For Persistence properties. We show that the set of se-
quences accepted by AΠ , obtained with DFA2S_Per

is exactly (Pf (ψ), P (ψ)). Let us remark that, accord-
ing to the definition of the transformation (the transi-
tion function is not changed), we have ∀j ∈ [n− 1, n′ +
n′′ − 1], q′j −→AΠ q′j+1 ∧ qj −→Aψ qj+1. Moreover, as

QAΠ = QAψ , we can merge the states qj and q′j visited
by the runs of σ on Aψ and AΠ .

Let σ ∈ Σ∞ s.t. (Pf (ψ), P (ψ))(σ), let us prove that
the sequence σ is accepted by AΠ . We have two subcases:
σ is a finite sequence or not.

– Proving that σ is accepted by AΠ amounts to show that
the run of σ on AΠ ends in a P -state (qn ∈ P). First of
all, let us remark that σ ∈ Pf (ψ) gives us ψ(σ). Further-
more, as L(Aψ) = ψ, we can deduce that qn−1 ∈ F . As
σ ∈ Pf (ψ), there exist σ′, µ ∈ Σ∗ s.t. (cf. Definition 3):

σ � σ′ ∧ (σ′ · µ∗ · pref (µ)) ⊆ ψ (15)

Let n′ = |σ′|, and n′′ = |µ|. Then, the runs of σ′ and
σ′ · µ on AΠ can be expressed:

run(σ′,AΠ) = q0 · · · qn · · · qn′

run(σ′ · µ,AΠ) = q0 · · · qn · · · qn′ · qn′+1 · · · qn′+n′′

According to (15), we have qn′ ∈ F . We can show by
induction that

run(σ · µ∗,AΠ) = q0 · · · qn′ · (qn′+1 · · · qn′+n′′)∗.

Moreover, we have ∀j ∈ [n′ + 1, n′ + n′′], q′j ∈ F and
qn′+n′′ −→AΠ qn′+1. We can deduce, following the def-
inition of DFA2S_Per , that qn ∈ P . Indeed, it is suffi-
cient to take l = n′ + n′′ − n and i = n′ + 1− n.

– In order to prove vinf (σ,AΠ) ⊆ P , it is sufficient to
see that σ can be expressed σ′ · µω. From this, every
prefix of σ longer than σ′ satisfies ψ, and has its run
which stops in a F -state on Aψ. Thus, we exhibit a
strongly connected component of F -states which are
tagged as P -states by DFA2S_Per. Thus, the states
visited infinitely often during the run of σ on AΠ are
the states of this strongly connected component. Which
gives us the expected result.

Let σ be a sequence accepted by AΠ , let us prove
that σ ∈ (Pf (ψ), P (ψ)). We distinguish two subcases: σ
is a finite sequence or not.

– Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the accep-
tance criterion for finite sequences of Streett automata
(Definition 7), we have qn ∈ P . Then, there exist two
cases.
• In the first one, we have on one hand qn ∈ F , and on

the other hand ∃n ∈ N \ {0}, ∃q0, . . . , qn ∈ QAψ s.t.:
– ∀j ∈ [0, n− 1], qj −→Aψ qj+1, and
– ∃i ∈ [0, n−1], ∀j ∈ [i, n], qj ∈ F∧qi = qn∧q0 = qn

We have ψ(σ) since L(Aψ) = ψ. Moreover, there exist

e0, . . . , en−1 ∈ Σ s.t. ∀j ∈ [0, n−1], qj
ej
−→Aψ qj+1. We

can deduce that ψ(σ·e0 · · · ei), ψ(σ·e0 · · · ei ·ei+1), . . . ,

ψ(σ · e0 · · · en−1). Let us note Lp = σ′ ·
(

(e0 · · · en)
∗ ·

e0+(e0 · · · en)
∗ ·e0 ·e1+ . . .+(e0 · · · en)

∗ ·e0 · · · en−1

)

.

As qi = qn ({qi, . . . , qn} is a strongly connected com-
ponent), we can prove by induction that Lp ⊆ ψ. Fur-
thermore, ∀σ′ ∈ Σ∗ ∩ Lp, σ · e0 · · · ei � σ′ ⇒ ψ(σ′).
Which proves that σ ∈ Pf (ψ). Indeed, it is sufficient
to take σ′ = σ · e0 · · · ei, and µ = ei+1 · · · en−1.

• In the second one, we have qn ∈ F and qn −→Aψ qn.

Thus, ∃e ∈ Σ, qn
e

−→Aψ qn. We deduce that ψ(σ) and
σ · e∗ ⊆ ψ, as L(Aψ) = ψ. Which allows us to deduce
easily that σ ∈ Pf (ψ).

– Let σ ∈ Σω, then by definition of the acceptance cri-
terion for infinite sequences of Streett automata (Def-
inition 6), we have vinf (σ,AΠ) ⊆ P . That is to say,
all prefixes of σ from a certain point on have their
run which ends in a P -state. As the automaton AΠ

has a finite number of states, it means that there ex-
ists a strongly connected component C, s.t. the run of
σ on AΠ “stays in”. More formally, ∃n,m ∈ N, C =
{q′0, . . . , q

′
n} ⊆ QAΠ ∧ run(σ,AΠ) = q0 · · · qm · · · ∧ ∀i >

m, qi ∈ C. Moreover, as {q′0, . . . q
′
n} is a SCC, from ev-

ery state of C it is possible to reach any state of C. Let
us suppose, without loss of generality, that q′0

e0−→AΠ

q′1
e1−→AΠ · · ·

en−1

−→AΠ q′n
en−→AΠ q′0, with e0, . . . , en ∈ Σ.

According to the definition of DFA2S_Per , we have

the same transitions on Aψ, i.e., q′0
e0−→Aψ q′1

e1−→Aψ

· · ·
en−1

−→Aψ q
′
n

en−→Aψ q
′
0.

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 29

Let us note Lp = σ′ · (e0 · · · en)
∗ · (e0 + e0 · e1 + . . . +

e0 · · · en−1) = σ′ · (e0 · · · en) · pref (e0 · · · en−1). The se-
quence σ can be expressed σ′ · (e0 · · · en)

ω with the fact
that for every sequence σ′′ ∈ Lp which is a continu-
ation of σ′, the run of σ′′ ends in a P -state. Which
implies that the runs of these same sequences σ′′ on
Aψ end in a F -state. As L(Aψ) = ψ, we deduce that
∀σ′′ ∈ Lp, σ

′ � σ′′ ≺ σ ⇒ ψ(σ′′).
Which allows to deduce, using the definition of the op-
erator P (see Section 4.2), that σ ∈ P (ψ).
⊓⊔

A.2 Proofs for Section 5

A.2.1 Proof of Lemma 2: Closure of monitorable
properties under boolean operations

Let us consider two r -properties Π1, Π2 ∈ MPc .

– Proof of Π1 ∧Π2 ∈ MPc . It consists in showing that
Π1 ∧ Π2 is σ-monitorable for any sequence σ ∈ Σ∗.
Let σ ∈ Σ∗, let us exhibit an extension µ ∈ Σ∗ s.t.
Π1∧Π2 is negatively or positively determined by σ ·µ.
As Π1 is monitorable, there exists µ1 s.t. Π1 is neg-
atively or positively determined by σ · µ1, that is we
have the two following subcases:
– ∃µ1 ∈ Σ∗, ∀µ′

1 ∈ Σ∞,¬Π1(σ · µ1 · µ
′
1), Π1 is nega-

tively determined by σ · µ1, or,
– ∃µ1 ∈ Σ∗, ∀µ′

1 ∈ Σ∞, Π1(σ · µ1 · µ′
1), Π1 is posi-

tively determined by σ · µ1.
As Π2 is also monitorable, it is σ · µ1-monitorable,
there exists µ2 s.t. Π2 is negatively or positively de-
termined by σ·µ1·µ2. That is we have the two following
subcases :
– ∃µ2 ∈ Σ∗, ∀µ′

2 ∈ Σ∞,¬Π2(σ · µ1 · µ2 · µ
′
2), Π2 is

negatively determined by σ · µ1 · µ2, or,
– ∃µ2 ∈ Σ∗, ∀µ′

2 ∈ Σ∞, Π2(σ · µ1 · µ2 · µ′
2), Π2 is

positively determined by σ · µ1 · µ2.
By combination, there exist four cases depending on
the facts that Π1 is positively or negatively deter-
mined by σ · µ1 and Π2 is negatively or positively
determined by σ · µ1 · µ2. We group them into two
cases:
– Let us distinguish the case where Π1 is positively

determined by σ · µ1 and Π2 is positively deter-
mined by σ ·µ1 ·µ2. Then, by taking µ = σ ·µ1 ·µ2,
we have that Π1 ∧Π2 is positively determined by
µ. This gives us the expected result.

– In the others cases, it suffices to take µ = σ ·µ1 ·µ2

to show that Π1 ∧Π2 is negatively determined by
µ.

– The proof of Π1 ∨Π2 ∈ MPc is similar.
– The proof of ¬Π1 ∈ MPc is straightforward by notic-

ing that for any sequence σ ∈ Σ∗, if Π1 is positively
(resp. negatively) determined by σ, then ¬Π is nega-
tively (resp. positively) determined by σ.
⊓⊔

A.2.2 Proof of Theorem 2: Obligation(Σ) ⊂ MPc

The set of obligation r -properties is the set of all k-
obligation r -properties for k ∈ N, where a k-obligation
is expressed as follows (Lemma 1):

k
⋂

i=1

(Safetyi ∪Guaranteei),

where Safetyi and Guaranteei are safety and guarantee
r -properties.

Let Π ∈ Obligation(Σ), there exists k ∈ N s.t. Π ∈
k−Obligation(Σ). The proof relies on an induction on k
and uses the following facts:

– Safety and guarantee properties are monitorable. Here
is the proof17:
– Let Π = (Af (ψ), A(ψ)) be a safety r -property, and
σ ∈ Σ∗. The proof is done by distinguishing two
cases : either there exists a continuation σ′ ∈ Σ∗ of
σ s.t. ¬Π(σ′), or there does not exist. In the first
case, we have ¬Af (ψ)(σ

′), i.e., σ′ does not have all
of its prefixes in ψ. Then, the same holds for ev-
ery continuation σ′′ of σ′: ∀σ′′ ∈ Σ∗, σ′ � σ′′ ⇒
¬Af (ψ)(σ

′′). It follows that ∀σ′′ ∈ Σ∗, σ � σ′ �
σ′′ ⇒ ¬Π(σ′′). That is to say Π is negatively deter-
mined by σ′. In the second case, every continuation
of σ satisfies Π. That is Π is positively determined
by σ · ǫ.

– Let Π = (Ef (ψ), E(ψ)) be a guarantee r -property,
let us prove thatΠ is monitorable. The proof can be
similarly conducted. It suffices to consider σ ∈ Σ∗

and show that there exists a σ-continuation which
makes thatΠ is negatively or positively determined
by this continuation. Similarly, two cases can be
distinguished whether there exists a σ-continuation
which satisfies the property, or not.

– Union and intersection of two monitorable properties
are monitorable (Lemma 2).

– Example 6 shows that the inclusion is strict.
⊓⊔

A.2.3 Proof of Lemma 3: MP∗(B3), safety, and
guarantee properties

We prove this property by reductio ad absurdum. Let
suppose the existence of a reactivity r -property Π =
(φ, ϕ) defined on Σ which is neither a safety nor a guar-
antee: Π ∈ Reactivity(Σ)\ (Safety(Σ)∪Guarantee(Σ)),
and which is monitorable according to Definition 17 with
B3.

17 The proof can also be done by examining the syntactic restric-
tion applying to an automaton recognizing a safety or a guarantee
property: for all σ ∈ Σ∗, there exists a continuation µ s.t. this
property is negatively or positively determined by σ · µ. For in-
stance, in a safety automaton, for each state there exists a path
which leads either to a terminal strongly connected component of
states in which the property is satisfied or in a terminal strongly
connected component in which the property is not satisfied.

30 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

As Π ∈ MP∗(B3), by definition we have:

∀σgood ∈ φ, ∀σbad ∈ φ, [[Π]]B3
(σgood) 6= [[Π]]B3

(σbad)

Let us remark that φ 6= ∅ and φ 6= ∅ as Π is neither a
safety nor a guarantee. Indeed, if φ = ∅, thenΠ would be
necessarily the r -property false, which is a safety. Like-
wise, if φ = ∅, i.e., φ = Σ∗, Π would be the r -property
true which is a safety as well.

Then, we consider two sequences σgood and σbad in
Σ∞ :

– Let σgood ∈ φ s.t. there exists σ′
g ∈ Σ∞ with ¬Π(σgood·

σ′
g). We know that such a sequence exists since Π /∈

Guarantee(Σ). This is a consequence of Property 2.
– Let σbad ∈ φ s.t. there exists σ′

b ∈ Σ∞ with Π(σbad ·
σ′
b). We know that such a sequence exists since Π /∈

Safety(Σ). This is a consequence of Property 2.

According to the definition of the evaluation function for
r -properties in a truth-domain (Definition 16), we have:

[[Π]]B3
(σgood) = [[Π]]B3

(σbad) =?

This is a contradiction with Π ∈ MP∗(B3). ⊓⊔

A.2.4 Proof of Theorem 3: Multi-valued
characterization of alternative monitorability

We prove each of these facts successively. Let Π = (φ, ϕ)
be an r -property.

Proof of (i).

– Let Π ∈ Safety(Σ), we show that Π ∈ MP∗(B⊥
2).

As Π ∈ Safety(Σ), there exists a finitary property
ψ ⊆ Σ∗, s.t. Π = (Af (ψ), A(ψ)). Let us consider
σgood ∈ φ and σbad ∈ φ, we want to prove that the
evaluations in B⊥

2 of these two sequences differ. On
one hand, we have Π(σgood) (since σgood ∈ φ) and
thus [[Π]]B⊥

2
(σgood) =?. On the other hand, we have

¬Π(σbad) and σbad /∈ Af (ψ) (since σbad /∈ φ). Using
Property 2, we have ∀µ ∈ Σ∞,¬Π(σbad · µ), i.e.,
[[Π]]B⊥

2
(σbad) = ⊥.

– Let Π ∈ MP∗(B⊥
2), we show that Π ∈ Safety(Σ).

According to the characterization of safety proper-
ties given in Property 1, showing that Π is a safety
r -property amounts to show that it verifies Π =
(Af (Pref (φ)), A(Pref (ϕ))). This is what we do by
showing the inclusion in both ways.
– Π ⊓Σ∗ ⊆ Af (Pref (φ)) is immediate as for every

sequence σ ∈ Π ⊓Σ∗ (i.e., σ ∈ φ), σ has all of its
prefixes in Pref (φ). The same holds for Π⊓Σω ⊆
A(Pref (ϕ)).

– Let us show that Af (Pref (φ)) ⊆ Π ⊓Σ∗. Let σ ∈
Af (Pref (φ)), we prove that σ ∈ Π ⊓Σ∗. As σ ∈
Af (Pref (φ)), all prefixes of σ belong to Pref (φ).
That is, all prefixes of σ are the prefixes of a se-
quence in φ. Let σmin be the smallest word in φ
which is an continuation of σ. We distinguish two

cases. If σmin = σ, then σ ∈ Π. Else (σ ≺ σmin),
as σmin ∈ φ, we have [[Π]]B⊥

2
(σmin) =?; and con-

sequently [[Π]]B⊥
2
(σ) =? (otherwise, we could not

have [[Π]]B⊥
2
(σmin) =?). Using Π ∈ MP∗(B⊥

2), we
obtain σ ∈ φ and consequently σ ∈ Π.
The same reasoning can be conducted to show
that A(Pref (ϕ)) ⊆ Π ⊓Σω.

Finally, according to the definition of r -properties
(Definition 1), we know that Π = (φ, ϕ) can be writ-
ten Π = (Af (Pref (φ)), A(Pref (ϕ))), which gives us
the expected result.

Proof of (ii).

– The reasoning used to prove that Guarantee(Σ) ⊆
MP∗(B⊤

2) is similar to the reasoning used to prove
Safety(Σ) ⊆ MP∗(B⊥

2). It suffices to show that all
bad execution sequences are evaluated to “?”. Fur-
thermore, all good execution sequences are evaluated
to ⊤. Indeed, once a sequence satisfies a guarantee r -
property, all its continuations also satisfy it.

– Proving that MP∗(B⊤
2) ⊆ Guarantee(Σ) can be done,

following the reasoning used to prove MP∗(B⊥
2) ⊆

Safety(Σ), by showing that if Π ∈ MP∗(B⊤
2), then

Π verifies Π =
(

Ef (Pref (φ)), E(Pref (ϕ))
)

.

Proof of (iii)

– The proof of Safety(Σ) ∪Guarantee(Σ) ⊆ MP∗(B3)
is straightforward by noticing that:
– MP∗(B⊥

2) ⊂ MP∗(B3),
– and MP∗(B⊤

2) ⊂ MP∗(B3).
– The fact that MP∗(B3) ⊆ Safety(Σ)∪Guarantee(Σ)

is given by Lemma 3.

Proof of (iv). The proof is straightforward by noticing
that every r -property can be evaluated by effectively dis-
tinguishing good and bad sequences. In others words,
any reactivity r -property can be evaluated consistently
with B4. Indeed, a good sequence σgood is evaluated to
⊤c or ⊤ according to its continuations. A bad sequence
σbad is evaluated to ⊥c or ⊥ according to its continua-
tions. As we can see here, the truth values ⊥c and ⊤c
refine the verdict “?”. ⊓⊔

A.2.5 Proof of Property 3: Correspondence between
Streett automata states and B4

In this proof, [[Π]] stands for [[Π]]B4
. Let us consider an

execution sequence σ ∈ Σ∗ of length n.

Proof of qn ∈ GoodAΠ ⇔ [[Π]](σ) = ⊤

– Let us suppose that qn ∈ GoodAΠ . Using the accep-
tance criterion for finite sequences, we have that σ is
accepted by AΠ . Furthermore, as AΠ specifies Π, we
have Π(σ). Now, let us consider µ ∈ Σ+ s.t. |σ|+|µ| =
n′ > n and run(σ · µ,AΠ) = q0 · · · qn′−1. As qn ∈

Yliès Falcone et al.: What can you Verify and Enforce at Runtime ? 31

GoodAΠ , we deduce ∀k ∈ N, n ≤ k ≤ n′ − 1 ⇒ qk ∈
⋂m

i=1
Ri ∪ Pi and consequently Π(σ · µ). Let us con-

sider µ ∈ Σω, one may remark that ∀i ∈ [1,m], vinf (σ·
µ,AΠ)∩Ri 6= ∅ ∨ vinf (σ · µ,AΠ) ⊆ Pi, which implies
Π(σ · µ). We have Π(σ) ∧ ∀µ ∈ Σ∞, Π(σ · µ), i.e.,
[[Π]](σ) = ⊤.

– Conversly, let us suppose that [[Π]](σ) = ⊤. By defi-
nition, it means ∀µ ∈ Σ∞, Π(σ · µ). According to the
acceptance criterion of Streett automata, we deduce
∀k ≥ n, ∀µ ∈ Σ∗, run(σ · µ,AΠ) = q0 · · · qn · · · qk ⇒
qk ∈

⋂m

i=0
Ri ∪ Pi. That is to say ReachAΠ (qn) ⊆

⋂m

i=1
(Ri ∪ Pi), i.e., qn ∈ GoodAΠ .

Proof of qn ∈ GoodAΠ

c
⇔ [[Π]](σ) = ⊤c. The proof is

straightforward by examining the acceptance criterion
for finite sequences.

– Let us suppose that qn ∈ GoodAΠ

c
. Using the accep-

tance criterion for finite sequences, we have that σ
is accepted by AΠ . Moreover, as AΠ specifies Π, we
deduce Π(σ). Now, as ReachA(q) 6⊆

⋂m

i=1
(Ri ∪ Pi),

there exists a state q′ of AΠ reachable from q and be-
longing to

⋃m

i=1
(Ri ∩ Pi). Consequently, there exists

µ ∈ Σ∗ s.t. run(σ · µ) = q0 · · · qn · · · q
′. Still follow-

ing the acceptance criterion we deduce ¬Π(σ ·µ), i.e.,
[[Π]](σ) = ⊤c.

– Conversely, the same reasonning can be used to prove
the seeked result.

Proof of qn ∈ BadAΠ

c
⇔ [[Π]](σ) = ⊥c. Similarly, the

proof is straightforward by examining the acceptance
criterion for finite sequences of Streett automata.

– Let us suppose that qn ∈ BadAΠ

c
. Using the accep-

tance criterion of finite sequences, we have that σ is
not accepted by AΠ . Furthermore, as AΠ specifies Π,
we deduce ¬Π(σ). Now, as ReachA(q) 6⊆

⋃m

i=1
(Ri ∪

Pi), there exists a state q′ of AΠ reachable from q
and belonging to

⋂m

i=1
(Ri ∪ Pi). Consequently, there

exists µ ∈ Σ∗ s.t. run(σ · µ) = q0 · · · qn · · · q
′. Still fol-

lowing the acceptance criterion, we deduce Π(σ · µ),
i.e., [[Π]](σ) = ⊥c.

– Conversely, the same reasonning can be conducted.

Proof of qn ∈ BadAΠ ⇔ [[Π]](σ) = ⊥. The proof can
be done following the same proof principle that the one
used to prove qn ∈ GoodAΠ ⇔ [[Π]](σ) = ⊤.

– Let us suppose that qn ∈ BadAΠ . Using the accep-
tance criterion on finite sequences, we have that σ is
not accepted by AΠ . Furthermore, as AΠ specifies Π,
we deduce ¬Π(σ). Now, let us consider µ ∈ Σ+ s.t.
|σ|+ |µ| = n′ > n and run(σ ·µ,AΠ) = q0 · · · qn′−1. As
qn ∈ BadAΠ , we have ∀k ∈ N, n ≤ k ≤ n′ − 1 ⇒ qk ∈
⋃m

i=1
Ri ∩ Pi and consequently ¬Π(σ · µ). Let us con-

sider µ ∈ Σω, one may remark that ∀i ∈ [1,m], vinf (σ·
µ,AΠ)∩Ri = ∅ ∧ vinf (σ · µ,AΠ) 6⊆ Pi, which implies
¬Π(σ ·µ). We have ¬Π(σ)∧∀µ ∈ Σ∞,¬Π(σ ·µ), i.e.,
[[Π]](σ) = ⊥.

– Conversely, let us suppose that [[Π]](σ) = ⊥. By def-
inition, it means ∀µ ∈ Σ∞,¬Π(σ · µ). According to
the acceptance criterion of Streett automata, we de-
duce ∀k ≥ n, ∀µ ∈ Σ∗, run(σ · µ,AΠ) = q0 · · · qn · · · qk
⇒ qk ∈

⋃m

i=0
Ri ∩ Pi. That is to say ReachAΠ (qn) ⊆

⋃m

i=1
(Ri ∩ Pi), i.e., qn ∈ BadAΠ .

⊓⊔

A.3 Proofs for Section 6

A.3.1 Proof of Property 4: Equivalence between
enforcement criteria

Before proving the equivalence between enforcement cri-
teria, we state and prove an intermediate lemma.

Lemma 4. Considering an m-automaton AΠ recogniz-
ing an r-property Π = (φ, ϕ) and s ∈ S(AΠ) a strongly
connected component of AΠ . We have:

Is 6= ∅ ⇔ ∀σ ∈ Σω, vinf (σ,AΠ) = s⇒ ¬ϕ(σ)

The proof is in two steps by proving implications in both
ways.

– Suppose Is 6= ∅ and let us consider σ ∈ Σω s.t.
vinf (σ,AΠ) = s. As Is 6= ∅, then ∃i ∈ Is(⊆ [1,m]),
vinf (σ,AΠ) ⊆ Ri ∧ vinf (σ,AΠ) ∩ Pi 6= ∅. Then, us-
ing the acceptance criterion for infinite sequences,
one can deduce that σ is not accepted by AΠ .

– The other direction is straightforward using the ac-
ceptance criterion for infinite sequences (Definition 6).

⊓⊔
Now, let us prove Property 4. This proof relies on

the computation of strongly connected components of a
Streett automaton (SCC), both maximal and non max-
imal ones. The proof is in two steps by proving implica-
tions in both ways.

– (4) ⇒ (5). Let s be a SCC of AΠ s.t. Is 6= ∅. Then
using the previous lemma, every sequence s.t. vinf (σ,
AΠ) = s is rejected by AΠ . As Π is enforceable and
satisfies (4), necessarily all prefixes of σ terminating
in a state of s are not accepted. Otherwise, there
would exist an accepting state (wrt. the acceptance
criterion of finite sequences) in s. It would then be
possible to build σ′ ∈ Σω with an infinite number of
accepting prefixes, i.e., s.t. (4) is not satisfied.

– (5) ⇒ (4). Let us consider σ ∈ Σω s.t. ¬ϕ(σ). Dur-
ing its run on AΠ , σ visits an SCC s infinitely of-
ten. As ¬ϕ(σ), using the previous lemma, we have
Is 6= ∅. Using (5), ∃i ∈ Is, vinf (σ,AΠ) ⊆ Pi (and
we already know vinf (σ,AΠ) ⊆ Ri). Let us consider
σ′ ∈ Σ∗ s.t. σ′ ≺ σ, the run of σ′ on AΠ is s.t.
∃q1, . . . , qn ∈ QAΠ , run(σ′,AΠ) = qAΠ

init
·q1 · · · qn·{q ∈

vinf (σ,AΠ)}∗. Consequently, we have ∀σ′ ≺ σ, |σ′| ≥
n ⇒ run(σ,AΠ) = qAΠ

init
· · · q, with q ∈ Ri ∧ q ∈ Pi.

Using the acceptance criterion for finite sequences,
we have that σ′ is not accepted by AΠ .

⊓⊔

32 Yliès Falcone et al.: What can you Verify and Enforce at Runtime ?

A.3.2 Proof of Theorem 8: Enforceable m-reactivity
properties are response properties

We show that any enforceable m-reactivity property Π
is indeed a response property. The proof is based on
the automata view, showing that the (m-reactivity) au-
tomaton AΠ associated to Π can be transformed into a
response automaton AΠ

′ recognizing the same language.
Let us consider AΠ = (QAΠ , qAΠ

init
, Σ,−→AΠ , {(R1, P1),

. . . , (Rm, Pm)}) the Streett automaton associated to an
enforceable property Π. We now consider the response
automaton AΠ

′ = (QAΠ , qAΠ
init

, Σ,−→AΠ , {(R
′
1, ∅), . . . ,

(R′
m, ∅)}) with R′

i = Ri ∪ Pi for i in [1,m].
We now show that a sequence σ of Σ∞ is accepted by

AΠ if and only if it is accepted by AΠ
′. We distinguish

two cases according to whether σ is a finite or an infinite
sequence.

– For a finite sequence σ, it is an accepting sequence
of AΠ if and only if its run terminates either in a
Ri-state or in a Pi-state for i in [1,m]. Consequently
its run also terminates in a R′

i-state of AΠ
′ for i in

[1,m], and therefore it is an accepting sequence of
AΠ

′.
– For an infinite sequence σ, note that the sets vinf (σ,

AΠ) and vinf (σ,AΠ
′) coincide.

Let us assume first that σ is an accepting sequence
of AΠ , namely

m
∧

i=1

vinf (σ,AΠ) ∩Ri 6= ∅ ∨ vinf (σ,AΠ) ⊆ Pi.

Since R′
i ⊆ Ri and R′

i ⊆ Pi we have

m
∧

i=1

vinf (σ,AΠ) ∩R′
i 6= ∅.

Consequently, σ is an accepting sequence of AΠ
′.

Now, let us assume that σ is a non-accepting se-
quence of AΠ . Since Π is enforceable, then, accord-
ing to Property 4, there exists i ∈ [1,m] such that
vinf (σ,AΠ) ⊆ Ri and vinf (σ,AΠ) ⊆ Pi. Thus, we
can deduce vinf (σ,AΠ) ⊆ (Ri∩Pi) and, consequently,
vinf (σ,AΠ

′) ⊆ R′
i. Therefore, σ is a non-accepting

sequence of AΠ
′.

⊓⊔

