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Abstract

The underlying property, its definition and representation play a major role when monitoring

a system. Having a suitable and convenient framework to express properties is thus a concern

for runtime analysis. It is desirable to delineate in this framework the spaces of properties

for which runtime analysis approaches can be applied to. This paper presents a unified view

of runtime verification and enforcement of properties in the Safety-Progress classification.

Firstly, we extend the Safety-Progress classification of properties in a runtime context. Sec-

ondly, we characterize the set of properties which can be verified (monitorable properties) and

enforced (enforceable properties) at runtime. We propose in particular an alternative definition

of “property monitoring” to the one classically used in this context. Finally, for the delineated

spaces of properties, we obtain specialized verification and enforcement monitors.
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1 Introduction

In the past decades, we have seen the emergence of a world in which information systems are ubiquitous.

System dissemination entails a growing need of confidence. System failures in history showed limits of

existing engineering methodologies and enabled the emergence of formal methods [CW96]. Ideally, one

would like to validate a program prior to its execution. However, static validation methods sucvh as model-

checking [EC80] suffer from limits preventing their use in real large-scale applications. For instance, those

techniques are often bound to the design stage of a system and hence they are not shaped to face off

specification evolution. Even when those techniques (e.g.,static analysis [CC92]) do scale well, they are

limited by the properties they can check, and may not be able to check interesting behavioral properties.

Thus, the verification of some properties, and elimination of some faults, have to be done complementary

using methods relying on dynamic analysis. In this paper, we are interested in runtime verification and

runtime enforcement. These methods, said to be incomplete, operate on one execution of the system.

Acknowledging the loss of completness enables to face-off the limitations of static validation methods.

Runtime-verification [Run09, PZ06, BLS09, BLS07, HG08] is an effective technique to ensure at exe-

cution time that a system meets a desirable behavior. It can be used in numerous application domains,

and more particularly when integrating together untrusted software components. A possible approach for

runtime verification consists in analyzing a run of the system under scrutiny in an incremental way using a

decision procedure called a monitor. This monitor may be generated from a user-provided high level speci-

fication (e.g., a temporal property, an automaton). The primary goal of this monitor is to detect violation or

validation with respect to the given specification. It can be viewed as a state machine (with an output func-

tion) processing an execution sequence (step by step) of the monitored program, and producing a sequence

of verdicts (truth values taken from a truth-domain) indicating specification fulfillment or violation. The

major part of research endeavor was done on the monitoring of safety properties (stating that something

bad can never happen), as seen for example in [RCB08, HR02]. However, the authors of [dR05] show that

safety properties are not the only monitorable properties. Recently, a new definition of monitorability was

given by Pnueli in [PZ06] and it has been proven in [BLS07] that safety and co-safety properties represent

only a proper subset of the space of the monitorable properties.

Runtime enforcement is an extension of runtime verification aiming to circumvent property violations.

It was initiated by the work of Schneider [Sch00] on what has been called security automata. In this

work the enforcement monitor watches the current execution sequence and halts the underlying program

whenever it deviates from the desired property. Such security automata are able to enforce the class of

safety properties [HMS06]. Later, Viswanathan [Vis00] noticed that the class of enforceable properties is

impacted by the computational power of the enforcement monitor. As the enforcement mechanism can

implement no more than computable functions, the enforceable properties are included in the decidable

ones.

More recently, Ligatti et al. [LBW09] showed that it is possible to enforce at runtime more than safety

properties. Using more powerful enforcement mechanisms called edit-automata, it is possible to enforce

the larger class of infinite renewal properties. Within the classical safety-liveness dichotomy, the renewal

class is a super set of the safety class which contains some liveness properties (but not all). More than

simply halting an underlying program, edit-automata can also suppress (i.e., freeze) and insert (frozen)

actions in the current execution sequence.

Several tools have been proposed in this context, and in practice there is not always a clear distinction

between runtime-verification and runtime-enforcement. For instance a verification monitor may execute an

exception handler when detecting an error, hence modifying the initial program execution.

2/45 Verimag Research Report no TR-2010-5
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Motivations and contributions. According to the amount of works published and existing tools now

available within the runtime-validation community, it appears that this technique progressed a lot in the

last ten years and seems now mature enough to address concrete industrial challenges. However, some

interesting questions remain about its expressiveness. More precisely, the main questions we consider in

this work are the following: what are the classes of properties that can be handled at runtime, and is there

a distinct answer for runtime verification and runtime enforcement? These questions are not original in

themselves, but we propose here to address them within a unified framework: the Safety-Progress (SP)

classification of properties [MP90, CMP92b]. The paper contributions are then the following:

1. to propose a suitable framework for specifying and reasoning about properties in a runtime context;

2. to integrate within this framework some existing expressiveness results related to runtime monitor-

ing [PZ06, BLS09, BLS07], and to propose an alternative definition of the notion of monitorability,

leveraging the semantics of finite execution sequences;

3. and to improve some recent results related to property enforcement [FFM08, FFM09a], giving a

more accurate classification of enforceable properties.

Let us illustrate a bit more the second motivation. Consider a system on which it is possible to evaluate

two atomic propositions called p and q. At system runtime, system events are fed to a monitor. Each event

is a pair containing the evaluations of p and q (either true or false). Now let us consider the following

requirement: “Either p is always true or q is eventually true”. This means that, for the observed sequence

of events, either p is evaluated to true on every event, or there exists an event on which q is evaluated to

true. Now consider the two following possible executions of the system, represented by their sequences of

events of length 2:

• {p, q} · {p, q}: on both events p is true, q is false;

• {p, q} · {p, q}: on the first event p is true and q is false, on the second event p and q are false.

After observation of the first sequence of events, one can reasonably state that the property is “currently”

true. Thus, if the program execution stops after this observation, the requirement is satisfied. Indeed, p
has been always true during the program execution. Conversely, after observing the second sequence of

events, one can reasonably state that the property is “currently” false. Indeed, the last observed event does

not fulfill the requirement (neither p nor q evaluate to true).

We will see in Section 5 that this kind of property is monitorable according to the classical definition

of monitorability. Moreover, a monitor built following this definition of monitorability would produce the

same verdict for those two sequences, namely a don’t know verdict. This situation is undesirable from our

point of view. Thus, we will propose an alternative definition of monitorability able to better cope with

these kinds of properties, and to give more precise verdicts.

This paper is a revised and extended version of [FFM09b] which appeared in the 9th international

workshop on Runtime Verification. This new version brings the following additional contributions. First,

it contains a more comprehensive theoretical basis by revisiting and extending results about the Safety-

Progress classification of properties. Moreover, we provide additional results on monitorability. Further-

more, the synthesis of verification and enforcement monitors is given with full details (it was previously

sketched). Finally, the presentation has been improved by means of additional examples, corrected results,

and complete proofs.

Paper Organization. The remainder of this article is organized as follows. First, Section 2 introduces

some preliminary notations used throughout this paper and Section 3 overviews related works on the issues

we address. In Section 4, we propose an extension of the Safety-Progress classification of properties in a

runtime verification context. Section 5 is dedicated to runtime monitoring, whereas Section 6 is dedicated

to runtime enforcement. In both sections we provide some characterizations of the classes of properties

that can be handled by these techniques, with respect to the Safety-Progress framework. Then, in Section 7,

we show how to obtain runtime verification and enforcement monitors for the delineated sets of properties.

Finally, we give some concluding remarks and future works in Section 8.

In order to facilitate article’s reading, some of the proofs have been sketched. Complete proofs can be

found in Appendix.
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2 Preliminaries and notations

This section introduces some background, namely the notions of program execution sequences and program

properties.

2.1 Sequences, and execution sequences

Sequences and execution sequences. Considering a finite set of elements E, we define notations about

sequences of elements belonging to E. A sequence σ containing elements of E is formally defined by a

total function σ : I → E where I is either the integer interval [0, n] for some n ∈ N, or N itself (the set

of natural numbers). We denote by E∗ the set of finite sequences over E (partial function from N), by

E+ the set of non-empty finite sequences over E, and by Eω the set of infinite sequences over E. The

set E∞ = E∗ ∪ Eω is the set of all sequences over E. The empty sequence of E is denoted by ǫE or

ǫ when clear from context. The length (number of elements) of a finite sequence σ is noted |σ| and the

(i + 1)-th element of σ is denoted by σi. For two sequences σ ∈ E∗, σ′ ∈ E∞, we denote by σ · σ′ the

concatenation of σ and σ′, and by σ ≺ σ′ the fact that σ is a strict prefix of σ′ (resp. σ′ is a strict suffix

of σ). The sequence σ is said to be a strict prefix of σ′ ∈ E∞ when ∀i ∈ {0, . . . , |σ| − 1}, σi = σ′
i and

|σ| < |σ′|. When σ′ ∈ E∗, we note σ � σ′ def

= σ ≺ σ′ ∨ σ = σ′. For σ ∈ E∞ and n ∈ N, σ···n is

the sub-sequence containing the n + 1 first elements of σ. Also, when |σ| > n, the subsequence σn··· is

the sequence containing all elements of σ but the n first ones.The set of prefixes pref (σ) of a sequence

σ ∈ E∞ is defined as follows. If σ ∈ E∗, then pref (σ) = {σ′ ∈ E∗ | σ′ � σ}. If σ ∈ Eω , then

pref (σ) = {σ′ ∈ E∗ | σ′ ≺ σ}. The set Pref (X) of prefixes of a set of sequences X is the union of the

sets of prefixes of X-sequences: Pref (X) =
⋃

σ∈X pref (σ). The σ-continuations, i.e., the continuations

of a sequence σ, are the finite and infinite sequences belonging to the set {σ′ ∈ Σ∞ | σ ≺ σ′}.

A program P is considered as a generator of execution sequences. We are interested in a restricted

set of operations the program can perform. These operations influence the truth value of properties the

program is supposed to fulfill. Such execution sequences can be made of access events on a secure system

to its resources, or kernel operations on an operating system. In a software context, these events may be

abstractions of relevant instructions such as variable modifications or procedure calls. These events may

also be fed from the underlying program and contain the evaluation of some propositions of the system

under scrutiny. We abstract these operations by a finite set of events, namely a vocabulary Σ. We denote

by PΣ a program for which the vocabulary is Σ. The set of execution sequences of PΣ is denoted by

Exec(PΣ) ⊆ Σ∞. This set is prefix-closed, i.e., ∀σ ∈ Exec(PΣ), ∀σ
′ ∈ Σ∗, σ′ � σ ⇒ σ′ ∈ Exec(PΣ).

In the remainder of this article, we use a vocabulary Σ.

2.2 Properties

Properties as sets of execution sequences. A finitary property (resp. an infinitary property, a property)

is a subset of execution sequences of Σ∗ (resp. Σω , Σ∞). Considering a given finite (resp. infinite, finite

or infinite) execution sequence σ and a property φ (resp. ϕ, θ), when σ ∈ φ, noted φ(σ) (resp. σ ∈ ϕ,

noted ϕ(σ), σ ∈ θ, noted θ(σ)), we say that σ satisfies φ (resp. ϕ, θ). A consequence of this definition is

that properties we will consider are restricted to single execution sequences1, excluding specific properties

defined on power-sets of execution sequences (like fairness, for instance).

Runtime properties. In this paper we will focus on properties to be evaluated at runtime. As stated in

the introduction, this means that we would have to consider finite and infinite execution sequences (that

a program may produce). A runtime verification technique should address both kinds of sequences in a

uniform way. As so, we introduce a notion of “runtime property” (r-property) as a pair of finite/infinite

execution sequence sets2:

1This is the distinction, made by Schneider [Sch00], between properties and (general) policies. The set of properties (defined over

single execution sequences) is a subset of the set of policies (defined over sets of execution sequences).
2Using a pair of sets makes the distinction between the finitary and infinitary parts of the property more explicit.
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events verdictsMonitor

σ |= Π?
Π

Verification

ω ∈ B∞σ ∈ Σ∞

B

Figure 1: Principle of runtime verification

DEFINITION 2.1 (RUNTIME PROPERTIES) A r-property is a pair (φ, ϕ) ⊆ Σ∗ × Σω . The property φ is

called the finitary part of the r-property, whereas ϕ is called the infinitary part of the r-property.

Intuitively, the finitary property φ represents the desirable property that finite execution sequences

should fulfill, whereas the infinitary property ϕ is the expected property for infinite execution sequences.

Notations for r-properties follow from the notations for finitary and infinitary properties. For a r-property

(φ, ϕ), its negation, noted (φ, ϕ), is defined as (Σ∗ \ φ,Σω \ ϕ). Boolean combinations of r-properties

are defined in a natural way: (φ1, ϕ1) ∨ (φ2, ϕ2) = (φ1 ∪ φ2, ϕ1 ∪ ϕ2), and (φ1, ϕ1) ∧ (φ2, ϕ2) =
(φ1 ∩ φ2, ϕ1 ∩ ϕ2). Considering an execution sequence σ ∈ Exec(PΣ), we say that σ satisfies (φ, ϕ)
when σ ∈ Σ∗ ∧ φ(σ) ∨ σ ∈ Σω ∧ ϕ(σ). For a r-property Π = (φ, ϕ), we note Π(σ) (resp. ¬Π(σ))
when σ satisfies (resp. does not satisfy) (φ, ϕ). The prefixes of a r-property Π = (φ, ϕ) is defined as:

Pref (Π) = Pref (φ) ∪ Pref (ϕ). Intersection between finitary, infinitary properties and r-properties is

straightforward and denoted using operator ⊓, e.g., Σ∗ ⊓ (φ, ϕ) = φ.

Evaluation of r-properties. Monitorability, enforceability, and monitor synthesis are based on the eval-

uation of r-properties by a monitor. Evaluating an execution sequence σ wrt. a r-property consists in

producing a verdict regarding the current property-satisfaction of σ or future satisfactions of the possible

σ-continuations. As a matter of facts, the verdicts produced by monitors are not necessarily usual boolean

values: they are truth-values taken from a truth-domain. A truth-domain is a lattice, i.e., a partially ordered

set with an upper-bound and a lower-bound. Examples of truth-domains are the classical boolean domain

{true, false} or the real-number interval [0, 1], or any relevant set of values used for evaluating properties.

Considering a truth-domain B, a r-property Π and a finite execution sequence σ, the evaluation of σ ∈ Σ∗

wrt. Π in B, noted [[Π]]B(σ), is an element of B depending on Π(σ) and satisfaction of σ-continuations wrt.

Π.

The sets of monitorable and enforceable properties (Sections 5 and 6) rely both upon the truth-domain

and evaluation function we consider.

3 Related Works

This section overviews some related works on the topics we will discuss in this paper. In particular we

summarize the basic concepts used for runtime verification and runtime enforcement, and we recall the

existing results in terms of set of properties that can be addressed by each of these techniques.

3.1 Runtime verification

Basic concepts. As stated in the introduction, the notion of runtime verification can be formalized by a

verification monitor (see Fig. 1) whose behavior consists in translating a sequence of events σ ∈ Σ∞ into

a sequence of verdicts ω ∈ B∞, where B is a given truth domain. This monitor is defined with respect to a

r-property Π, and the sequence of verdicts ω is expected to give some information on the evaluation of Π on

σ with respect to B. Thus, one of the problems to be addressed is that each evaluation [[Π]]B(σ···n) = ω···n

of a finite sequence should not only give some relevant information on Π(σ···n), but also possibly on Π(σ).
In this context several notions of monitorability were proposed in the past, and we review below the most

important results.

Verimag Research Report no TR-2010-5 5/45



Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

Monitorability in the sense of [VK04]. The first characterization of monitorable properties was given

by Viswanathan and Kim in [VK04]. Monitorable properties were characterized as a strict subset of safety

properties. The authors show that, due to the indecidability of some problems, a verification monitor

is limited by some computability constraints. Monitorable properties are precisely defined as the safety

decidable properties3. The authors establish the equality between this space of properties and the class Π0
1

of the arithmetical hierarchy which is the class of co-recursively enumerable properties.

Monitorability in the sense of [PZ06]: Pnueli et al. give a more general notion of monitorable properties

relying on the notion of verdict determinacy for an infinite sequence. More precisely, considering a finite

sequence σ ∈ Σ∗, a property θ ⊆ Σ∞ is negatively determined (resp. positively determined) by an

execution sequence σ if σ and each of its possible extension does not satisfy (resp. does satisfy) θ. Then,

θ is σ-monitorable if σ has an extension s.t. θ is negatively or positively determined by this extension.

Finally, θ is monitorable, if it is σ-monitorable for every σ ∈ Σ∗. The idea is that it becomes unnecessary

to continue the execution of a θ-monitor after reading σ if θ is not σ-monitorable.

In Section 5, we give the corresponding formal definition in the context of r-properties.

Monitorability in the sense of [BLS07]: Bauer et al., inspired from Pnueli’s definition of monitorable

properties, proposed a slightly different one based on the notion of good and bad prefix introduced in

model-checking [KYV01] by Kupferman and Vardi. The intuitive idea is that with monitorable properties

it is possible to “detect” a violation or validation of infinitary properties with finite sequences. More

precisely, the definition of monitorable properties comes in the following way. Considering an infinitary

property ϕ ⊆ Σω , a prefix σ is said to be a bad prefix, noted bad prefix (σ, ϕ) (resp. good prefix, noted

good prefix (σ, ϕ)) of ϕ if ∀w ∈ Σω,¬ϕ(σ · w) (resp. ∀w ∈ Σω, ϕ(σ · w)). Then, a prefix σ is said to be

ugly if it does not have good nor bad continuation, i.e., 6 ∃v ∈ Σω, bad prefix (σ · v, ϕ) ∨ good prefix (σ ·
v, ϕ). Finally, a property is said to be monitorable if it has no ugly prefix, formally: ∀σ ∈ Σ∗, ∃v ∈
Σ∗, bad prefix (σ · v, ϕ) ∨ good prefix (σ · v, ϕ).

About previous characterizations of monitorable properties: The first characterization of monitorable

properties given in [VK04] may seem arbitrary. It characterizes the space of monitorable properties directly

as a class of properties. This characterization is not related to the practical constraints that a monitor has

to face off. However, let us remark that, the idea behind this definition is that a monitor is dedicated to

the detection of “bad behaviors” from a finite observation. It seems reasonable that a verification monitor

is used to detect “good” behaviors as well, e.g., the satisfaction of a desired property. This is actually

the idea behind the definition given in [PZ06]. The last definition, given in [BLS07], is equivalent to the

previous one on Σω . We will refer to the definition given in [PZ06] as the classical definition as it has

been enunciated firstly. Furthermore, Bauer et al. have shown that, according to this definition, the set of

monitorable properties is a strict super set of safety and co-safety properties. These classes of properties

are taken from the classical safety-liveness classification of properties [Lam77, AS84]. They also gave an

example of request/acknowledge property which is not monitorable. Such a property can be framed in the

set of response properties (see Section 4) wrt. the SP classification (see Example 5.2 in Section 5).

3.2 Runtime enforcement

Basic concepts. Regarding runtime enforcement, the purpose of an enforcement monitor (see Fig. 2) used

at runtime is to transform an input sequence σ ∈ Σ∞ into an output sequence o ∈ Σ∞ with respect to a

r-property Π. The expected constraints on o are (usually) the following:

soundness: o should be a correct execution sequence, i.e., Π should evaluate to true on o ;

transparency: the enforcement operation should preserve as much as possible the initial program behav-

ior by modifying the input sequence in a minimal way. A possible interpretation is that when σ does

not satisfy Π then o should be the longest correct prefix of σ.

3Roughly speaking, a non-decidable safety property is a safety property for which the test used to decide whether a given sequence

belongs to the property is not computable. See [VK04] for more details.
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Figure 2: Principle of runtime enforcement

According to this definition, the set of properties that can be enforced at runtime clearly depends on

the capabilities of the enforcement mechanism. To this purpose, the authors of [HMS06] proposed a

very general classification of enforceable properties: a program is viewed as a Turing machine and the

enforcement mechanisms they considered were based respectively on static analysis, program rewriting

and runtime enforcement monitors. Other works [Sch00, Vis00, LBW09, LBW05, FFM09a] focused more

specifically on runtime enforcement monitors and proposed a characterization of enforceable properties in

this context. We summarize these results below.

Security automata and decidable safety properties: Schneider introduced security automata (a vari-

ant of Büchi automata) as the first runtime mechanism for enforcing properties in [Sch00]. The set of

enforceable properties with this kind of security automata is the set of safety properties. Then [HMS06]

Schneider, Hamlen, and Morrisett refined the set of enforceable properties and showed that these security

automata were in fact restrained by some computational limits. Indeed, Viswanathan [Vis00] noticed that

the class of enforceable properties is impacted by the computational power of the enforcement monitor. As

the enforcement mechanism can implement no more than computable functions, the enforceable properties

are included in the decidable ones. Hence, they showed in [HMS06] that the set of safety properties is a

strict upper limit of the power of (execution) enforcement monitors defined as security automata.

Edit-automata and infinite renewal properties: Ligatti et al. [LBW09, LBW05] introduced edit-automata

as runtime monitors. Depending on the current input and its control state, an edit-automaton can either in-

sert a new action by replacing the current input, or suppress it. The properties enforced by edit-automata

are called infinite renewal properties: it is a superset of safety properties and contains some liveness pro-

perties (but not all). More precisely, a property θ is said to be an infinite renewal property iff each valid

infinite sequence σ has an infinite number of valid prefixes:

∀σ ∈ Σ∞, θ(σ) ⇒
∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ∃σ′′ ∈ Σ∗, σ′ � σ′′ ≺ σ ∧ θ(σ′′).

Shallow History Automata and an information-based lattice of enforceable policies. Fong [Fon04]

studied the effect of restraining the capacity of the runtime execution monitor and the effect on the en-

forcement power. Shallow History Automata (SHA) keep as history a set of access events the underlying

program made. Fong showed that these automata can enforce a set of properties strictly contained in the set

of properties enforceable by Schneider’s automata. The result has been generalized by using abstraction

mechanisms on an equivalent variant of Schneider’s automata. It raised up an information-based lattice

of enforceable policies. At the top of this lattice is the set of properties enforceable by security automata

(SHA keeps history of all events). At the bottom of this lattice is the set of policies prohibiting a set of

events (SHA do not distinguish between prefixes of execution sequences made of the same events).

Fong’s classification has a practical interest in the sense that it studies the effect of practical program-

ming constraint (limited memory). It also shows that some classical security policies remain enforceable

using such shallow automata.

Generic runtime enforcers and response properties: In [FFM09a, FMFR10] we introduced a generic

notion of enforcement monitor encompassing previous mechanisms and gave a lower-bound on the space

of properties they can enforce in the Safety-Progress classification (see Section 4). In this paper, we will
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show that this bound is tight. Furthermore, in [FMFR10], we have studied the question of enforcement

monitor composition.

3.3 Synthesis of monitors

For runtime verification: Generally, runtime verification monitors are generated from LTL-based spec-

ifications, as seen recently in [BLS07, CR07]. Alternatively, ω-regular expressions have been used as a

basis for generating monitors, as for example in [dR05]. An exhaustive list of works on monitor synthesis

is far beyond the scope of this paper. We refer to [Run09, LS08, HG08] for more information on this topic.

For runtime enforcement: In [MM07] Martinelli and Matteucci tackle the synthesis of enforcement

mechanisms as defined by Ligatti. More generally the authors consider security automata and edit-automata.

The monitor is modeled by an algebraic operator expressed in CCS. The program under scrutiny is then a

term Y ⊲K X where X is the target program, Y the controller program and ⊲K the operator modeling the

monitor where K is the kind of monitor (truncation, insertion, suppression or edit). The desired property

for the underlying system is formalized using µ-calculus. In [Mat07] Matteucci extends the approach in

the context of real-time systems. In [FFM08, FMFR10] we defined transformations for some classes of

the safety-progress classification of properties. Those class-specific transformations take as input a Streett

automaton recognizing a property and produce an enforcement monitor for this property. In this paper, we

will provide a unified class-independant transformation.

4 The SP classification in a runtime context

This section recalls and extends some results about the Safety-Progress [CMP92a, CMP92b, MP90] clas-

sification of properties. In the original papers this classification introduced a hierarchy between regular

properties4 defined as sets of infinite execution sequences. We extend the classification to deal with finite-

length execution sequences. As so we revisit this classification for r-properties.

4.1 Informal description

The Safety-Progress classification is made of four basic classes over execution sequences. Informally, the

classes were defined as follows:

• safety properties are the properties for which whenever a sequence satisfies a property, all its prefixes

satisfy this property.

• guarantee properties are the properties for which whenever a sequence satisfies a property, there are

some prefixes (at least one) satisfying this property.

• response properties are the properties for which whenever a sequence satisfies a property, an infinite

number of its prefixes satisfy this property.

• persistence properties are the properties for which whenever a sequence satisfies a property, all but

finitely many of its prefixes satisfy this property, i.e., a finite number of its prefixes does not satisfy

the property.

Furthermore, two extra classes can be defined as finite boolean combinations (union and intersection)

of basic classes.

• The obligation class can be defined as the class obtained by boolean combinations of safety and

guarantee properties.

• The reactivity class can be defined as the class obtained by boolean combinations of response

and persistence properties. This is the more general class containing all linear temporal proper-

ties [CMP92a].

4In the following, the term property will stand for regular property.
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A r-property of a given class is said to be pure when it is a property of none of the others sub-classes.

The Safety-Progress classification is an alternative to the more classical safety-liveness [Lam77, AS84]

dichotomy. Unlike this later, the Safety-Progress classification is a hierarchy and not a partition. It

provides a finer-grain classification, and the properties of each class are characterized according to four

views [CMP92a]: a language-theoretic view, a topological view, a temporal logic view, and an automata-

based view. The language-theoretic view describes the hierarchy according to the way each class can be

constructed from sets of finite sequences. The topological view characterizes the classes as sets with topo-

logical properties. The third vision links the classes to their expression in temporal logic. At last, the

automata-base view gives syntactic characterization on automata recognizing properties of a given class.

We will consider here only the language-theoretic and the automata views dedicated to r-properties.

4.2 The language-theoretic view of r-properties

4.2.1 Construction of r-properties

The language-theoretic view of the Safety-Progress classification is based on the construction of infinitary

properties and finitary properties from finitary ones. It relies on the use of four operators A,E,R, P
(building infinitary properties) and four operators Af , Ef , Rf , Pf (building finitary properties) applying to

finitary properties. In the original classification of Mana and Pnueli, operators A,E,R, P,Af , Ef were

introduced. In this paper, we add operators Rf and Pf and give a formal definition of all operators. In

these definitions ψ is a finitary property over Σ.

DEFINITION 4.1 (OPERATORS A,E,R, P ) The operators are defined as follows:

• A(ψ) = {σ ∈ Σω | ∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ψ(σ′)}.

• E(ψ) = {σ ∈ Σω | ∃σ′ ∈ Σ∗, σ′ ≺ σ ∧ ψ(σ′)}.

• R(ψ) = {σ ∈ Σω | ∀σ′ ∈ Σ∗, ∃σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ψ(σ′′)}.

• P (ψ) = {σ ∈ Σω | ∃σ′ ∈ Σ∗, ∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ⇒ ψ(σ′′)}.

A(ψ) consists of all infinite words σ s.t. all prefixes of σ belong to ψ. E(ψ) consists of all infinite

words σ s.t. some prefixes of σ belong to ψ. R(ψ) consists of all infinite words σ s.t. infinitely many

prefixes of σ belong to ψ. P (ψ) consists of all infinite words σ s.t. all but finitely many prefixes of σ
belong to ψ.

Operators Af , Ef , Rf , Pf build finitary properties from finitary ones.

DEFINITION 4.2 (OPERATORS Af , Ef , Rf , Pf ) The operators are defined as follows:

• Af (ψ) = {σ ∈ Σ∗ | ∀σ′ ∈ Σ∗, σ′ � σ ⇒ ψ(σ′)}.

• Ef (ψ) = {σ ∈ Σ∗ | ∃σ′ ∈ Σ∗, σ′ � σ ∧ ψ(σ′)}.

• Rf (ψ) = {σ ∈ Σ∗ | ψ(σ) ∧ ∀n ∈ N, ∃σ′ ∈ Σ∗, n ≤ |σ| ⇒ σ ≺ σ′ ∧ |σ′| ≥ n ∧ ψ(σ′)}.

• Pf (ψ) = {σ ∈ Σ∗ | ψ(σ) ∧ ∃σ′ ∈ Σ∗, σ � σ′ ∧ ∀n ∈ N, ∃σ′′ ∈ Σ∗, |σ′′| = n ∧ ψ(σ′ · σ′′)}.

Af (ψ) consists of all finite words σ s.t. all prefixes of σ belong to ψ. One can observe that Af (ψ) is

the largest prefix-closed subset of ψ. Ef (ψ) consists of all finite words σ s.t. some prefixes of σ belong

to ψ. One can observe that Ef (ψ) = ψ · Σ∗. Rf (ψ) consists of all finite words σ s.t. ψ(σ) and there

exists an infinite number of continuations σ′ of σ also belonging to ψ. Pf (ψ) consists of all finite words

σ belonging to ψ s.t. there exists a continuation σ′ of σ s.t. σ′ persistently has extensions σ′′ staying in ψ
(i.e., σ′ · σ′′ belongs to ψ).

Based on these operators, each class can be seen from the language-theoretic view.

DEFINITION 4.3 A r-property Π = (φ, ϕ) is defined to be
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• A safety r-property if Π = (Af (ψ), A(ψ)) for some finitary property ψ. That is, all prefixes of a

finite word σ ∈ φ or of an infinite word σ ∈ ϕ belong to ψ.

• A guarantee r-property if Π = (Ef (ψ), E(ψ)) for some finitary property ψ. That is, each finite word

σ ∈ φ or infinite word σ ∈ ϕ is guaranteed to have some prefixes (at least one) belonging to ψ.

• A response r-property if Π = (Rf (ψ), R(ψ)) for some finitary property ψ. That is, each infinite

word σ ∈ ϕ recurrently has (infinitely many) prefixes belonging to ψ.

• A persistence r-property if Π = (Pf (ψ), P (ψ)) for some finitary property ψ. That is, each infinite

word σ ∈ ϕ persistently has (continuously from a certain point on) prefixes belonging to ψ.

In all cases, we say that Π is built over ψ. Furthermore, obligation (resp. reactivity) r-properties are

obtained by boolean combinations of safety and guarantee (resp. response and persistence) r-properties.

Given a set of events Σ, we note Safety(Σ) (resp. Guarantee(Σ), Obligation(Σ), Response(Σ), Persistence(Σ))

the set of safety (resp. guarantee, obligation, response, persistence) r-properties defined over Σ.

We illustrate in the following example the construction of infinitary properties from finitary ones (de-

scribed as regular expressions) for each of the four operators.

EXAMPLE 4.1 (BUILDING INFINITARY AND FINITARY PROPERTIES FROM FINITARY ONES; r-PROPERTIES)

We consider a client-server application, with a set of observable events Σ ⊆ {r, g, d} where r denotes a

client request of a given resource and g (resp. d) denotes a corresponding grant (resp. deny) of this

resource provided by the server.

• For the finitary property ψ = ǫ + r+ · g∗, Af (ψ) = ǫ + r+ · g∗, A(ψ) = rω + r+ · gω , Π1 =
(Af (ψ), A(ψ)) is a safety r-property. This language contains all the words that have either only

occurrences of r or a finite number of occurrences of r (at least one) followed only by occurrences of

g. According to this property a resource should be requested at least once to be granted, and, when

granted once, it should not be requested anymore.

• For the finitary property ψ = r+ · g, Ef (ψ) = r+ · g ·Σ∗, E(ψ) = r+ · g ·Σω , Π2 = (Ef (ψ), E(ψ))
is a guarantee r-property. This property tells that the client will issue some requests and will receive

a positive answer later on.

• For the finitary property ψ = g+(r · g)∗, Rf (ψ) = (r · g)∗, R(ψ) = (r · g)ω , Π3 = (Rf (ψ), R(ψ))
is a response r-property. This language contains all the words that have infinitely many occurrences

of r · g. This property tells that clients will repeatedly send requests and receive back a positive

answer (the pattern r · g can be seen here as a transaction).

• For the finitary property ψ = g+r ·g ·(r+r ·g)∗, Pf (ψ) = r ·g ·(r+r ·g)∗, P (ψ) = r ·g ·(r+r ·g)ω ,

Π4 = (Pf (ψ), P (ψ)) is a persistence r-property. This language contains all the words starting with

r · g · r and ending with occurrences of r + r · g. According to this property, after a first granted

resource, at some point this resource should be granted forever.

4.2.2 Some useful facts in the language view

Now, we give some useful facts about r-properties in the language view. Those facts will be used in the

remainder when characterizing the set of monitorable properties.

Basic classes were defined in a constructive fashion. It is sometimes interesting to have a direct cha-

racterization for the properties of those classes. The following property gives a characterization for safety

and guarantee r-properties. The proof is a direct adaptation of the proof given in [CMP92a].

PROPERTY 4.1 (CHARACTERIZATION OF SAFETY AND GUARANTEE r-PROPERTIES) A r-property Π =
(φ, ϕ) is a

• safety iff Π = (Af (Pref (φ)), A(Pref (ϕ))),
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• guarantee iff Π =
(

Ef (Pref (φ)), E(Pref (ϕ))
)

.

We expose the closure of safety and guarantee r-properties as a straightforward consequence of defini-

tions of safety and guarantee r-properties.

PROPERTY 4.2 (CLOSURE OF r-PROPERTIES) Considering a r-property Π = (φ, ϕ) defined over an al-

phabet Σ built from a finitary property ψ, the following facts hold:

1 If Π is a safety r-property, all prefixes of a sequence belonging to Π also belong to Π. That is,

∀σ ∈ Σ∞,Π(σ) ⇒ ∀σ′ ≺ σ,Π(σ′).

2 If Π is a guarantee r-property, all continuations of a finite sequence belonging to Π also belong to

Π. That is, ∀σ ∈ Σ∗,Π(σ) ⇒ ∀σ′ ∈ Σ∞,Π(σ · σ′).

Proof We prove the two facts successively:

1 We have either φ(σ) or ϕ(σ), i.e., all prefixes σ′ of σ belong to ψ. Necessarily, all prefixes σ′′ of σ′

also belong to ψ, that is ψ(σ′′). By definition, that means σ′ ∈ Af (ψ), i.e., φ(σ′) and Π(σ′).

2 Π(σ) implies that σ has at least one prefix σ0 � σ belonging to ψ: σ ∈ Ef (ψ). Then, any continua-

tion of σ built using any finite or infinite sequence σ′ has at least the same prefix belonging to ψ. If

σ′ ∈ Σ∗, we have σ0 � σ � σ · σ′ and σ · σ′ ∈ Ef (ψ). If σ′ ∈ Σω , we have σ0 � σ ≺ σ · σ′ and

σ · σ′ ∈ E(ψ).

The following lemma (inspired from [CMP92a]) provides a decomposition of each obligation properties

in a normal form.

LEMMA 4.1 Any obligation r-property can be represented as the intersection

k
⋂

i=1

(Safetyi ∪Guaranteei)

for some k > 0, where Safetyi and Guaranteei are respectively safety and guarantee r-properties. We

refer to this presentation as the conjunctive normal form of obligation r-properties.

When a r-property Π is expressed as ∩ki=1(Safetyi ∪ Guaranteei), Π is said to be a k-obligation r-

property. The set of k-obligation r-properties (k ≥ 1) is denoted Obligationk. Similar definitions and

properties hold for reactivity r-properties which are expressed by combination of response and persistence

r-properties.

4.3 The automata view of r-properties

For the automata view of the Safety-Progress classification, we follow [CMP92a] and define r-properties

using Streett automata. Furthermore, for each class of the Safety-Progress classification it is possible to

syntactically characterize a recognizing finite-state automaton. Moreover, we introduce transformations

able to take a deterministic finite state automaton and modification pattern so as to obtain a Streett auto-

maton. These transformations are the representatives in the automata view of the operators defined in the

language view.
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Figure 3: Examples of Streett automata

4.3.1 Streett automata

We define5 a variant of deterministic and complete Streett automata (introduced in [Str81] and used in [CMP92a])

for property recognition. These automata process events and decide properties of interest. We add to orig-

inal Streett automata a finite-sequence recognizing criterion in such a way that these automata uniformly

recognize r-properties.

DEFINITION 4.4 (STREETT AUTOMATON) A deterministic finite-state Streett automaton is a tuple (Q, qinit,
Σ,−→, {(R1, P1), . . . , (Rm, Pm)}) defined relatively to a set of events Σ. The set Q is the set of auto-

maton states, qinit ∈ Q is the initial state. The function −→: Q × Σ → Q is the (complete) transition

function. In the following, for q, q′ ∈ Q, e ∈ Σ we abbreviate −→ (q, e) = q′ by q
e

−→ q′. The set

{(R1, P1), . . . , (Rm, Pm)} is the set of accepting pairs, for all i ≤ n, Ri ⊆ Q are the sets of recurrent

states, and Pi ⊆ Q are the sets of persistent states.

We refer to an automaton with m accepting pairs as a m-automaton. When m = 1, a 1-automaton is

also called a plain-automaton, and we refer to R1 and P1 as R and P . Moreover, for σ = σ0 · · ·σn−1 a

word of Σ of length n and q, q′ ∈ QA two states, we note q
σ

−→ q′ when ∃q1, . . . , qn−2 ∈ QA, q
σ0−→

q1∧. . .∧qn−2

σn−1

−→ q′. In the following A = (QA, qinit
A,Σ,−→A, {(R1, P1), . . . , (Rm, Pm)}) designates

a deterministic finite state Streett m-automaton.

For q ∈ QA, ReachA(q) is the set of reachable states from q with at least one transition in A, that

is ReachA(q) = {q′ ∈ QA | ∃σ ∈ Σ+, q
σ

−→A q′}. For σ ∈ Σ∞, the run of σ on A is the sequence

of states involved by the execution of σ on A. It is formally defined as run(σ,A) = q0 · q1 · · · where

∀i, (qi ∈ QA ∧ qi
σi−→A qi+1) ∧ q0 = qinit

A. The trace resulting in the execution of σ on A is the unique

sequence (finite or not) of tuples (q0, σ0, q1) · (q1, σ1, q2) · · · where run(σ,A) = q0 · q1 · · · .

For an execution sequence σ ∈ Σω on a Streett automaton A, we define vinf (σ,A), as the set of states

appearing infinitely often in run(σ,A). It is formally defined as follows: vinf (σ,A) = {q ∈ QA | ∀n ∈
N, ∃m ∈ N,m > n ∧ q = qm with run(σ,A) = q0 · q1 · · · }.

For a Streett automaton, the notion of acceptance condition is defined using the accepting pairs.

DEFINITION 4.5 (ACCEPTANCE CONDITION FOR INFINITE SEQUENCES) For σ ∈ Σω , we say that A
accepts σ if ∀i ∈ [1,m], vinf (σ,A) ∩Ri 6= ∅ ∨ vinf (σ,A) ⊆ Pi.

To deal with r-properties we need to define also an acceptance criterion for finite sequences: a finite

sequence is accepted by a a Streett automaton if and only if it terminates on a distinguished state Ri or Pi
for each accepting pair i.

DEFINITION 4.6 (ACCEPTANCE CONDITION FOR FINITE SEQUENCES) For a finite-length execution se-

quence σ ∈ Σ∗ s.t. |σ| = n, we say that them-automaton A accepts σ if (∃q0, . . . , qn−1 ∈ QA, run(σ,A) =
q0 · · · qn−1 ∧ q0 = qinit

A and ∀i ∈ [1,m], qn−1 ∈ Pi ∪Ri).

5There exist several equivalent definitions of Streett automata dedicated to infinite sequences recognition. We choose here to

follow the definition used in [CMP92a].
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Figure 4: Schematic illustrations of the shapes of Streett automata for basic classes

4.3.2 The hierarchy of automata.

An interesting feature of Streett automata is that the class of property they recognize can be easily charac-

terized by some syntactic considerations.

• A safety automaton is a plain automaton s.t. R = ∅ and there is no transition from a state q ∈ P to a

state q′ ∈ P .

• A guarantee automaton is a plain automaton s.t. P = ∅ and there is no transition from a state q ∈ R to a

state q′ ∈ R.

• An m-obligation automaton is an m-automaton s.t. for each i in [1,m]:

• there is no transition from q ∈ Pi to q′ ∈ Pi,

• there is no transition from q ∈ Ri to q′ ∈ Ri.

• A response automaton is a plain automaton s.t. P = ∅.

• A persistence automaton is a plain automaton s.t. R = ∅.

• A reactivity automaton is any unrestricted automaton.

The syntactic restrictions are illustrated in Fig. 4: shapes of Streett automata for basic classes are

depicted. One may remark that these syntactic restrictions hold for the automata represented in Fig. 3.

Automata and properties. We now link Streett automata to r-properties.

DEFINITION 4.7 (AUTOMATA AND r-PROPERTIES) We say that a Streett automaton A defines a r-property

(φ, ϕ) ∈ 2Σ
∗×Σ

ω

if and only if the set of finite (resp. infinite) execution sequences accepted by A is equal

to φ (resp. ϕ), which is noted L(A) = (φ, ϕ). Conversely, a r-property (φ, ϕ) ∈ 2Σ
∗×Σ

ω

is said to

be specifiable by an automaton A if the set of finite (resp. infinite) execution sequences accepted by the

automaton A is φ (resp. ϕ).

EXAMPLE 4.2 (STREETT AUTOMATA) In Fig. 3 are represented Streett plain-automata for the properties

presented in Example 4.1.

• AΠ1 is a safety automaton, its set of recurrent states is empty, its set of persistent states is P =
{1, 2, 3}. A finite sequence is accepted if its runs ends in either states 1, 2 or 3, meaning that, if a

grant happened there was at least one request previously. An infinite sequence is accepted if the only

states visited infinitely often are states 1, 2 or 3, meaning that requests have been made and they were

followed by only grants.

• AΠ2 is a guarantee automaton, its set of persistent states is empty, its set of recurrent states is

R = {3}. A finite sequence is accepted if its run ends in state 3. An infinite sequence is accepted if

the state 3 is visited infinitely often. In both cases, it means that requests have been issued and then

have been granted.
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• AΠ3 is a response automaton, its set of persistent states is empty, its set of recurrent states is R =
{1}. A finite sequence is accepted if its run ends in state 3, meaning that every request has been

followed by a grant (in this order). An infinite sequence is accepted if it visits the state 1 infinitely

often, meaning that this infinite sequence contains a succession of action sequences “one request

followed by one grant”.

• AΠ4 is a persistence automaton, its set of recurrent states is empty, its set of persistent states is

P = {3, 4}. A finite sequence is accepted if its run ends in state 3, meaning that a first successful

request has been made and, after that, the user performs only successful requests (if he makes a

requests, this request is granted). An infinite sequence is accepted if it visits infinetely often only

state 3, meaning that after a first sucessful request all user’s requests have been granted.

In Section 4.5 we link the syntactic characterizations on the automata to the semantic characterization

of the properties they specify.

4.3.3 From a DFA to a Streett automaton

We now introduce four transformations allowing to obtain a Streett automaton, given a deterministic finite-

state automaton and a “pattern” for this underlying property. These patterns are inspired from the different

classes of the Safety-Progress hierarchy. These simple transformations correspond, in the automata view,

to the operators in the language view and the temporal modalities in the logical view6. We start by first

defining those transformations and then prove their soundness.

A deterministic finite-state automaton (DFA) [HU79], is given relatively to an alphabet Σ, and is here

formally defined as a tupe (Q, qinit ,−→, F ) where Q is a finite set of states, qinit ∈ Q is the initial state,

−→: Q× Σ → Q is the transition function, and F ⊆ Q is the set of accepting states.

Definitions of the transformations. In the following, Aψ = (QAψ , qinit
Aψ ,−→Aψ , F

Aψ ) designates a

complete DFA recognizing a finitary regular property ψ. We define a transformation for each basic class of

the hierarchy.

Synthesis of safety automata. For this class of r-properties, the transformation is defined as follows:

DEFINITION 4.8 (DFA TO STREETT SAFETY AUTOMATON) The transformation of Aψ into a Strett safety

automaton is DFA2S Saf(Aψ) = (QAΠ , qinit
AΠ ,→AΠ

, {(∅, P )}) and defined by:

• QAΠ = F ∪ {sink}, where sink /∈ QAψ ,

• qinit

AΠ = qinit

Aψ if qinit

Aψ ∈ FAψ , and sink otherwise,

• →AΠ
is defined as the smallest relation verifying:

• q
a

−→AΠ
q′ if q ∈ F ∧ q′ ∈ F ∧ q

a
−→Aψ q

′
(TSAFE1)

• q
a

−→AΠ
sink if ∃q′ ∈ QAψ , q′ /∈ F ∧ q

a
−→Aψ q

′
(TSAFE2)

• ∀a ∈ Σ, sink
a

−→AΠ
sink (TSAFE3)

• P = ReachAΠ
(qinit

AΠ) \ {sink}, (m = 1)

One can remark that the resulting automaton is indeed a Strett safety automaton since R = ∅ and there

is no transition from the states in P to the states in P . This transformation adds a sink state and modifies

the transition function in order to redispatch the transitions outgoing from accepting states to the sink state.

Furthermore, the transitions outgoing from a state not belonging to a F -state have been removed. The set

of persistent states is the set of accepting states of the DFA.

One may remark that the resulting set of states, belonging to the Streett automaton is the smallest

solution X of the equation X = {qinit} ∪ X ∪ post(X) ∩ F if qinit ∈ F or the equation X = {sink}
if qinit /∈ F . Moreover, according to the syntactic restrictions of the obtained Streett safety automata, the

following property holds: for a sequence σ ∈ Σω and an automaton resulting of the transformation AΠ, if

sink ∈ vinf (σ,AΠ), then vinf (σ,AΠ) = {sink}; else vinf (σ,AΠ) ⊆ P .

6i.e., operators A,E,R, P (and their finitary versions) of the language view and the temporal modalities � ,♦ ,� ♦ ,♦ � of

the logical view.
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q = qo qi = ql qj

Figure 5: Principle for tagging recurrent states in DFA2S Res

Synthesis of Streett guarantee automata. For this class of r-properties, the transformation is defined as

follows:

DEFINITION 4.9 (DFA TO STREETT GUARANTEE AUTOMATON) The transformation of Aψ into a Strett

guarantee automaton is DFA2S Guar(Aψ) = (QAΠ , qinit
AΠ ,→AΠ

, {(R, ∅)}) and defined by:

• QAΠ is the smallest subset of QAψ containing the reachable states from the initial state qinit
AΠ with −→AΠ

(defined below),

• qinit

AΠ = qinit

Aψ ,

• →AΠ
is defined as the smallest relation verifying:

– q
a

−→AΠ
q if ∃q′ ∈ QAψ · q

a
−→Aψ q

′ ∧ q ∈ F (TGUAR1)

– q
a

−→AΠ
q′ if q /∈ F ∧ q

a
−→Aψ q

′
(TGUAR2)

• R = F , (m = 1)

One may remark that the resulting automaton is indeed a Streett guarantee automaton since P = ∅
and there is no transition from the R-state to the R-states. This automaton may not be minimal for the

R-states. They can be merged into one unique state since they are all equivalent wrt. property recognition.

This transformation modifies the transition function in the following manner: outgoing transitions from the

accepting states (to an accepting state or not) are modified into a loop on the same state. Indeed, when a

run reaches a state in F , this suffix suffices in order to satisfy the guarantee property. The initial state is not

modified, and the set of states of the Streett automaton is defined as the smallest set of reachable set from

the initial state with the new transition function.

Synthesis of Streett response automata. For this class of r-properties, the transformation is defined as

follows:

DEFINITION 4.10 (DFA TO STREETT RESPONSE AUTOMATON) The transformation of Aψ into a Streett

response automaton is DFA2S Resp(Aψ) = (QAΠ , qinit
AΠ ,→AΠ

, {(R, ∅)}) and defined by:

• QAΠ = QAψ ,

• qinit

AΠ = qinit

Aψ ,

• →AΠ
is defined as →Aψ ,

• R = {q ∈ F | ∃l ∈ N∗, ∃q0, . . . , ql ∈ QAψ , (1) ∧ (2) } ∪ {q ∈ F | q −→Aψ q}

∀j ∈ [0, l − 1], qj −→Aψ qj+1 (1)

∃i ∈ [0, l], ∃j ∈ [i, l − 1], qj ∈ F ∧ qi = ql ∧ q0 = q (2)

The resulting automaton is indeed a Streett response automaton since P = ∅. This transformation

does not modify the set of states nor the transition function. It marks as recurrent states (cf. Fig. 5) every

accepting state of the DFA s.t. it is possible from this state to reach a cycle containing at least one accepting

state.
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q = qo qi = ql qi+1

ql−1

Figure 6: Principle for tagging persistent states in DFA2S Per

Synthesis of Streett persistence automata. For this class of r-properties, the transformation is defined

as follows:

DEFINITION 4.11 (DFA TO STREETT PERSISTENCE AUTOMATON) The transformation of Aψ into a Streett

persistence automaton is DFA2S Per(Aψ) = (QAΠ , qinit
AΠ ,→AΠ

, {(∅, P )}) and defined by:

• QAΠ = QAψ ,

• qinit

AΠ = qinit

Aψ ,

• →Π is defined as →Aψ ,

• P = {q ∈ F | ∃l ∈ N∗, ∃q0, . . . , ql ∈ QAψ , (1) ∧ (3) } ∪ {q ∈ F | q −→Aψ q}

∃i ∈ [0, l], ∀j ∈ [i, l − 1], qj ∈ F ∧ qi = ql ∧ q0 = q (3)

The resulting automation is indeed a Streett persistence automaton since R = ∅. This transformation

does not modify the set of states nor the transition function. It marks (cf. Fig. 6) as persistent state every

accepting state of the DFA from which it is possible to reach a cycle of accepting states.

Soundness of the transformations. Given a finitary property ψ, defining a regular language over an

alphabet Σ and specified by a DFA Aψ , the safety (resp. guarantee, response, persistence) r-property

(Xf (ψ), X(ψ)) where X ∈ {A,E,R, P} is specified by the Streett automaton obtained by the transfor-

mation DFA2S specific to safety (resp. guarantee, response, persistence) properties. This is stated formally

by the following theorem:

THEOREM 4.1 (Soundness of the transformations of DFAs to Streett automata) The transformation

DFA2S Saf (resp. DFA2S Guar , DFA2S Resp, DFA2S Per ) in the automata view “corresponds” to

the operator Af and A (resp. Ef and E, Rf and R, Pf and P ) in the language view. More precisely,

when L(Aψ) = ψ,

AΠ = DFA2S Saf (Aψ) ⇒ L(AΠ) = (Af (ψ), A(ψ))
AΠ = DFA2S Guar(Aψ) ⇒ L(AΠ) = (Ef (ψ), E(ψ))
AΠ = DFA2S Resp(Aψ) ⇒ L(AΠ) = (Rf (ψ), R(ψ))
AΠ = DFA2S Per(Aψ) ⇒ L(AΠ) = (Pf (ψ), P (ψ))

Proof Proofs are conducted for each class of properties and the associated transformation by using the

acceptance criteria and examining runs of accepted sequences. The complete proof can be found in Ap-

pendix A.1.1.

REMARK 4.1 Let us remark that these transformation may entail a loss of information. It is in general not

possible to find again the finitary language from which a Streett automaton has been built. Consider for

exemple the Streett guarantee automaton represented on Fig. 3. There exists an infinite number of finitary

languages from which this automata can be constructed. Indeed, to obtain them, it suffices to retransform

this Streett automaton into a minimal DFA by forgetting accepting pairs and changing the R-state into an

accepting state. Then, from this accepting state, we can add arbritary transitions. The automata produced

by doing so will always be transformed by DFA2S Guar into AΠ2.
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Figure 7: Characterization of states for basic classes

Language view Automata view

“base brick” ψ ⊆ Σ+ A (DFA)

r-property (Xf (ψ), X(ψ)) DFA2S X (A)
X ∈ {A,E,R, P} X ∈ {Saf .,Guar .,

Resp.,Persit .}

Table 1: Ways to specify properties according to the views

4.4 Characterizing states of Streett automata

To better identify particular execution sequences on a Streett automaton we characterize some subsets of its
states in terms of reachability of distinguished states. More precisely, the set PA = {GoodA,GoodA

c ,Bad
A
c ,

BadA} is a set of subsets of QA, s.t. GoodA, GoodA
c , BadA

c , BadA designate respectively the good (resp.
currently good, currently bad, bad) states. The set PA is defined as follows:

• q is in GoodA iff it terminates an accepted sequence and every sequence starting from q is accepted:

GoodA = {q ∈
⋂m

i=1
(Ri ∪ Pi) | ReachA(q) ⊆

⋂m

i=1
(Ri ∪ Pi)};

• q is in GoodA
c iff it terminates an accepted sequence and there exist non accepted sequences starting from q:

GoodA
c = {q ∈

⋂m

i=1
(Ri ∪ Pi) | ReachA(q) 6⊆

⋂m

i=1
(Ri ∪ Pi)};

• q is in BadA
c iff it terminates a non accepted sequence and there exist accepted sequences starting from q:

BadA
c = {q ∈

⋃m

i=1
(Ri ∩ Pi) | ReachA(q) 6⊆

⋃m

i=1
(Ri ∩ Pi)};

• q is in BadA iff it terminates a non accepted sequence and every sequence starting from q is not accepted:

BadA = {q ∈
⋃m

i=1
(Ri ∩ Pi) | ReachA(q) ⊆

⋃m

i=1
(Ri ∩ Pi)}.

The subsets are illustrated for basic classes in Fig. 7. Note that QA = GoodA ∪GoodA
c ∪BadA

c ∪BadA.

EXAMPLE 4.3 (CHARACTERIZATION OF STREETT AUTOMATA STATES) We illustrate the characteriza-

tion on the states of the Streett automata presented in Example 4.2:

• BadAΠ1 = {4}, GoodAΠ1

c = {1, 2, 3},

• BadAΠ2 = {4}, BadAΠ2

c = {1, 2}, GoodAΠ2 = {3},

• BadAΠ3 = {3}, BadAΠ2

c = {2}, GoodAΠ3

c = {1},

• BadAΠ4 = {5}, BadAΠ4

c = {1, 2, 6}, GoodAΠ4

c = {3, 4}.

REMARK 4.2 For a Streett automaton AΠ, all states in BadAΠ (resp. GoodAΠ ) are equivalent wrt.

property recognition; and can thus be merged into one single state.

This characterization of states will be usefull in the following sections when characterizing monitorable

properties and when synthesizing monitors.

4.5 Summary

A graphical representation of the Safety-Progress hierarchy of properties is depicted in Fig. 8. A link

between two classes means that the higher class contains strictly the lower one. Furthermore, for each

class, we have recalled and uniformly extended the characterizations in the language-theoretic and automata

views.
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Figure 8: The Safety-Progress classification of r-properties

Language view Automata view

Finite seq ∈ Xf (ψ) Finite seq criterion

(Def. 4.1) (Def. 4.6)

Infinite seq ∈ X(ψ) Infinite seq criterion

(Def. 4.2) (Def. 4.5)

Table 2: Recognizing criteria according to the considered view

In table 1 is represented each “base brick”, i.e., the element used to build a r-property. In the lan-

guage view, r-properties are built from a finitary language ψ, and using operators Xf , and X , with

X ∈ {A,E,R, P}. In the automata view, a finite state automaton is transformed, by one of the transforma-

tions DFA2S specific to a class of properties, into a Streett automaton which recognizes (Xf (ψ), X(ψ))
according to the class of properties.

REMARK 4.3 It is worth noticing that property interpretation of finite sequences extends to infinite se-

quences in a consistent way, depending on the class of properties under consideration:

• for a safety property Π, ∀i ∈ N,Π(σ···i) ⇒ Π(σ)

• for a guarantee property Π, ∃i ∈ N,Π(σ···i) ⇒ ¬Π(σ)

• for a response property Π,
∞

∃ i ∈ N,Π(σ···i ⇒ Π(σ)

• for a persistence property Π, ¬(
∞

∃ i ∈ N,¬Π(σ···i)) ⇒ ¬Π(σ)

5 Monitorability wrt. the SP classification

As stated in the introduction, studying the question of monitorabily amounts to study the expressiveness

of runtime verification, i.e., characterize the classes of properties that are worth verifying at runtime. In

this section we first recall and extend existing monitorability results in the Safety-Progress classification

of properties. Second, we propose to parameterize the classical definition with a truth-domain. Third, we

propose an alternative definition of monitorability.
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In fact, characterizing the space of “monitorable” properties depends on several parameters: the pro-

perty semantics for finite sequence, the set of monitor verdicts we consider, and the exact definition of

monitoring.

5.1 According to the classical definition of monitoring

In this section, we express the classical definition of monitorability given by Pnueli and Zaks in the SP

framework introduced in the previous section. Then, we characterize the set of monitorable properties

according to this classical definition.

5.1.1 The classical definition of monitorability

The main objective of monitoring, in its classical definition, is to evaluate an (infinitary) property ϕ on a

possibly infinite execution sequence from one of its finite prefix. Intuitively, the idea is to be able to detect

verdicts, i.e., find an evaluation, wrt. an infinitary property, from a finite observation of a system behavior.

This is formalized as follows:

DEFINITION 5.1 (POSITIVE/NEGATIVE DETERMINACY [PZ06]) A r-property Π ⊆ Σ∗ × Σω is said to

be:

• negatively determined by σ ∈ Σ∗ if ¬Π(σ) ∧ ∀µ ∈ Σ∞,¬Π(σ · µ);

• positively determined by σ ∈ Σ∗ if Π(σ) ∧ ∀µ ∈ Σ∞,Π(σ · µ).

A r-property is negatively (resp. positively) determined if the current sequence does not (resp. does)

satisfy the property and if every future possible continuations do not (resp. do) satisfy the property. The

practical meaning is the following: when a monitor observes a system in order to verify a property, if

this property is negatively or positively determined, then the observation of the system can be stopped. A

monitor, dedicated to a r-property Π, associates emits the verdict ⊥ (resp. the verdict ⊤) after reading σ if

the property is negatively (resp. positively determined) by σ. The obtained verdict is definitive. In others

cases, a monitor issues the value “?”, meaning that no definitive verdict can be produced.

DEFINITION 5.2 (MONITORABLE r-PROPERTIES, “CLASSICAL” DEFINITION [PZ06] ) A r-property Π
is:

• σ-monitorable, if there exists a (finite) µ ∈ Σ∗ s.t. Π is positively or negatively determined by σ · µ;

• monitorable, if it is σ-monitorable for every σ ∈ Σ∗.

The set of monitorable properties, according to the classical definition is noted MPc . A r-property

is monitorable if, for any execution sequence that can be observed, a possible extension of this sequence

determines negatively or positively the property.

Remark that this definition of monitorability is hard to use in practice. Given a r-property, the definition

does not afford an easy way to determine if this property is monitorable or not.

5.1.2 Characterization of monitorable properties according to the classical definition

One of our first objective is to characterize the subset of monitorable properties within the Safety-Progress

classification.

We start by first enunciating a lemma that we will use later on. This lemma states that the set of

MPc-monitorable properties is closed under boolean operations.

LEMMA 5.1 (CLOSURE OF MONITORABLE PROPERTIES UNDER BOOLEAN OPERATIONS) Given two r-

properties Π1, Π2, we have:
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Π1,Π2 ∈ MPc ⇒ Π1 ∧Π2 ∈ MPc

Π1,Π2 ∈ MPc ⇒ Π1 ∨Π2 ∈ MPc

Π1 ∈ MPc ⇒ ¬Π1 ∈ MPc

Proof The complete proof is given in Appendix A.2. Let us consider two r-properties Π1,Π2 ∈ MPc .

• Proof of Π1 ∧ Π2 ∈ MPc . It consists in showing that Π1 ∧ Π2 is σ-monitorable for any sequence

σ ∈ Σ∗. Let σ ∈ Σ∗, let us exhibit an extension µ ∈ Σ∗ s.t. Π1 ∧ Π2 is negatively or positively

determined by σ · µ.

The proof is conducted by using the fact that Π1 is monitorable which gives us a sequence µ1 s.t. Π1

is positively or negatively determined by σ · µ1. Then, using the fact that Π2 is monitorable gives us

a sequence µ2 s.t. Π1 ∧ Π2 is negatively or positively determined by σ · µ1 · µ2. Then, one has to

analyze the different boolean combinations to obtain the expected result.

• The proof of Π1 ∨Π2 ∈ MPc is similar.

• The proof of ¬Π1 ∈ MPc is straightforward by noticing that for any sequence σ ∈ Σ∗, if Π1 is

positively (resp. negatively) determined by σ, then ¬Π is negatively (resp. positively) determined by

σ.

We are now able to establish that the set of monitorable properties according to the classical definition

strictly contains the set of obligation properties.

THEOREM 5.1 (Obligation(Σ) ⊂ MPc) The obligation properties are strictly contained in the set of mo-

nitorable properties.

Proof Obligation r-properties are obtained by boolean combinations of safety and guarantee r-properties.

For k ∈ N, a k-obligation r-property is expressed:
⋂k

i=1
(Safetyi ∪Guaranteei),

where Safetyi and Guaranteei are safety and guarantee r-properties. The set of all k-obligation r-

properties for k ∈ N is the set of obligation r-properties.

Let Π ∈ Obligation(Σ), there exists k ∈ N s.t. Π ∈ k−Obligation(Σ). The proof relies on an induction

on k and uses the following facts:

• Safety and guarantee properties are monitorable. Here is the proof7:

• Let Π = (Af (ψ), A(ψ)) be a safety r-property, let us prove that Π is monitorable. Let σ ∈ Σ∗,

let us prove that Π is σ-monitorable. The proof is done by distinguishing two cases : either there

exists a continuation σ′ ∈ Σ∗ of σ s.t. ¬Π(σ′), or there does not exist. In the first case, we have

that ¬Af (ψ)(σ
′), i.e., σ′ does not have all of its prefixes in ψ. Then, the same hold for every

continuation σ′′ of σ′: ∀σ′′ ∈ Σ∗, σ′ � σ′′ ⇒ ¬Af (ψ)(σ
′′). It follows that ∀σ′′ ∈ Σ∗, σ �

σ′ � σ′′ ⇒ ¬Π(σ′′). That is to say Π is negatively determined by σ′. In the second case, every

continuation of σ satisfies Π. That is Π is positively determined by σ · ǫ.

• Let Π = (Ef (ψ), E(ψ)) be a guarantee r-property, let us prove that Π is monitorable. The proof

can be similarly conducted. It suffices to consider σ ∈ Σ∗ and show that there exists an extension

which makes that Π is negatively or positively determined by this extension. Similarly, two cases

can be distinguished whether there exists an extension of σ which satisfies the property.

• Union and intersection of two monitorable properties are monitorable (Lemma 5.1).

• Example 5.2 shows that the inclusion is strict.

Thus, we have extended the previous bound established by Bauer et al. in [BLS07] stating that

Safety(Σ) ∪ Guarantee(Σ) ⊂ MPc
8. Indeed, the set of obligation properties is a strict super set of

7The proof can also be done by examining the syntactic restriction applying to an automaton recognizing a safety or a guarantee

property: for all σ ∈ Σ∗, there exists a continuation µ s.t. this property is negatively or positively determined by σ · µ. For instance,

in a safety automaton, for each state there exists a path which leads either to a terminal strongly connected component of states in

which the property is satisfied or in a terminal strongly connected component in which the property is not satisfied.
8In [BLS07], guarantee properties are named co-safety properties.
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Figure 9: Non-monitorable response property - R = {1}, P = ∅
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Figure 10: Monitorable response property - R = {1}, P = ∅

the union of safety and guarantee properties.

EXAMPLE 5.1 (CLASSICAL MONITORING OF AN OBLIGATION PROPERTY) We go back on the example

presented in the introduction, defined using two atomic propositions p or q, stating that p should always

hold or q should eventually hold. This is a 1-obligation r-property9, defined by the disjunction of a safety

r-property (“p should always hold”) and a guarantee r-property (“q should eventually hold”). According

to the classical definition of monitorability, this property is monitorable. Indeed, for any sequence σ, this

property can be positively determined by σ · {p, q} or by σ · {p, q}, i.e., by completing σ with an event in

which q is true.

Beyond Obligation properties. Following the classical definition of monitorability, it is possible to show

that there exist non-monitorable and monitorable properties for super classes of the Obligation class. The

above two properties are pure response properties, one is not monitorable, the other one is.

EXAMPLE 5.2 (NON-MONITORABLE RESPONSE PROPERTY [BLS07]) The (response) property “Every

request should be acknowledged” is not monitorable. This property is represented by the Streett (res-

ponse) automaton depicted in Fig. 9 with R = {1}. Using the acceptance criteria for finite and infinite

sequences,one can reasonably be convinced that this automaton defines the considered property. Indeed,

a finite sequence is accepted iff previous requests have been acknowledged. An infinite sequence is ac-

cepted iff state 1 is visited infinitely often which means for an infinite sequence that requests have been

acknowledged.

For this property, there are two limitations for monitoring with the considered truth-domain and defi-

nition of monitorability. First, it is impossible to distinguish correct (ending in state 1) and incorrect finite

sequences (ending in state 2): both evaluate to “?”. Second, for all finite sequences, it is never possible to

decide ⊤ or ⊥ since every finite sequence can be extended to correct or incorrect infinite continuations. In

other words, it is never possible to satisfy or falsify this property with a finite observation.

EXAMPLE 5.3 (MONITORABLE RESPONSE PROPERTY) The (response) property “Every request should

be acknowledged, and it is forbidden to send two successive requests (without acknowledgment)” is moni-

torable. This property is represented by the Streett (response) automaton depicted in Fig. 10 withR = {1}.

Intuitively, given an execution sequence, this r-property can always be negatively determined by one of

its extension. Indeed, for any σ ∈ Σ∗, the property is negatively determined by σ · req · req , and thus

σ-monitorable.

Thus there exist monitorable (pure) response properties. Consequently, using Lemma 5.1, there exist

also monitorable pure persistence and reactivity properties. Indeed, monitorable properties are closed under

boolean operations.

9Seen in the logical view, this property can be defined by the temporal logic formula �p ∨ ♦q.
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5.2 Considering other truth domains ?

As we will see, the characterization of monitorable properties may also depend on the truth domain B we

consider when evaluating an execution sequence. Thus we parametrize the classical definition of monito-

rable properties with a truth domain. For a truth-domain B, we will note MP(B) the space of monitorable

properties, according to the classical definition of monitorability.

The first truth domain we have considered is a 3-valued truth domain B3 = {⊤, ?,⊥}, i.e., MPc =
MP(B3). This truth-domain is inherent in the classical definition. Value “⊤” is used to express property

satisfaction when the property is positively determined. Value “⊥” is used to express property violation

when the property is negatively determined. Whereas value “?” is used to express that no verdict can be

produced. B3 can be viewed as a complete lattice, those minimal value is ⊥ and maximal value is ⊤.

Boolean operators ∨ and ∧ are then defined respectively as upper and lower bounds.

We know tackle the question of how the underlying truth domain we consider may influence the class

of monitorable properties.

Monitorability with B2. Restraining B3 to a truth-domain of cardinality 2 allows only either positive

or negative determinacy, and hence reduces the set of monitorable properties. Indeed, the purpose of the

monitor is then to only detect bad behaviors or good behaviors (but not both). In the sequel we consider

two subsets of B3, namely B⊥
2 = {⊥, ?} and B⊤

2 = {?,⊤}.

DEFINITION 5.3 (MONITORABLE r-PROPERTIES WITH TRUTH-DOMAINS OF CARDINALITY 2) A r-property

Π is:

• σ-monitorable with B⊥
2 , if there exists a (finite) µ ∈ Σ∗ s.t. Π is negatively determined by σ · µ;

• σ-monitorable with B⊤
2 , if there exists a (finite) µ ∈ Σ∗ s.t. Π is positively determined by σ · µ;

• monitorable with B⊥
2 (resp. B⊤

2 ), if it is σ-monitorable with B⊥
2 (resp. B⊤

2 ) for every σ ∈ Σ∗.

However, there is no simple characterization of these properties in the Safety-Progress hierarchy. Intu-

itively one may think that with B⊥
2 = {?,⊥}, the set of monitorable properties would be the set of safety

properties. But in fact, there are numerous safety properties which can never be negatively determined.

For example, the r-property true = (Σ∗,Σω) = (Af (Σ
∗), A(Σ∗)) cannot be negatively determined nor

falsified. Moreover all safety properties which are valid forever for execution sequences longer than a given

k are not σ − B⊥
2 -monitorable when |σ| > k. For these kinds of properties a monitor would produce only

verdict sequences of “?” when evaluating an execution sequence. Similarly, there exist many guarantee

properties that cannot be positively determined, and therefore are not monitorable with B⊤
2 = {?,⊤}.

It appears that there is no simple characterization, in term of classes of the Safety-Progress classifica-

tion, for monitorable properties. However, in Section 5.4, we will provide a syntactic criterion on Streett

automata in order to decide whether the r-property recognized by this automaton is monitorable according

to the mentionned truth-domains.

5.3 According to an alternative definition of monitorability

The interest of previous definitions of monitorability is due to two facts: the underlying truth-domain is

2-valued or 3-valued and the aim is the detection of verdict of infinitary properties. Although it is possible

to give a semantics to all reactive properties with either a 2-valued or 3-valued truth-domain, the question

is whether those values make sense for some properties in a monitoring context.

As noticed in [BLS07, LS08], it seems interesting to investigate further the space of monitorable pro-

perties, and to answer more precisely questions like “what verdict to issue if the program execution stops

here”. This means a better distinction between finite sequences which evaluate to “?” in a 2-valued or

3-valued truth-domain.
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Hence, the authors of [BLS07, LS08] proposed to consider a 4-valued truth-domain B4 = {⊤,⊤c,⊥c,⊥}.

The truth-value ⊤c (resp. ⊥c) denotes “currently true” (resp. “currently false”) and it expresses “Π-

satisfaction (resp. Π-violation) if the program execution stops here”. Boolean operators ∨ and ∧ are de-

fined in [BLS07]. Using B4 leads to an alternative definition of monitoring. This new definition leverages

the evaluation of finite sequences in the Safety-Progress classification framework.

5.3.1 Property evaluation in a truth-domain.

We first introduce how, given a r-property, we evaluate an execution sequence in the truth-domains we

considered so far.

DEFINITION 5.4 (PROPERTY EVALUATION WRT. A TRUTH-DOMAIN) For each of the possible truth-domain

B, we define the evaluation functions [[·]]B(·) : 2
Σ

∗×Σ
ω

× Σ∗ → B as follows:

For B⊥
2 :

[[Π]]B⊥
2
(σ) =⊥ if ¬Π(σ) ∧ ∀µ ∈ Σ∞,¬Π(σ · µ);

[[Π]]B⊥
2
(σ) =? otherwise.

For B⊤
2 :

[[Π]]B⊤
2
(σ) = ⊤ if Π(σ) ∧ ∀µ ∈ Σ∞,Π(σ · µ);

[[Π]]B⊤
2
(σ) =? otherwise.

For B3:

[[Π]]B3
(σ) =⊥ if ¬Π(σ) ∧ ∀µ ∈ Σ∞,¬Π(σ · µ);

[[Π]]B3
(σ) = ⊤ if Π(σ) ∧ ∀µ ∈ Σ∞,Π(σ · µ);

[[Π]]B3
(σ) =? otherwise.

For B4:

[[Π]]B4
(σ) = [[Π]]B3

(σ) if [[Π]]B3
(σ) =⊥ or [[Π]]B3

(σ) = ⊤,

[[Π]]B4
(σ) = ⊤c if [[Π]]B3

(σ) =? and Π(σ),

[[Π]]B4
(σ) = ⊥c if [[Π]]B3

(σ) =? and ¬Π(σ).

REMARK 5.1 The defined property evaluation wrt. B4 is similar to the semantics of the LTL variant

RV-LTL defined in [BLS09].

5.3.2 An alternative definition of monitorability.

Intuitively, the monitorability notion we propose relies on the ability of a given monitor to distinguish

between good and bad finite execution sequences with respect to a property Π.

DEFINITION 5.5 (ALTERNATIVE MONITORABILITY) A r-property Π = (φ, ϕ) is said to be monitorable

with the truth-domain B, or B-monitorable iff

∀σgood ∈ φ, ∀σbad ∈ φ, [[Π]]B(σgood) 6= [[Π]]B(σbad)

We note MP∗(B), the set of monitorable properties with truth domain B according to this definition.

Thus, a r-property is monitorable with a given truth-domain B iff evaluations of good and bad finite exe-

cution sequences lead to distinct values. Remark that this definition does not rely directly on the infinitary

part of the r-property (although this infinitary part is taken into account in the evaluation function).
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5.3.3 Characterization of monitorable properties

LEMMA 5.2 (MP∗(B3), SAFETY, AND GUARANTEE PROPERTIES) The set of monitorable properties (ac-

cording to Definition 5.5) with B3 is included in the union of safety and guarantee properties. Formally:

MP∗(B3) ⊆ Safety(Σ) ∪Guarantee(Σ)

Proof The complete proof can be found in Appendix A.2. It is done by reductio ad absurdum and sup-

posing the existence of a r-property Π = (φ, ϕ) defined on Σ which is neither a safety nor a guarantee

r-property. The proofs shows the existence of two execution sequences, one good, the other bad, for Π s.t.

these sequences are evaluated to “?”.

THEOREM 5.2 (Multi-valued characterization of alternative monitorability) The sets of monitorable

properties according to the truth domains considered so far are the following:

(i) MP∗(B⊥
2 ) = Safety(Σ)

(ii) MP∗(B⊤
2 ) = Guarantee(Σ)

(iii) MP∗(B3) = Safety(Σ) ∪Guarantee(Σ)

(iv) MP∗(B4) = Reactivity(Σ)

Proof We prove each of this facts successively. Let Π = (φ, ϕ) be a r-property.

Proof of (i).

• Let Π ∈ Safety(Σ), we show that Π ∈ MP∗(B⊥
2 ). As Π ∈ Safety(Σ), there exists a finitary

property ψ ⊆ Σ∗, s.t. Π = (Af (ψ), A(ψ)). Let us consider σgood ∈ φ and σbad ∈ φ, we want to

prove that the evaluations in B⊥
2 of these two sequences differ. On one hand, we have that Π(σgood)

(since σgood ∈ φ) and thus [[Π]]B⊥
2
(σgood) =?. On the other hand, we have that ¬Π(σbad) and

σbad /∈ Af (ψ) (since σbad /∈ φ). Using Property 4.2, we have ∀µ ∈ Σ∞,¬Π(σbad · µ), i.e.,

[[Π]]B⊥
2
(σbad) = ⊥.

• Let Π ∈ MP∗(B⊥
2 ), we show that Π ∈ Safety(Σ). According to the characterization of safety

properties given in Property 4.1, showing that Π is a safety r-property amounts to show that it verifies

Π = (Af (Pref (φ)), A(Pref (ϕ))). This is what we do by showing the inclusion in both ways.

– Π ⊓ Σ∗ ⊆ Af (Pref (φ)) is immediate as for every sequence σ ∈ Π ⊓ Σ∗ (i.e., σ ∈ φ), σ has

all of its prefixes in Pref (φ). The same holds for Π ⊓ Σω ⊆ A(Pref (ϕ)).

– Let us show that Af (Pref (φ)) ⊆ Π ⊓ Σ∗. Let σ ∈ Af (Pref (φ)), we prove that σ ∈ Π ⊓ Σ∗.

As σ ∈ Af (Pref (φ)), all prefixes of σ belong to Pref (φ). That is, all prefixes of σ are the

prefixes of a sequence in φ. Let σmin the smallest word of φ which is an extension of a prefix

of σ. We distinguish two cases. If σmin = σ, then σ ∈ Π. Else (σ ≺ σmin), as σmin ∈ φ,

we have [[Π]]B⊥
2
(σmin) =?; and consequently [[Π]]B⊥

2
(σ) =?. Using Π ∈ MP∗(B⊥

2 ), we obtain

σ ∈ φ and consequently σ ∈ Π.

The same reasoning can be conducted to show that A(Pref (ϕ)) ⊆ Π ∩ Σω .

Finally, according to the definition of r-properties (Definition 2.1), we know that Π = (φ, ϕ) can be

written Π = (Af (Pref (φ)), A(Pref (ϕ))), which gives the expected result.

Proof of (ii).

• The reasoning to prove that Guarantee(Σ) ⊆ MP∗(B⊤
2 ) is similar to the reasoning used to prove

Safety(Σ) ⊆ MP∗(B⊥
2 ). It suffices to show that all bad executions sequences are evaluated to ”?”.

Furthermore, all good execution sequences are evaluated to ⊤. Indeed, once a sequence satisfies a

guarantee r-property, all its continuations also satisfy it.

• Proving that MP∗(B⊤
2 ) ⊆ Guarantee(Σ) can be done following the reasoning used to prove MP∗(B⊥

2 ) ⊆

Safety(Σ), by showing that if Π ∈ MP∗(B⊤
2 ), then Π verifies Π =

(

Ef (Pref (φ)), E(Pref (ϕ))
)

.
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Proof of (iii)

• The proof of Safety(Σ) ∪ Guarantee(Σ) ⊆ MP∗(B3) is evident by noticing that MP∗(B⊥
2 ) ⊂

MP∗(B3) and MP∗(B⊤
2 ) ⊂ MP∗(B3).

• The fact that MP∗(B3) ⊆ Safety(Σ) ∪Guarantee(Σ) is given by Lemma 5.2.

Proof of (iv). The proof is straightforward by noticing that every r-property can be evaluated by effec-

tively distinguishing good and bad sequences. In others words, every reactivity r-property can be evaluated

consistently with B4. Indeed, a good sequence σgood is evaluated to ⊤c or ⊤ according to its continuations.

A bad sequence σbad is evaluated to ⊥c or ⊥ depending on its continuations. As we can see here, the truth

values ⊥c and ⊤c refine the verdict “?”.

EXAMPLE 5.4 (ALTERNATIVE MONITORING OF AN OBLIGATION PROPERTY) Let us go back again to

the property considered in the introduction, stating that “p should always hold or q should eventually

hold”. We examine again the execution sequences: σgood = {p, q} · {p, q} and σbad = {p, q} · {p, q}.

In B3, we have [[Π]]B3
(σgood) = [[Π]]B3

(σbad) =?. Thus, Π is not B3-monitorable. However, Π is B4-

monitorable and [[Π]]B4
(σgood) = ⊤c and [[Π]]B4

(σbad) = ⊥c.

This example shows how the finite sequence semantics leverages the interest of monitoring. Further-

more, it shows that under our definition of monitoring, ambiguous situations, such as those encountered

with the classical definition, are avoided.

Our definition of monitorability has the advantage of being able to identify the properties which should

not be monitored with a truth-domain “not fine enough”. Indeed the last property shows that if we build a

monitor for such a property with the truth-domain B3, this monitor would produce an evaluation “?” for

correct and incorrect execution sequences wrt. the property. This seems not desirable to us.

Furthermore, we have shown in Section 4.3 that, for a given finite sequence σ, [[Π]]B4
(σ) is easy to

compute from the set of states of a Streett automaton recognizing Π.

5.4 Characterizations in the automata view

Although some spaces of monitorable properties we considered cannot be precisely expressed in terms

of Safety-Progress classes, it is still possible to characterize them with some syntactic criteria on Streett

automata. It relies on the characterization of the states of Streett automata introduced in Section 4.3.

PROPERTY 5.1 (CORRESPONDANCE BETWEEN STREETT AUTOMATA STATES AND B4) Given a Streett

m-automaton recognizing a r-property Π and a sequence σ ∈ Σ∗ of length n s.t. run(σ,AΠ) = q0 · · · qn−1,

we have that:

qn−1 ∈ GoodAΠ ⇔ [[Π]]B4
(σ) = ⊤,

qn−1 ∈ GoodAΠ
c ⇔ [[Π]]B4

(σ) = ⊤c,
qn−1 ∈ BadAΠ

c ⇔ [[Π]]B4
(σ) = ⊥c,

qn−1 ∈ BadAΠ ⇔ [[Π]]B4
(σ) = ⊥.

Proof The proof of this property is given in Appendix A.2. The proof uses the acceptance criteria of Streett

automata to ground the correspondance.

REMARK 5.2 (Correspondance with B3, B⊥
2 , and B⊤

2 ) From Property 5.1 and Definition 5.4, one can

easily deduce a correspondance between the set of states and the evaluation in the truth-domain of a lower

cardinality:

• For B3 :

– qn−1 ∈ GoodAΠ ⇔ [[Π]]B3
(σ) = ⊤,

– qn−1 ∈ Good
AΠ
c ∪ Bad

AΠ
c ⇔ [[Π]]B3

(σ) =?,
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– qn−1 ∈ BadAΠ ⇔ [[Π]]B3
(σ) = ⊥.

• For B⊤
2 :

– qn−1 ∈ GoodAΠ ⇔ [[Π]]
B⊤
2

(σ) = ⊤,

– qn−1 ∈ Good
AΠ
c ∪ Bad

AΠ
c ∪ BadAΠ ⇔ [[Π]]

B⊤
2

(σ) =?.

• For B⊥
2 :

– qn−1 ∈ BadAΠ ⇔ [[Π]]
B⊥
2

(σ) = ⊥,

– qn−1 ∈ BadAΠ ∪Good
AΠ
c ∪ Bad

AΠ
c ⇔ [[Π]]

B⊥
2

(σ) =?.

Now we are able to give an exact characterization of monitorable properties in the automata view.

THEOREM 5.3 (Automata view of classical monitorability) The r-property Π recognized by the Streett
m-automaton AΠ = (QAΠ , qinit

AΠ ,→AΠ
, {(R1, P1), . . . , (Rm, Pm)}) is

• MP(B⊥
2 )-monitorable iff

∀q ∈ Reach(qinit

AΠ),Reach(q) ∩ BadAΠ 6= ∅

• MP(B⊤
2 )-monitorable iff

∀q ∈ Reach(qinit

AΠ),Reach(q) ∩GoodAΠ 6= ∅

• MP(B3)-monitorable iff

∀q ∈ Reach(qinit

AΠ),Reach(q) ∩ (BadAΠ ∪GoodAΠ) 6= ∅

Proof This property is established by noticing that it is a consequence of Property 5.1 and by noticing

that we are considering deterministic and complete Streett automata. Thus the two following facts are

equivalent:

• being able to reach from every accessible state, a bad (resp. good, bad or good);

• every finite sequence has a continuation that determines negatively (resp. positively, negatively or

positively) the underlying property.

EXAMPLE 5.5 (CLASSICAL MONITORABILITY IN THE AUTOMATA VIEW) We illustrate the use of the pre-

vious theorem to state whether the following properties, with their automata provided, are monitorable

according to the classical definition:

• The property Π1 specified by AΠ1
is B⊥

2 -monitorable, and thus B3-monitorable; but not B⊤
2 -monitorable.

• The property Π2 specified by AΠ2
is B⊤

2 -monitorable and B⊥
2 -monitorable, and thus B3-monitorable.

• The property Π3 specified by AΠ3
is B⊥

2 -monitorable, and thus B3-monitorable; but not B⊤
2 -monitorable.

• The property Π4 specified by AΠ4
is B⊥

2 -monitorable, and thus B3-monitorable; but not B⊤
2 -monitorable.

THEOREM 5.4 (Automata view of alternative monitorability) The r-property Π recognized by the Streett
m-automaton AΠ = (QAΠ , qinit

AΠ ,→AΠ
, {(R1, P1), . . . , (Rm, Pm)}) is

• MP∗(B⊥
2 )-monitorable iff BadAΠ =

⋃m

i=1
Ri ∩ Pi;

• MP∗(B⊤
2 )-monitorable iff GoodAΠ =

⋂m

i=1
Ri ∪ Pi;

• MP∗(B3)-monitorable iff

∄q ∈ Reach(qinit

AΠ) ∩
⋂m

i=1
Ri ∪ Pi, ∄q

′ ∈ Reach(qinit
AΠ) ∩

⋃m

i=1
Ri ∩ Pi, q ∈ Good

AΠ
c ∧ q′ ∈ Bad

AΠ
c

Proof The proof is conducted in three stages:

• The expressed condition generalizes the syntactic restriction of Streett safety automata and is also a

condition when a given not minimal Streett m-automaton is recognizing a safety property and can

be minimized so as to be represented as a Streett safety automaton.
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Figure 11: Monitorable r-properties in the Safety-Progress classification

• The expressed condition generalizes the syntactic restriction of Streett guarantee automata and is also

a condition when a given not minimal Streett m-automaton is recognizing a guarantee property and

can be minimized so as to be represented as a Streett safety automaton.

• The third condition can be established using the two following facts:

• A r-property is not monitorable according to this theorem iff for two sequences, a good and

a bad sequences evaluate to “?”. Others evaluations are not simultaneously possible for a bad

and good sequences.

• We are considering deterministic and complete Streett automata.

5.5 Summary

We depict in Fig. 11 the main results obtained in this section, which can be summarized as follows:

• The classes of monitorable properties, according to the classical definition, are:

– MP(B⊤
2 ), which can not be compared directly with any other class;

– MP(B⊥
2 ), which can not be compared directly with any other class;

– and MP(B3) = MPc which contains strictly the class of obligation properties.

• The classes of monitorable properties, according to the new definition we introduced are:

– MP∗(B⊥
2 ) is the set of safety r-properties;

– MP∗(B⊤
2 ) is the set of guarantee r-properties;

– MP∗(B3), is strictly contained in the class of obligation r-properties;

– and MP∗(B4) is the set of reactivity r-properties.

Remark that using the truth-domain B4 does not add any expressiveness to the classical definition of

monitorability (i.e., MP(B4) = MP(B3)). Indeed, this definition is bound to the notion of positive and

negative determinacy. However using this domain would permit to better distinguish execution sequences

and to avoid ambuiguity exposed in Example 5.1. Note also that some obligation properties (between

MP(B3) and MP∗(B3)) should not be monitored unless with a truth domain equipped with an interpreta-

tion of finite sequences allowing to distinguish good and bad finite sequences (e.g., with truth-values ⊥c
and ⊤c).
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6 Enforceability wrt. the SP classification

Now we adress the question of the expressiveness of runtime enforcement, that is we characterize the class

of enforceable properties. In Section 3, we have seen that the previous proposed classes were delineated

according to the mechanism used to enforce the properties. Such mechanisms should obey the soundness

and transparency constraints. We choose here to take an alternative approach. Indeed we believe that the set

of enforceable properties can be characterized independently from any enforcement mechanism complying

to these constraints; provided that this memory is unbounded but finite. This will give us an upper-bound

of the set of enforceable properties.

6.1 Enforcement criteria

The enforcement constraints exposed in Section 3, namely soundness and transparency, express a relation

between the input sequence (submitted to an enforcement monitor) and an output sequence (produced by

this monitor). We interpret these constraints in the following way: if the input sequence already verifies the

property, then it should remain unchanged (up to a given equivalence relation), otherwise its longest prefix

satisfying the property should be issued10.

A consequence is that a r-property (φ, ϕ) will be considered as enforceable only if each incorrect

infinite sequence has a longest correct prefix. This means that any infinite incorrect sequence should have

only a finite number of correct prefixes11. We give two enforcement criteria, in the language and automata

views.

DEFINITION 6.1 (ENFORCEMENT CRITERION (LANGUAGE VIEW)) A r-property (φ, ϕ) is said to be en-
forceable iff ∀σ ∈ Σω,

¬ϕ(σ) ⇒ (∃σ′ ∈ Σ∗, σ′ ≺ σ, ∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ⇒ ¬φ(σ′′)) (4)

Alternatively, a r-property Π recognized by a Streett automaton AΠ is said to be enforceable iff every

strongly-connected component (SCC) of R-states contain (only) either P -states or P -states.

DEFINITION 6.2 (ENFORCEMENT CRITERION (AUTOMATA VIEW)) Denoting S(AΠ) the set of SCC of
AΠ, an m-automaton, recognizing Π, Π is said to be enforceable iff

∀i ∈ [1,m], ∀s ∈ S(AΠ), s ⊆ Ri ⇒ (s ⊆ Pi ∨ s ⊆ Pi) (5)

Enforcement criteria of Definitions 6.1 and 6.2 are equivalent for basic classes of properties, as stated

below.

PROPERTY 6.1 (EQUIVALENCE BETWEEN ENFORCEMENT CRITERIA (BASIC CLASSES)) Considering a

r-property Π = (φ, ϕ) of a basic class, recognized by a Streett automaton (QAΠ , qinit
AΠ ,Σ,→AΠ , {(R,P )}),

we have that:

(4) ⇔ (5).

Proof For basic classes ⇔ ∀s ∈ S(AΠ), s ⊆ R ⇒ (s ⊆ P ∨ s ⊆ P ). The complete proof is given in

Sect. A.3.1. This proof relies on the computation of strongly connected components [Tar72] of a Streett

automaton (SCC). The proof is in two stages by proving implications in both ways.

• (4) ⇒ (5) is done by considering a SCC of AΠ containing only R-states. The proofs shows that

there cannot exist two states q, q′ in this SCC s.t. q ∈ P and q′ /∈ P .

10Another possible interpretation could consist in correcting an erroneous sequence by adding extra events.
11Note that those criteria differ from the existence of bad prefixes. Bad prefixes are sequences which cannot be extended to correct

(finite or infinite) ones, i.e., sequences that determine negatively the underlying property.
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1 2

Figure 12: 2-reactivity automaton for which (4) ; (5)

• (5) ⇒ (4). is done by by considering a sequence σ ∈ Σω s.t. ¬ϕ(σ) and analyzing the run of this

infinite sequence on the last visited SCC.

However, these two enforcement criteria are not equivalent for general reactivity properties, as stated

below.

PROPERTY 6.2 (COMPARING ENFORCEMENT CRITERIA FOR COMPOUND CLASSES) Considering a Streett

automaton (QAΠ , qinit

AΠ ,Σ,→AΠ , {(R,P )} recognizing a r-property Π = (φ, ϕ), we have that:

(4) ⇔ (5), for Obligation properties

(4) ⇐ (5), for Reactivity properties

Proof We sketch the proof for both classes of properties.

For Obligation properties. Similarly to the proof of Property 6.1, the proof relies on the fact that in a

m-obligation automaton, for i ∈ [1,m], there is no transition from Ri-states to Ri-states, and no transition

from Pi-states to Pi-states.

For Reactivity properties. Let us consider σ ∈ Σω s.t. ¬ϕ(σ). Similarly to the proof of Property 6.1

(⇐ direction), the run of σ on AΠ visits a SCC infinitely often and can be expressed:

run(σ,AΠ) = q0 · · · qk−1 · (qi + · · ·+ qi+l)
n with k ≤ i ∧ l ≤ |Q|.

The states qi, . . . , qi+l are the last states visited by the run of σ on AΠ, i.e., they are the states visited

infinitely often. Moreover, we know that ∀i ≤ j ≤ i + l, qj ∈ P ∨ ∀i ≤ j ≤ i + l, qj ∈ P . We have that

∀σ′ ∈ Σ∗, σ···k � σ′,¬Π(σ′). Indeed, otherwise it would mean that ∀i ∈ [1,m], ∀j ≥ k, qj ∈ Pi, which

would lead to ϕ(σ) using the infinite-sequence acceptance condition of Streett automata.

REMARK 6.1 We give an example of 2-reactivity Streett automaton for which (4) ; (5). This automaton

is depicted in Fig. 12. It has two states, its alphabet does not matter, and the pairs of accepting states

(R1, P1) and (R2, P2) are defined as follows:

R1 = ∅, P1 = ∅,

R2 = ∅, P2 = {1}.

The property recognized by this Streett automaton verifies condition (4), but not condition (5).

The set of enforceable r-properties is denoted EP . We will now characterize this set wrt. the SP

classification. Though, we will prove that the class of enforceable properties is exactly the class of response

properties. Note that the enforcement criterion in the automata view is still useful as it provides a syntactic

procedure to determine whether a property is enforceable or not.

6.2 Enforceable properties

We start first by proving that response properties (defined in Section 4) are enforceable. Then, we give

an example of a persistence property which is not enforceable. Thus, we prove that the set of response

properties is exactly the set EP .

THEOREM 6.1 (Response are enforceable) Response(Σ) ⊆ EP
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Figure 13: Non-enforceable persistence r-property

Proof Indeed consider a response r-property Π = (φ, ϕ) and an execution sequence σ ∈ Σω . Π can be

expressed as (Rf (ψ), R(ψ)) for a given finitary language ψ. Let us suppose that ¬ϕ(σ). It means that

σ 6∈ R(ψ), i.e., σ has finitely many prefixes belonging to ψ. Consider the set S = {σ′ ∈ Σ∗ | ∀σ′′ ∈
Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ¬ψ(σ′′)} of finite sequences from which all finite continuations do not satisfy ψ.

As ¬R(ψ)(σ), this set is not empty. Let us note σ0 the smallest element of S regarding ≺. We have

∀σ′ ∈ Σ∗, σ0 ≺ σ′ ⇒ ¬ψ(σ′). Since ∀ψ ⊆ Σ∗, Rf (ψ) ⊆ ψ (cf. the definition of operators building

finitary properties), it implies that ∀σ′ ∈ Σ∗, σ0 ≺ σ′ ⇒ ¬φ(σ′).

A straightforward consequence is that safety, guarantee and obligation r-properties are enforceable. We

prove that, in fact, pure persistence properties are not enforceable.

For Σ ⊇ {a, b}, an example of pure persistence r-property is Π = (Σ∗ ·a+,Σ∗ ·aω) stating that “it will

be eventually true that a always occurs”. One can notice that this property is neither a safety, guarantee nor

obligation property. Π is recognized by the Streett automaton AΠ depicted on Figure 13 (with P = {1}).

One can understand the enforcement limitation intuitively with the following argument: if this property was

enforceable it would imply that an EM can decide from a certain point that the underlying program will

always produce the event a. However such a decision can never be taken by a monitor without memorizing

the entire execution sequence beforehand. This is unrealistic for an infinite sequence. More formally, as

stated in the previous section, a r-property (φ, ϕ) is enforceable if for all infinite execution sequences σ
when ¬ϕ(σ), the longest prefix of σ satisfying φ always exists. For the above automaton, the execution

sequence σ′
bad = (a·b)ω does not satisfy the property whereas an infinite number of its prefixes do (prefixes

ending with a).

Applying enforcement criteria (Definitions 6.1 and 6.2) on persistence properties, it turns out that the

enforceable persistence properties are in fact response properties.

THEOREM 6.2 (Enforceable persistence properties are response properties)

Persistence(Σ) ∩ EP ⊆ Response(Σ)

Proof A r-property becomes non-enforceable as soon as there exists a SCC of R-states containing a P -

state and a P -state on its recognizing automaton (see Definition 6.2). Indeed, on a Streett automaton

it allows infinite invalid execution sequences with an infinite number of valid prefixes. When removing

this possibility on a Streett automaton, the constrained automaton can be easily translated to a response

automaton. Indeed, on this constrained automaton, the states visited infinitely often are either all in P or

P , that is: ∀σ ∈ Σω, vinf (σ) ∩ P 6= ∅ ⇔ vinf (σ) ⊆ P . On such automaton there is no difference

between R-states and P -states. Consequently by re-tagging P -states to R, this automaton recognizes the

same property. The re-tagged automaton is a response automaton.

COROLLARY 6.1 Pure persistence are not enforceable:

(Persistence(Σ) \ Response(Σ)) ∩ EP = ∅

Proof This is a direct consequence of Theorem 6.2.

COROLLARY 6.2 Pure reactivity are not enforceable:

Reactivity(Σ) 6⊆ EP

Reactivity(Σ) \ (Persistence(Σ) ∪ Response(Σ)) ∩ EP = ∅
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Figure 14: Automaton transformations

Proof This is a direct consequence of Corollary 6.1. A general reactivity property can be expressed as

the composition of response and persistence properties. As a consequence, pure persistence properties are

included in the set of reactivity properties. And consequently, the persistence part of a reactivity property

is not enforceable.

COROLLARY 6.3 Enforceable properties are exactly response properties:

EP = Response(Σ)

Proof It remains to prove that the set of enforceable properties is included in the set of response properties.

Suppose that there exists an enforceable property which is not a response one. Then, according to the

definition of the Safety-Progress hierarchy, this property would be a pure persistence or reactivity property.

Consequently this property would not be enforceable.

EXAMPLE 6.1 (ENFORCEABLE AND NOT ENFORCEABLE PROPERTIES) We illustrate the enforcement cri-

terion on the properties introduced in Example 4.1 and represented by their Streett automata in Exam-

ple 4.2.

• Properties Π1,Π2,Π3 are enforceable;

• Property Π4 is not enforceable; e.g., the infinite sequence r ·g ·(r ·d ·r ·g)ω is not accepted while this

sequence has an infinite number of correct prefixes: e.g., all sequences belonging to r ·g ·(r ·d·r ·g)∗.

Being enforceable or not can be determined rather easily by observing the automata and using the accept-

ing criteria for finite and infinite sequences.

7 Monitor synthesis

Now we show how it is possible to obtain easily a monitor either for verifying or enforcing a property thanks

to the framework introduced in Section 4. Generally speaking, a monitor is a device processing an input

sequence of events or states in an incremental fashion. It is purposed to yield a property-specific decision

according to its goal. In (classic) runtime verification such a decision is a truth-value taken from a truth-

domain. This truth-value states an appraisal of property satisfaction or violation by the input sequence.

For runtime enforcement, the monitor produces a sequence of enforcement operations. The monitor uses

an internal memory and applies enforcement operations to the input event and its current memory so as

to modify input sequence and produce an output sequence. The relation between the input and output

sequences should follow enforcement monitoring constraints: soundness and transparency (Sect. 3.2). In

the following we consider a Streett m-automaton AΠ = (QAΠ , qinit
AΠ ,→AΠ

, {(R1, P1), . . . , (Rm, Pm)}
and Π the r-property recognized by AΠ. Also we evaluate properties only in B4, and consequently we

abbreviate [[Π]]B4
(·) by [[Π]](·).

The general monitor synthesis procedure is depicted in Fig. 14. From a “pattern” X corresponding

to one of the basic classes of the hierarchy and a DFA Aψ recognizing a finitary property ψ ⊆ Σ∗,
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DFA2S X yields a Streett automaton recognizing the r-property (Xf (ψ),X(ψ)). Then using Streett2VM

(resp. Streett2EM ) one is able to obtain a verfication (resp. enforcement) monitor for the r-property

(Xf (ψ), X(ψ)).

7.1 Monitor: a general definition

A monitor is a procedure consuming events fed by an underlying program and producing an appraisal

in the current state depending on the sequence read so far. Considered monitors are deterministic finite-

state machines producing an output in a relevant domain. This domain will be refined for special-purpose

monitors (verification and enforcement). For verification monitors, this output function gives a truth-value

(a verdict) in B4 regarding the evaluation of the current sequence relatively to the desired property. For

enforcement monitors (EMs), this output function gives an enforcement operation inducing a modification

on the input sequence so as to enforce the desired property.

DEFINITION 7.1 (MONITOR) A monitor A is a 5-tuple (QA, qinit
A,−→A, X

A,ΓA) defined relatively to

a set of events Σ. The finite set QA denotes the control states and qinit
A ∈ QA is the initial state. The

complete function −→A: Q
A × Σ → QA is the transition function. In the following we abbreviate

−→A (q, a) = q′ by q
a

−→A q′. The set of values XA depends on the purpose of the monitor (verification

or enforcement). The function ΓA : QA → XA is an output function, producing values in XA from states.

7.2 Synthesizing monitors for runtime verification

In the following, we consider monitorable r-properties Π, (φ, ϕ).

DEFINITION 7.2 (VERIFICATION MONITOR) A verification monitor (VM) A? is a monitor, i.e., a 5-tuple

(QA? , qinit

A? , −→A?
,B4,Γ). Γ : QA? → B4 is a classical output function, producing truth-values of B4

from states.

Such monitors are independent from any specification formalism, and can be easily adapted to the

specification formalism from which they are generated. We define, the notion of verification sequence

produced by a monitor and what it means to verify a property for a monitor.

DEFINITION 7.3 (SEQUENCE VERIFICATION) We define the verification performed by a VM A? while

reading an input σ ∈ Σ∗ (produced by PΣ) and producing a sequence b ∈ B4
+. The verification function

[[A?]](·) : Σ
∗ → B4

+, defining the verification performed by A?, is the verification sequence produced by

A? while reading σ. This verification sequence is obtained by the output of the monitor, in the following

way:

∀σ ∈ Σ∗, [[A?]](σ) = ΓA?(q) (6)

with qinit
A?

σ
−→A?

q

The sequence σ is verified by A? if it is verified from the initial state (6).

DEFINITION 7.4 (MONITOR SOUNDNESS) A monitor A? is sound wrt. Π = (φ, ϕ) ∈ MP∗(B4) on PΣ,

noted Ver(A?,Π,PΣ), iff

∀σ ∈ Exec(PΣ) ∩ Σ∗, [[A?]](σ) = [[Π]]B4
(σ).

where [[·]]B4
is defined in Definition 5.4.

This definition states that the verification sequence produced by A? matches the evaluation function of

a sequences wrt. a r-property.

Using the set PAΠ of a Streett automaton AΠ, we show how it is possible to obtain a verification

monitor for the r-property Π.
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Figure 15: Examples of Verification Monitors

DEFINITION 7.5 (STREETT2VM TRANSFORMATION) Given a Streettm-automaton AΠ = (QAΠ , qinit
AΠ ,

Σ,−→AΠ
, {(R1, P1), . . . , (Rm, Pm)}) recognizing Π ∈ MP∗(B4), we define the transformation Streett2VM(AΠ) =

(QAΠ , qinit
AΠ ,→AΠ

,B4,Γ) s.t. Γ : QA? → B4 produces truth-values from states depending on the set

PAΠ : ∀q ∈ QAΠ ,

q ∈ GoodAΠ ⇒ Γ(q) = ⊤ ; q ∈ GoodAΠ

p ⇒ Γ(q) = ⊤p
q ∈ BadAΠ

p ⇒ Γ(q) = ⊥p ; ∀q ∈ BadAΠ ⇒ Γ(q) = ⊥

A r-property Π is verifiable on PΣ by a VM A?Π obtained by the application of Streett2VM on the auto-

maton recognizing Π.

EXAMPLE 7.1 (VERIFICATION MONITORS) In Fig. 15 are represented VMs for the properties introduced

in Example 4.1, specified by Streett automata of Fig. 3, and synthesized with the Streett2VM transformation.

THEOREM 7.1 (Correctness of Streett2VM) Given AΠ recognizing Π, we have:

(Π ∈ MP∗(B4) ∧ A?Π = Streett2VM(AΠ)) ⇒ Ver(A?Π,Π,PΣ)

Proof The proof of this theorem relies on the correctness of the computation performed while obtaining

PAΠ for AΠ (Prop. 5.1).

7.3 Synthesizing monitors for runtime enforcement

In the remainder, we consider enforceable r-properties (φ, ϕ) and Π ∈ EP . An EM is producing enforce-

ment operations depending on its current state.

DEFINITION 7.6 (ENFORCEMENT MONITOR) An EM A! is a 5-tuple (QA! , qinit
A! ,−→A!

, Ops,Γ). En-

forcement operations of Ops performed by the EM are aimed to operate a modification of the internal me-

mory and potentially produce an output, i.e., each enforcement operation is a function: Σ×Σ∗ → Σ∗×Σ∗.

Then Γ : QA↓ → Ops is the output function, producing enforcement operations from states.

The considered enforcement operations allow enforcement monitors either to halt the target program

(when the current input sequence irreparably violates the property), or to store the current event in a memory

device (when a decision has to be postponed), or to dump the content of the memory device (when the target

program went back to a correct behavior), or to switch off the monitor when all possible continuations of

the current input sequence are correct wrt. the property under scrutiny12.

DEFINITION 7.7 (ENFORCEMENT OPERATIONS) We define a set of enforcement operations Ops = {halt , store,
dump, off } as follows: ∀a ∈ Σ ∪ {ǫΣ}, ∀m ∈ Σ∗,

halt(a,m) = (ǫΣ,m) store(a,m) = (ǫΣ,m.a)
dump(a,m) = (m.a, ǫΣ) off (a,m) = (m.a, ǫΣ)

12Although, dump and off have the same definition, distinguishing them is useful in practice. Indeed, the off operation is intended

to be produced when all continuations of the current execution sequence are correct wrt. the property. It allows to determine when

the EM is not needed anymore. Consequently, it helps reducing the performance impact on the underlying program
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(a designates the input event of the monitor and m the memory device content.)

Note that the off and dump operations have the same definitions. From a theoretical perspective, the

off is indeed not necessary. However, it has a practical interest. In order to limit the monitor’s impact on

the original program (performance wise), it is of interest to know when the monitor is not needed anymore.

We define the transformation performed by an EM A! while reading an input sequence σ ∈ Σ∗ and

producing an output sequence o ∈ Σ∗.

DEFINITION 7.8 (SEQUENCE TRANSFORMATION) The transformation function [[A!]](·) : Σ∗ → Σ∗ re-
lies on the function [[A!]](·, ·, ·) : Σ

∗×QA!×Σ∗ → Σ∗ defining the transformation performed on the current
state and the internal memory content: [[A!]](σ, q,m) is the output sequence produced while reading σ from
state q and (initial) memory content m.

∀q ∈ QA! , ∀m ∈ Σ∗, [[A!]](ǫΣ, q,m) = ǫΣ (7)

[[A!]](a · σ, q,m) = o · [[A!]](σ, q
′,m′) (8)

with q
a

−→A!
q′ ∧ Γ(q′) = α ∈ Ops ∧ α(a,m) = (o,m′)

The empty sequence ǫΣ is transformed into itself by A!, this is the case when the underlying program

does not produce any event (7). An execution sequence a·σ is (incrementally) transformed according to the

transition fired by the input a: the current memory content and the input a are applied to the enforcement

operation of the arriving-state transition, it induces a new memory content and an output o (8).

We define now the notion of property-enforcement by an EM. The notion of enforcement relates the

input sequence produced by the program and given to the EM and the output sequence allowed by the EM

(correct wrt. the property under consideration)13.

DEFINITION 7.9 (PROPERTY-ENFORCEMENT) For Π = (φ, ϕ) ∈ EP , we say that A! enforces Π on PΣ,
noted Enf (A!,Π,PΣ), iff for all σ ∈ Exec(PΣ) ∩ Σ∗, there exists o ∈ Σ∞, s.t. the following constraints
hold:

[[A!]](σ, qinit
A! , ǫ) = o (9)

Π(σ) ⇒ σ = o (10)

¬Π(σ) ∧ Pref ≺(φ, σ) = ∅ ⇒ o = ǫ (11)

¬Π(σ) ∧ Pref ≺(φ, σ) 6= ∅ ⇒ o = Max (Pref ≺(φ, σ)) (12)

(9),(10),(11) and (12) ensure soundness and transparency of A!: (9) stipulates that the sequence σ is

transformed by A! into a sequence o; (10) ensures that if σ satisfied already the property then it is not

transformed. When there is no correct prefix of σ satisfying the property, (11) ensures that the EM outputs

nothing (the empty sequence ǫΣ). If there exists a prefix of σ satisfying the property (12) ensures that o is

the longest prefix of σ satisfying the property.

Soundness is due to the fact that the produced sequence o, when different from ǫΣ, always satisfies

the property φ. Transparency is ensured by the fact that correct execution sequence are not changed, and

incorrect ones are restricted to their longest correct prefix.

One may remark that we could have set Max (Pref ≺(φ, σ)) to ǫΣ when Pref ≺(φ, σ) = ∅ and merge the

two last constraints. However, we choose to distinguish explicitly the case in which Pref ≺(φ, σ) = ∅ as it

highlights some differences when an EM produces ǫΣ. Sometimes it corresponds to the only correct prefix

of the property. But it can be also an incorrect sequence wrt. the property. In practice, when implementing

an EM for a system, this sequence can be “tagged” as incorrect14.

Finally, since we have to deal with potentially infinite input sequences, the output sequence should

be produced in an incremental way15: for each current prefix σ of the input sequence read by the EM,

13In the general case, the comparison between input and output sequences is performed up to some equivalence relation ≈⊆
Σ∞ × Σ∞. Note that the considered equivalence relation should preserve the r-property under consideration.

14This latter case is avoided in [LBW09] by assuming that properties under consideration always contain ǫΣ.
15From a more general perspective, we can see this limitation from a runtime verification point of view. Verifying infinitary

properties at runtime on a produced execution sequence, in essence, should be done by checking finite prefixes of the current sequence.
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Figure 16: Examples of Enforcement Monitors

the current output o produced should be sound and transparent with respect to Π and σ. This means that

deciding wether a finite sequence σ verifies Π or not should be computable in a finite amount of time (and

reading only a finite continuation of σ).

We synthesize EMs from Streett automata in the framework of r-properties. This transformation was

previously introduced in [FFM08] in the form of several transformations specific to each class of enforce-

able properties. Here we generalize those transformations into a unique one.

DEFINITION 7.10 (STREETT2EM TRANSFORMATION) Given a Streettm-automaton AΠ = (QAΠ , qinit
AΠ ,

Σ,−→AΠ
, {(R1, P1), . . . , (Rm, Pm)}) recognizing an enforceable r-property Π ∈ EP .

We define the transformation Streett2EM(AΠ) = (QAΠ , qinit
AΠ ,→AΠ

, Ops,Γ) s.t. Γ : QA!Π → Ops
produces enforcement operations: ∀q ∈ AΠ

q ∈ GoodAΠ ⇒ Γ(q) = off ; q ∈ Good
AΠ
p ⇒ Γ(q) = dump

q ∈ Bad
AΠ
p ⇒ Γ(q) = store ; q ∈ BadAΠ ⇒ Γ(q) = halt

EXAMPLE 7.2 (VERIFICATION MONITORS) In Fig. 16 are represented EMs for the properties introduced

in Example 4.1, specified by Streett automata of Fig. 3, and synthesized with the Streett2EM transformation.

A r-property Π ∈ EP is enforceable on PΣ by an EM obtained by the application of Streett2EM on

the automaton recognizing Π.

THEOREM 7.2 (Correctness of Streett2EM) Given AΠ recognizing Π, we have:

(Π ∈ EP ∧ A!Π = Streett2EM(AΠ)) ⇒ Enf (A!Π,Π,PΣ)

Proof Correctness of the general transformation relies on the correctness (proved in [FFM08]) of the

transformations specific to each class of properties. Indeed, this general transformation reduces to the

specific transformation when applied to a specific class of properties.

Such a unified transformation is usefull in practice (from an implementation point of view) as it can be

applied to any Streett automaton (regardless of the class of the recognized property).

7.4 Discussion

One of the important challenges in runtime verification is the practical interest in the specification for-

malisms. An ideal specification language should be easy to use by end-users. Moreover, a desirable

feature, advocated by this paper, is the need for adressing both infinite and finite execution sequences.

One could reproach the two following facts to the proposed synthesis approach:

• First, several mechanisms are needed: DFAs, Streett automata, and finally verification and enforce-

ment monitors.

• Second, one may question the usefulness of the DFA to Streett transformations. Arguably, it would

be possible to generate monitors directly for properties specified by Streett automata (written by hand

or generated from temporal logic formula).
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In our point of view, using the DFA2Streett transformations in the synthesis process has the two fol-

lowing advantages:

• The direct translation from a supposed ideal specification formalism to a Streett automaton would be

difficult. This formalism would have to adress both finite and infinite behaviors; requiring a design

expertise. It is likely that such a translation would be error-prone or lead to ambiguous specifications.

• One of the underlying arguments for using our approach is that the end-user is only required to

specify a finite behavior and indicate the wished pattern (used with the finitary property). Thus, the

infinite behavior is comprehended by the user by only seeing patterns like “always”, “at least once”,

“regularly”, or “persistently”. The user is thus kept from specifying the infinite behavior with Streett

automata.

A complex translation is avoided, replaced by two simpler transformations, and the work required to

the user seem to be simpler.

8 Conclusion and future works

Conclusion. We have extended the Safety-Progress classification of properties in a runtime verification

context. This hierarchical organization of properties turned out to be a convenient framework for specifying

properties purposed to be used at runtime. We addressed the problem of monitorability and enforceabil-

ity of properties at runtime using this general framework. We characterized the sets of monitorable and

enforceable properties in a unified way. We introduced a new definition of monitorability based on dis-

tinguishability of good and bad execution sequences. This definition is based on positive and negative

determinacy as well. However, we believe that it better corresponds to practical needs and tool implemen-

tations and fits better in the hierarchy of properties. Moreover, this alternative definition is able to better

distinguish equivocal situations that a monitor would have to face off without a finite sequence interpreta-

tion. Furthermore, we have delineated the space of enforceable properties wrt. the SP classification. This

set of properties was characterized independently from any mechanism. It is thus an upper-bound for the

set of properties that could be addressed by any enforcement mechanism.

Future works. The proposed approach raises new research perspectives and open questions.

First, it seems interesting to consider this approach in the testing perspective. A monitor (passively) ob-

serves the execution of the program. Notably it has no control on the produced events and their sequencing.

In a testing context, the notion of controllable event is introduced. An interesting issue would be to charac-

terize the set of testable properties in the SP framework. Note that the definitions of positive and negative

determinacy could be rather appropriate in this context. Indeed, in a test campaign one is concerned with

the set of all execution sequences that can be produced by the underlying program. Notions of positive

and negative determinacy seem to be a first approximation of the set of possible execution sequences of a

program.

An additional issue to take into consideration is to deal with a reduced observability on the system

under scrutiny. In practical situations, the desired property may refer to events out of the observation scope

of a monitor. Similarly, it seems interesting to see how it is possible to characterize the space of properties

for which other runtime-verification derived techniques can be applied (e.g., runtime reflection [LS08]).

Furthermore, an interesting question would be to investigate how the SP classication transposes to other

spaces of properties such as context-free languages. The classification used in this paper focuses on regular

properties. In the quest of expressiveness for specification languages, relying on a classification appears as

a good way to delineate monitorable and enforceable properties.

Finally, the question of expressiveness is somehow related to parametric properties, i.e., the properties

depending on events with parameters whose values depend on the program execution. Recently [CR09],

a framework has been proposed to reason about parametric properties and monitor them efficiently. The

space of considered properties is the set of regular properties: monitors are expressed using a FSM-like for-

malism. It is rather clear that being able to express parametric properties is an asset in runtime verification

and is surely desirable from a practical point of view. Now, as runtime verification is always concerned
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with efficiency, the question is to balance between the gained expressiveness and the induced overhead.

Moreover, another question is to investigate whether it is more efficient to enhance expressiveness by con-

sidering parametric properties or using a more expressive specification formalism.
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A Proofs

A.1 Proofs for Section 4

A.1.1 Proof of Theorem 4.1

In the following proofs, for a finite sequence σ of length n, we may use the notion of run of σ on a DFA

Aψ or on a Streett automaton AΠ obtained by the transformations. We note:

• run(σ,Aψ) = q0 · · · qn−1

• run(σ,AΠ) = q′0 · · · q
′
n−1

For Safety properties. We show that the r-property accepted by AΠ (obtained using DFA2S Saf ) is

exactly (Af (ψ), A(ψ)).

Let σ ∈ Σ∞ s.t. (Af (ψ), A(ψ))(σ), let us prove that the sequence σ is accepted by AΠ. We have two

cases: σ is a finite sequence or not.

• Let us consider σ ∈ Σ∗ s.t. |σ| = n, then by definition of r-properties: σ ∈ Af (ψ), i.e., every

prefix of σ belongs to ψ. Let us examine run(σ,Aψ) = q0 · · · qn−1. As L(Aψ) = ψ, we have ∀i ∈
[0, n− 1], qi ∈ F . By definition of the transformation DFA2S Saf , we have ∀i ∈ [0, n− 1], qi ∈ P .

According to (TSAFE1), we have run(σ,AΠ) = q0 · · · qn−1. Using the acceptance criterion of finite

sequences, σ is accepted by AΠ.

• Let σ ∈ Σω , then by definition of r-properties: σ ∈ A(ψ), i.e., every finite prefixe of σ belong to

ψ. Let us suppose that σ is not accepted by AΠ. According to the acceptance criterion for infinite

sequences (Definition 4.5), we would have that vinf (σ,AΠ) 6⊆ P (as AΠ is a safety automaton,

R = ∅). By definition of the transformation DFA2S Saf and the shape of the obtained automaton

AΠ, we have that vinf (σ,AΠ) = {sink}. Using (TSAFE2), we know that there exists a smallest prefix

σ′ of σ, s.t. the run of σ′ on AΠ reaches the state sink . With the definition of DFA2S Saf , we

can deduce that the run of σ′ on Aψ ends in a state in F . As L(Aψ) = ψ, σ′ /∈ ψ. We obtain a

contradiction with σ ∈ A(ψ), and σ is actually accepted by AΠ.

Let σ be a sequence accepted by AΠ, let us prove that σ ∈ (Af (ψ), A(ψ)). We distinguish again two

cases: σ is a finite sequence or not.
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• Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the acceptance criterion for finite sequences of Streett

automata (Definition 4.6), we have that q′n−1 ∈ P . As AΠ is a safety automaton, we can deduce

that ∀i ∈ [0, n− 1], q′i ∈ P . Following the definition of DFA2S Saf , we find that the states visited

during the run of σ on Aψ are all in F : ∀i ∈ [0, n − 1], qi ∈ F (and qi = q′i). By definition of

the acceptance criterion for DFAs, we can deduce that every prefixes of σ are accepted by Aψ . As

L(Aψ) = ψ, we can deduce that all prefixes of σ belong to ψ, i.e., σ ∈ Af (ψ).

• If σ ∈ Σω , then by definition of the acceptance criterion for infinite sequences (Definition 4.5),

we know that vinf (σ,AΠ) ⊆ P . Let us suppose that σ /∈ A(ψ), by definition of the operator A
(see Section 4.2), we would have the existence of a strict prefix σ′ of σ not belonging to ψ. Let

n′ = |σ′|. As L(Aψ) = ψ, then the run of σ′ on Aψ , run(σ′,Aψ) = q0 · · · qn′−1, would verify

q0 = qinit

Aψ ∧ qn′−1 /∈ F . According to the definition of the transformation DFA2S Saf and the

rule (TSAFE2), we would have that q′n′−1 = sink /∈ P . Furthermore, using (TSAFE3), every continuation

of σ′ would have its run ending in sink . We would deduce that vinf (σ,AΠ) = {sink} 6⊆ {P}.

Which is a contradiction with the initial hypothesis, and gives us σ ∈ A(ψ).

For Guarantee properties. We show that the sets of sequences accepted by AΠ obtained by DFA2S Guar

is exactly (Ef (ψ), E(ψ)).
Let σ ∈ Σ∞ s.t. (Ef (ψ), E(ψ))(σ), let us prove that the sequence σ is accepted by AΠ. We have two

subcases: σ is a finite sequence or not.

• Let us consider σ ∈ Σ∗ s.t. |σ| = n, then by definition of r-properties: σ ∈ Ef (ψ), i.e., σ has at

least one prefix which belongs to ψ. Let us consider Ssat = {σ′ ∈ Σ∗ | σ′ � σ ∧ σ′ ∈ ψ}, the

set of prefixes of σ which belong to ψ. As σ ∈ Ef (ψ), we can deduce that Ssat 6= ∅, Ssat has

thus a smallest element σmin. Let n′ = |σmin|. We have, by definition of σmin, ∀σ′ ∈ Σ∗, σ′ ≺
σmin ⇒ σ′ /∈ ψ. Let us examine run(σmin,Aψ) = q0 · · · qn′−1. As L(Aψ) = ψ, we have

∀i ∈ [0, n′−2], qi /∈ F ∧qn′−1 ∈ F . According to (TGUAR2), we have run(σmin,AΠ) = q0 · · · qn′−1

with ∀i ∈ [0, n′ − 2], qi /∈ R∧ qn′−1 ∈ R. Following (TGUAR1), we have ∀i ∈ [n′ − 1, n− 1], qi ∈ R.

According to the acceptance criterion for finite sequences, σ is accepted by AΠ.

• Let σ ∈ Σω , then by definition of r-properties: σ ∈ E(ψ), i.e., (at least) one finite prefix of σ
belongs to ψ. Let us suppose that σ is not accepted by AΠ. According to the acceptance criterion for

infinite sequences (Definition 4.5), we would have that vinf (σ,AΠ) ∩ R = ∅ (as AΠ is a guarantee

automaton, P = ∅). In other words, we have vinf (σ,AΠ) ⊆ R. As AΠ is a guarantee automaton,

every state visited by the run of σ on AΠ is in R. Indeed, according to the shape of transition

function of guarantee automata, if a state of R was visited, we would have vinf (σ,AΠ) ∩ R 6= ∅.

Let us consider now the prefixes of σ. During the run of these prefixes on AΠ, none of them visits a

R-state. It follows that, according to (TGUAR2), none of the runs on AΠ of these prefixes visits a state

in F . As L(Aψ) = ψ, we would deduce that none of the prefixes of σ belongs to ψ. We obtain a

contradiction with σ ∈ E(ψ), and consequently σ is indeed accepted by AΠ.

Let σ be a sequence accepted by AΠ, let us prove that σ ∈ (Ef (ψ), E(ψ)). We distinguish two cases:

σ is a finite sequence or not.

• Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the acceptance criterion for finite sequences (Defini-

tion 4.6), we have that qn−1 ∈ R. Let us suppose that σ /∈ Ef (ψ), i.e., none of the prefixes of σ
belongs to ψ. As L(Aψ) = ψ, the run of σ on Aψ would verify: ∀i ∈ [0, n − 1], qi /∈ F . Starting

from qinit

Aψ = qinit

AΠ /∈ R, and using (TGUAR2), we would find that run(σ,AΠ) = q0 · · · qn−1 with

∀i ∈ [0, n− 1], qi /∈ R. This is a contradiction with qn−1 ∈ R, and thus σ ∈ Ef (ψ).

• Let σ ∈ Σω , then by definition of the acceptance criterion for infinite sequences (Definition 4.5), we

have that vinf (σ,AΠ)∩R 6= ∅. As AΠ is a guarantee automaton, it would mean that vinf (σ,AΠ) ⊆
R. According to the shape of the transition function for guarantee automata, it means that there is a

prefix σ′ of σ on AΠ for which the run switches from states inR to states inR. More formally, ∃σ′ ∈
Σ∗, σ′ ≺ σ∧|σ′| = n′∧∀i ∈ [0, n′−2], qi ∈ R∧∀i > n′, qi ∈ R. Let us suppose that σ /∈ E(ψ), i.e.,

σ has no prefix belonging to ψ. As L(Aψ) = ψ, the run of σ on Aψ would verify: ∀i ∈ N, qi /∈ F .
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Similarly to the finitary case, and according to the transformation DFA2S Guar (TGUAR2), it would

question the existence of σ′. We deduce that σ ∈ E(ψ).

For Response properties. We show that the r-property accepted by AΠ, obtained with DFA2S Resp is

exactly (Rf (ψ), R(ψ)).
Let σ ∈ Σ∞ s.t. (Rf (ψ), R(ψ))(σ), let us prove that the sequence σ is accepted by AΠ. We have two

subcases: σ is a finite sequence or not.

• Let σ ∈ Σ∗, thus σ ∈ Rf (ψ). Proving that σ is accepted by AΠ amounts to show that the run of σ
on AΠ, i.e., run(σ,AΠ), ends in a R-state (qn−1 ∈ R). First of all, let us remark that σ ∈ Rf (ψ)
gives us ψ(σ). Furthermore, as L(Aψ) = ψ, we can deduce that qn−1 ∈ F .

As σ ∈ Rf (ψ), ∀n ∈ N, ∃σ′ ∈ Σ∗, σ ≺ σ′ ∧ |σ′| ≥ n ∧ ψ(σ′) (cf. the definition in Sect. 4.2).

Let n′ = |F | be the number of accepting states of Aψ . Now let us consider the set S = {σ” ∈ Σ∗ |
σ ≺ σ′′ ∧ |{σ′ ∈ Σ∗ | σ ≺ σ′ ≺ σ′′ ∧ σ′ ∈ ψ}| > n′}. This set contains the sequences which are

continuations of σ and have at least n′ prefixes longer than σ and belonging to ψ. As σ ∈ Rf (ψ),
we know that S 6= ∅, thus S has a smallest element σmin. Let us examine the run of σmin on Aψ:

run(σ,Aψ) = run(σ,AΠ) = q0 · · · q|σmin|−1 = q0 · · · qn−1 · · · q|σmin|−1.

Between qn−1 and q|σmin|−1, there are at least n′ + 1 accepting states. As |F | = n′, two states

between qn−1 and q|σmin|−1 are identical. Moreover, we have ∀i ∈ [n−1, |σmin|−2], qi →Aψ qi+1.

Which allows us to deduce, using the definition of DFA2S Resp that qn−1 is tagged as a R-state.

• Let σ ∈ Σω , thus σ ∈ R(ψ), i.e., ∀σ′ ∈ Σ∗, ∃σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ∧ ψ(σ′′) holds for σ. Let us

examine the run of σ on AΠ, we will show that this run visits at least one R-state infinitely often.

Indeed, let us consider a prefix σ′ of σ, we can find an unbounded number of extensions σ′′ of σ′,

s.t. ψ(σ′′). Furthermore, for each of these extensions, it is possible to find an unbounded number

of extensions σ′′′ s.t. ψ(σ′′′). Using L(Aψ) = Aψ , the runs of the automaton Aψ on the sequences

σ′′ and the sequences σ′′′ ends on a F -state. Using the same reasonning as the one used for finite

sequences, the state on which the run of σ′′ on AΠ is a R-state. Thus we can build a series (σi)i∈N

of σ-prefixes (of strictly growing length) s.t. the run of each σi ends in a R-state. Thus an infinite

number of prefixes of σ go through a R-state. As |R| ∈ N, there exists a state in R visited infinitely

often during the run of σ on AΠ. According to the acceptance criterion for infinite sequences, σ is

accepted by AΠ.

Let σ be a sequence accepted by AΠ, let us prove that σ ∈ (Rf (ψ), R(ψ)). We distinguish again two

cases: σ is a finite sequence or not.

• Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the acceptance criterion for finite sequences (Defi-

nition 4.6), we have that qn−1 ∈ R. According to the definition of DFA2S Resp, we deduce that

qn−1 ∈ F and ∃q0, . . . , ql ∈ QAψ , ∃a0, . . . , al ∈ Σ,

∀j ∈ [0, l − 1], qj
ai−→Aψ qj+1 (13)

∃i ∈ [0, l], ∃j ∈ [i, l − 1], qj ∈ F ∧ qi = ql ∧ q0 = q (14)

Thus we can build a series (σj)j∈N of σ-extensions s.t. ∀j ∈ N, ψ(σj) and σj is defined as σj =
σ · a0 · · · ai · (ai+1 · · · al−1 · a0 · · · ai)

j . This series exhibits strictly growing continuations of σ
belonging to ψ. According to the definition of the operator Rf , we can deduce that σ ∈ Rf (ψ).

• Let σ ∈ Σω , then by definition of the acceptance criterion for infinite sequences (Definition 4.5), we

have that vinf (σ,AΠ) ∩ R 6= ∅. Thus, σ has an infinite number of prefixes for which the run ends

in a R-state. Using the definition of DFA2S Resp, we know that all these prefixes are accepted by

Aψ (as by definition the ending state of their run is a R-state). Using L(Aψ) = ψ, we know that all

these prefixes belong and have an unrestricted number of extensions belonging to ψ. We can deduce

that σ ∈ R(ψ).
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For Persistence properties. We show that the set of sequences accepted by AΠ, obtained with DFA2S Per

is exactly (Pf (ψ), P (ψ)). Let us remark that, according to the definition of the transformation (the tran-

sition function is not changed), we have ∀j ∈ [n − 1, n′ + n′′ − 1], qj −→AΠ
qj+1 ∧ qj −→Aψ qj+1.

Moreover, as QAΠ = QAψ , we can merge the states qj and q′j visited by the runs of σ on Aψ and AΠ.

Let σ ∈ Σ∞ s.t. (Pf (ψ), P (ψ))(σ), let us prove that the sequence σ is accepted by AΠ. We have two

subcases: σ is a finite sequence or not.

• Proving that σ is accepted by AΠ amounts to show that the run of σ on AΠ ends in a P -state

(qn−1 ∈ P ). First of all, let us remark that σ ∈ Pf (ψ) gives us ψ(σ). Furthermore, as L(Aψ) = ψ,

we can deduce that qn−1 ∈ F .

As σ ∈ Pf (ψ), there exists σ′, µ ∈ Σ∗ s.t. (cf. the definition in Sect. 4.2):

σ � σ′ ∧ (σ′ · µ∗ · pref (µ)) ⊆ ψ (15)

Let n′ = |σ′|, and n′′ = |µ|. Then, the runs of σ′ and σ′ · µ on AΠ can be expressed:

run(σ′,AΠ) = q0 · · · qn−1 · · · qn′−1

run(σ′ · µ,AΠ) = q0 · · · qn−1 · · · qn′−1 · qn′ · · · qn′+n′′−1

According to (15), we have qn′−1 ∈ F . We can show by induction that

run(σ · µ∗,AΠ) = q0 · · · qn′−1 · (qn′ · · · qn′+n′′−1)
∗.

Moreover, we have ∀j ∈ [n′, n′ + n′′ − 1], q′j ∈ F and qn′+n′′−1 −→AΠ
qn′ .

Thus, we can deduce, following the definition of DFA2S Per , that qn−1 ∈ P . Indeed, it is sufficient

to take l = n′ + n′′ − 1− n and i = n′ − n.

• In order to prove vinf (σ,AΠ) ⊆ P , it is sufficient to see that σ can be expressed σ′ · µω . From

this, every prefix of σ longer than σ′ satisfies ψ, and have their run which stops in a F -state on

Aψ . Thus, we exhibit a strongly connected component of F -states which are tagged as P -states by

DFA2S Per. Thus, the states visited infinitely often during the run of σ on AΠ are the states of this

strongly connected component. Which gives the expected result.

Let σ be a sequence accepted by AΠ, let us prove that σ ∈ (Pf (ψ), P (ψ)). We distinguish two

subcases: σ is a finite sequence or not.

• Let σ ∈ Σ∗ s.t. |σ| = n, then by definition of the acceptance criterion for finite sequences of Streett

automata (Definition 4.6), we have that qn−1 ∈ P . Then, there exists two possibilities.

• In the first one, we have on one hand that qn−1 ∈ F , and on the other hand ∃n ∈ N∗, ∃q0, · · · , qn ∈
QAψ s.t.:

– ∀j ∈ [0, n− 1], qj −→Aψ qj+1, and

– ∃i ∈ [0, n− 1], ∀j ∈ [i, n− 1], qj ∈ F ∧ qi = qn ∧ q0 = qn−1

We have ψ(σ) since L(Aψ) = ψ. Moreover, there exist a0, . . . , an−1 ∈ Σ s.t. ∀j ∈ [0, n −

1], qj
aj
−→Aψ qj+1. We can deduce that ψ(σ·a0 · · · ai), ψ(σ·a0 · · · ai·ai+1), . . . , ψ(σ·a0 · · · an−1).

Let us note Lp = σ′ ·
(

(a0 · · · an)
∗ ·a0+(a0 · · · an)

∗ ·a0 ·a1+ . . .+(a0 · · · an)
∗ ·a0 · · · an−1

)

. As

qi = qn ({qi, . . . , qn} is a strongly connected component, we can prove by induction that Lp ⊆ ψ.

Furthermore, ∀σ′ ∈ Σ∗ ∩ Lp, σ · a0 · · · ai � σ′ ⇒ ψ(σ′). Which proves that σ ∈ Pf (ψ). Indeed,

it is sufficient to take σ′ = σ · a0 · · · ai, and µ = ai+1 · · · an−1.

• In the second one, we have that qn−1 ∈ F and qn−1 −→Aψ qn−1. Thus, ∃e ∈ Σ, qn−1
e

−→Aψ

qn−1. We deduce that ψ(σ) and σ · e∗ ⊆ ψ, as L(Aψ) = ψ. Which allows us to deduce easily that

σ ∈ Pf (ψ).
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• Let σ ∈ Σω , then by definition of the acceptance criterion for infinite sequences of Streett automata

(Definition 4.5), we have that vinf (σ,AΠ) ⊆ P . That is to say, all prefixes of σ from a certain point

on have their run which ends in a P -state. As the automaton AΠ has a finite number of states, it

means that there exists a strongly connected component C, s.t. the run of σ on AΠ “stays in”. More

formally, ∃n,m ∈ N, C = {q′0, . . . , q
′
n} ⊆ QAΠ ∧ run(σ,AΠ) = q0 · · · qm · · · ∧ ∀i > m, qi ∈ C.

Moreover, as {q′0, . . . q
′
n} is a SCC, from every state of C it is possible to reach any state of C. Let

us suppose, without loss of generality, that q′0
a0−→AΠ

q′1
a1−→AΠ

· · ·
an−1

−→AΠ
q′n

an−→AΠ
q′0, with

a0, . . . , an ∈ Σ. According to the definition of DFA2S Per , we have the same transitions on Aψ ,

i.e., q′0
a0−→Aψ q

′
1

a1−→Aψ · · ·
an−1

−→Aψ q
′
n

an−→Aψ q
′
0.

Let us noteLp = σ′·(a0 · · · an)
∗·(a0+a0·a1+. . .+a0 · · · an−1) = σ′·(a0 · · · an)·pref (a0 · · · an−1).

The sequence σ can be expressed σ′ · (a0 · · · an)
ω with the fact that for every sequence σ′′ ∈ Lp

which is a continuation of σ′, the run of σ′′ ends in a P -state. Which implies that the runs of these

same sequences σ′′ on Aψ end in a F -state. We deduce, as L(Aψ) = ψ, that ∀σ′′ ∈ Lp, σ
′ � σ′′ ≺

σ ⇒ ψ(σ′′).

Which allows to deduce, using the definition of the operator P (see Section 4.2), that σ ∈ P (ψ).

A.2 Proofs for Section 5

A.2.1 Proof of Lemma 5.1

Proof Let us consider two r-properties Π1,Π2 ∈ MPc .

• Proof of Π1 ∧ Π2 ∈ MPc . It consists in showing that Π1 ∧ Π2 is σ-monitorable for any sequence

σ ∈ Σ∗. Let σ ∈ Σ∗, let us exhibit an extension µ ∈ Σ∗ s.t. Π1 ∧ Π2 is negatively or positively

determined by σ · µ.

As Π1 is monitorable, there exists µ1 s.t. Π1 is negatively or positively determined by σ · µ1, that is

we have the two following possibilities:

– ∃µ1 ∈ Σ∗, ∀µ′
1 ∈ Σ∞,¬Π1(σ · µ1 · µ

′
1), Π1 is negatively determined by σ · µ1

– ∃µ1 ∈ Σ∗, ∀µ′
1 ∈ Σ∞,Π1(σ · µ1 · µ

′
1), Π1 is positively determined by σ · µ1

As Π2 is also monitorable, it is σ · µ1-monitorable, there exists µ2 s.t. Π2 is negatively or positively

determined by σ · µ1 · µ2. That is we have the two following possibilities :

– ∃µ2 ∈ Σ∗, ∀µ′
2 ∈ Σ∞,¬Π2(σ · µ1 · µ2 · µ

′
2), Π2 is negatively determined by σ · µ1 · µ2

– ∃µ2 ∈ Σ∗, ∀µ′
2 ∈ Σ∞,Π2(σ · µ1 · µ2 · µ

′
2), Π2 is positively determined by σ · µ1 · µ2

By combination, there exist four possibilities depending on the facts that Π1 is positively or negati-

vely determined by σ · µ1 and Π2 is negatively or positively determined by σ · µ1 · µ2. We group

those possibilities into two cases :

– Let us distinguish the case where Π1 is positively determined by σ · µ1 and Π2 is positively

determined by σ · µ1 · µ2. Then, by taking µ = σ · µ1 · µ2, we have that Π1 ∧Π2 is positively

determined by µ. This gives us the expected result.

– In the others cases, it suffices to take µ = σ · µ1 · µ2 to show that Π1 ∧ Π2 is negatively

determined by µ.

• The proof of Π1 ∨Π2 ∈ MPc is similar.

• The proof of ¬Π1 ∈ MPc is straightforward by noticing that for any sequence σ ∈ Σ∗, if Π1 is

positively (resp. negatively) determined by σ, then ¬Π is negatively (resp. positively) determined by

σ.
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A.2.2 Proof of Lemma 5.2

We prove this property by reductio ad absurdum. Let suppose the existence of a reactivity r-property

Π = (φ, ϕ) defined on Σ which is neither a safety nor a guarantee: Π ∈ Reactivity(Σ) \ (Safety(Σ) ∪
Guarantee(Σ)) and which is monitorable according to Definition 5.5 with B3.

As Π ∈ MP∗(B3), by definition we have that:

∀σgood ∈ φ, ∀σbad ∈ φ, [[Π]]B3
(σgood) 6= [[Π]]B3

(σbad)

Let us remark that φ 6= ∅ and φ 6= ∅ as Π is neither a safety nor a guarantee. Indeed, if φ = ∅, then

Π would be necessarily the r-property always false, which is a safety. Likewise, if φ = ∅, i.e., φ = Σ∗, Π
would be the r-property always true which is a safety as well.

Then, we consider two sequences σgood and σbad in Σ∞ :

• Let σgood ∈ φ s.t. there exists σ′
g ∈ Σ∞ with ¬Π(σgood · σ

′
g). We know that such a sequence exists

since Π /∈ Guarantee(Σ). This is a consequence of Property 4.2.

• Let σbad ∈ φ s.t. there exists σ′
b ∈ Σ∞ with Π(σbad ·σ

′
b). We know that such a sequence exists since

Π /∈ Safety(Σ). This is a consequence of Property 4.2.

According to the definition of the evaluation function for r-properties in a truth-domain (Definition 5.4),

we have that :

[[Π]]B3
(σgood) = [[Π]]B3

(σbad) =?

This is a contradiction with Π ∈ MP∗(B3).

A.2.3 Proof of Property 5.1

In this proof, [[Π]] stands for [[Π]]B4
. Let us consider an execution sequence σ ∈ Σ∗ of length n.

Proof of qn−1 ∈ GoodAΠ ⇔ [[Π]](σ) = ⊤

• Let us suppose that qn−1 ∈ GoodAΠ . Using the acceptance criterion on finite sequences, we have

that σ is accepted by AΠ. Furthermore, as AΠ specifies Π, we have that Π(σ). Now, let us consider

µ ∈ Σ+ s.t. |σ| + |µ| = n′ > n and run(σ · µ,AΠ) = q0 · · · qn′−1. As qn−1 ∈ GoodAΠ , we have

that ∀k ∈ N, n ≤ k ≤ n′ − 1 ⇒ qk ∈
⋂m

i=1
Ri ∪ Pi and consequently Π(σ · µ). Let us consider

µ ∈ Σω , one may remark that ∀i ∈ [1,m], vinf (σ · µ,AΠ)∩Ri 6= ∅ ∨ vinf (σ · µ,AΠ) ⊆ Pi, which

implies Π(σ · µ). We have Π(σ) ∧ ∀µ ∈ Σ∞,Π(σ · µ), i.e., [[Π]](σ) = ⊤.

• Conversly, let us suppose that [[Π]](σ) = ⊤. By definition, it means ∀µ ∈ Σ∞,Π(σ · µ). According

to the acceptance criterion of Streett automata, we deduce that ∀k ≥ n, ∀µ ∈ Σ∗, run(σ · µ,AΠ) =
q0 · · · qn−1 · · · qk ⇒ qk ∈

⋂m

i=0
Ri ∪ Pi. That is to say ReachAΠ

(qn−1) ⊆
⋂m

i=1
(Ri ∪ Pi), i.e.,

qn−1 ∈ GoodAΠ .

Proof of qn−1 ∈ GoodAΠ
p ⇔ [[Π]](σ) = ⊤p. The proof of qn−1 ∈ GoodAΠ

p ⇔ [[Π]](σ) = ⊤p is

straightforward by examining the acceptance criterion for finite sequences.

• Let us suppose that qn−1 ∈ GoodAΠ
p . Using the acceptance criterion for finite sequences, we have

that σ is accepted by AΠ. Moreover, as AΠ specifies Π, we have that Π(σ). Now, as ReachA(q) 6⊆
⋂m

i=1
(Ri ∪ Pi), there exists a state q′ of AΠ reachable from q and belonging to

⋃m

i=1
(Ri ∩ Pi).

Consequently, there exists µ ∈ Σ∗ s.t. run(σ ·µ) = q0 · · · qn−1 · · · q
′. Still following the acceptance

criterion we deduce that ¬Π(σ · µ), i.e., [[Π]](σ) = ⊤p.

• Conversely, the same reasonning can be used to proved the seeked result.
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Proof of qn−1 ∈ BadAΠ
p ⇔ [[Π]](σ) = ⊥p. Similarly, proving that qn−1 ∈ BadAΠ

p ⇔ [[Π]](σ) = ⊥p is

straightforward by examining the acceptance criterion for finite sequences of Streett automata.

• Let us suppose that qn−1 ∈ BadAΠ
p . using the acceptance criterion of finite sequences, we have that σ

is not accepted by AΠ. Furthermore, as AΠ specifies Π, we have that ¬Π(σ). Now, as ReachA(q) 6⊆
⋃m

i=1
(Ri ∪ Pi), there exists a state q′ of AΠ reachable from q and belonging to

⋂m

i=1
(Ri ∪ Pi). Conse-

quently, there exists µ ∈ Σ∗ s.t. run(σ · µ) = q0 · · · qn−1 · · · q
′. Still following the acceptance criterion,

we deduce that Π(σ · µ), i.e., [[Π]](σ) = ⊥p.

• Conversely, the same reasonning can be conducted.

Proof of qn−1 ∈ BadAΠ ⇔ [[Π]](σ) = ⊥. Proving that qn−1 ∈ BadAΠ ⇔ [[Π]](σ) = ⊥ can be done

following the same proof principle that the one used to prove qn−1 ∈ GoodAΠ ⇔ [[Π]](σ) = ⊤.

• Let us suppose that qn−1 ∈ BadAΠ . Using the acceptance criterion on finite sequences, we have that

σ is not accepted by AΠ. Furthermore, as AΠ specifies Π, we have that ¬Π(σ). Now, let us consider

µ ∈ Σ+ s.t. |σ| + |µ| = n′ > n and run(σ · µ,AΠ) = q0 · · · qn′−1. As qn−1 ∈ BadAΠ , we have

that ∀k ∈ N, n ≤ k ≤ n′ − 1 ⇒ qk ∈
⋃m

i=1
Ri ∩ Pi and consequently ¬Π(σ · µ). Let us consider

µ ∈ Σω , one may remark that ∀i ∈ [1,m], vinf (σ · µ,AΠ)∩Ri = ∅ ∧ vinf (σ · µ,AΠ) 6⊆ Pi, which

implies that ¬Π(σ · µ). We have ¬Π(σ) ∧ ∀µ ∈ Σ∞,¬Π(σ · µ), i.e., [[Π]](σ) = ⊥.

• Conversely, let us suppose that [[Π]](σ) = ⊥. By definition, it means ∀µ ∈ Σ∞,¬Π(σ·µ). According

to the acceptance criterion of Streett automata, we deduce that ∀k ≥ n, ∀µ ∈ Σ∗, run(σ · µ,AΠ) =
q0 · · · qn−1 · · · qk ⇒ qk ∈

⋃m

i=0
Ri ∩ Pi. That is to say ReachAΠ

(qn−1) ⊆
⋃m

i=1
(Ri ∩ Pi), i.e.,

qn−1 ∈ BadAΠ .

A.3 Proofs for Section 6

A.3.1 Proof of Property 6.1

Proof This proof relies on the computation of strongly connected components [Tar72] of a Streett auto-

maton (SCC). The proof is in two stages by proving implications in both ways.

• (4) ⇒ (5). Let us consider a SCC of AΠ containing only R-states. Suppose that there exists two

states q, q′ in this SCC s.t. q ∈ P and q′ /∈ P . As q and q′ are in a SCC, there exists a path from q to

q′ and from q′ to q in AΠ. Then there would exist an infinite execution sequence σ s.t. the run of σ
on AΠ contains infinite occurrences of q and q′. As this SCC is made of R-states, σ is not accepted

by AΠ (since vinf (σ,AΠ) 6⊆ P ), i.e., ¬ϕ(σ). However σ has an infinite number of “good” prefixes:

all prefixes s.t. the run ends in a P -state. This is contradictory with our initial assumption.

• (5) ⇒ (4). Let us consider σ ∈ Σω s.t. ¬ϕ(σ). As AΠ recognizes Π, σ is not accepted by AΠ.

As AΠ is a finite state automaton, the run of σ on AΠ visits a last SCC infinitely often and can be

expressed:

run(σ,AΠ) = q0 · · · qi · · · = q0 · · · qk−1 · (qk · · · qk+l)
n

where qk, . . . , qk+l are the states visited infinitely often, i.e., vinf (σ,AΠ) = {qk, . . . , qk+l}.

As AΠ recognizes Π, σ is not accepted by AΠ, thus we have:

vinf (σ,AΠ) ∩R = ∅ ∧ vinf (σ,AΠ) 6⊆ P

From vinf (σ,AΠ) ∩ R = ∅, we deduce vinf (σ,AΠ) ⊆ R. As vinf (σ,AΠ) is a non-maximal

SCC of AΠ, using (5), we deduce that either vinf (σ,AΠ) ⊆ P or vinf (σ,AΠ) ⊆ P . However,

vinf (σ,AΠ) ⊆ P is impossible as σ is not accepted by AΠ (cf. above). Thus, it remains that

vinf (σ,AΠ) ⊆ P . We deduce that for the states qi appearing in the run of σ on AΠ that ∀i ≥
k, qi /∈ P . It follows that, using the finite sequence acceptance criterion of a Streett automaton:

∀i ≥ k,¬Π(σ···i). Which shows that Π is enforceable.
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