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Abstract We consider a nonparametric regression model where m noise-
perturbed functions f1, . . . , fm are randomly observed. For a fixed ν ∈ {1, . . . ,m},
we want to estimate fν from the observations. To reach this goal, we develop
an adaptive wavelet estimator based on a hard thresholding rule. Adopting
the minimax approach under the mean integrated squared error over Besov
balls, we prove that it attains a sharp rate of convergence.
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1 Motivations

An indirect nonparametric regression model is considered: we observe n in-
dependent pairs of random variables (X1, Y1), . . . , (Xn, Yn) where, for any
i ∈ {1, . . . , n},

Yi = fVi(Xi) + ξi, (1)

V1, . . . , Vn are n unobserved independent discrete random variables such that,
for any i ∈ {1, . . . , n}, the set of possible values of Vi is

Vi(Ω) = {1, . . . ,m}, m ∈ N∗,

for any d ∈ {1, . . . ,m}, fd : [0, 1] → R is an unknown function, X1, . . . , Xn

are n i.i.d. random variables having the uniform distribution on [0, 1] and
ξ1, . . . , ξn are n i.i.d. unobserved random variables such that

E(ξ1) = 0, E(ξ21) <∞.
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(The distribution of ξ1 can be unknown). We suppose that V1, . . . , Vn, X1, . . . , Xn,
ξ1, . . . , ξn are independent. For a fixed ν ∈ {1, . . . ,m}, we want to estimate
fν from (X1, Y1), . . . , (Xn, Yn). An application of this estimation problem is
the following: m noise-perturbed signals f1, . . . , fm are randomly observed and
only fν is of interest.

To estimate fν , various methods can be investigated (Kernel, Spline, . . . )
(see e.g. Prakasa Rao (1983, 1999) and Tsybakov (2004)). In this study, we
focus our attention on the wavelet methods. They are attractive for nonpara-
metric function estimation because of their spatial adaptivity, computational
efficiency and asymptotic optimality properties. They can achieve near opti-
mal convergence rates over a wide range of function classes (Besov balls, . . . )
and enjoy excellent mean integrated squared error (MISE) properties when
used to estimate spatially inhomogeneous function. Details on the basics on
wavelet methods in function estimation can be found in Antoniadis (1997) and
Härdle et al (1998).

When (1) is considered with V1 = . . . = Vn = 1, it becomes the classical
nonparametric regression model. In this case, to estimate f1 = f , numerous
wavelet methods have been developed. See e.g. Donoho and Johnstone (1994,
1995, 1998), Donoho et al (1995), Delyon and Juditsky (1996), Antoniadis
et al. (1999), Cai and Brown (1999), Zhang and Zheng (1999), Cai (1999,
2002), Pensky and Vidakovic (2001), Chicken (2003), Kerkyacharian and Pi-
card (2004), Chesneau (2007) and Pham Ngoc (2009). However, to the best
of our knowledge, there is no adaptive wavelet estimator for fν in the general
case.

In this paper, we develop an adaptive wavelet estimator for fν using the
hard thresholding rule. It has the originality to combine an ”observations
thresholding technique” introduced by Delyon and Juditsky (1996) with some
technical tools taking into account the distributions of V1, . . . , Vn. We eval-
uate its performance via the minimax approach under the MISE over Besov
balls Bsp,r(M) (to be defined in Section 3). Under mild assumptions on the
distributions of V1, . . . , Vn, we prove that our estimator attains the rate of
convergence

vn =

(
zn ln(n/zn)

n

)2s/(2s+1)

,

where zn depends on the distributions of V1, . . . , Vn (see (5)). This rate is ”near
optimal” in the sense that it is the one attained by the best nonadaptive linear
wavelet estimator (the one which minimizes the MISE) up to a logarithmic
term.

The paper is organized as follows. Assumptions on the model and some
notations are introduced in Section 2. Section 3 briefly describes the wavelet
basis on [0, 1] and the Besov balls. The estimators are presented in Section 4.
The results are set in Section 5. Section 6 is devoted to the proofs.
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2 Assumptions

Additional assumptions on the model (1) are presented below.

Assumption on (fd)d∈{1,...,m}. We suppose that there exists a known con-
stant C∗ > 0 such that

sup
d∈{1,...,m}

sup
x∈[0,1]

|fd(x)| ≤ C∗. (2)

Assumptions on V1, . . . , Vn. Recall that V1, . . . , Vn are unobserved and, for
any i ∈ {1, . . . , n}, we know

wd(i) = P(Vi = d), d ∈ {1, . . . ,m}.

We suppose that the matrix

Γn =

(
1

n

n∑
i=1

wk(i)w`(i)

)
(k,`)∈{1,...,m}2

is nonsingular i.e. det(Γn) > 0. For the considered ν (the one which refers
to the estimation of fν) and any i ∈ {1, . . . , n}, we set

aν(i) =
1

det(Γn)

m∑
k=1

(−1)k+νγnν,kwk(i), (3)

where γnν,k denotes the determinant of the minor (ν, k) of the matrix Γn.
Then, for any d ∈ {1, . . . ,m},

1

n

n∑
i=1

aν(i)wd(i) =


1 if d = ν,

0 otherwise,

(4)

and

(aν(1), . . . , aν(n)) = argmin
(b1,...,bn)∈Rn

1

n

n∑
i=1

b2i .

Technical details can be found in Maiboroda (1996).
We set

zn =
1

n

n∑
i=1

a2ν(i) (5)

and we suppose that zn < n/e.

In nonparametric statistics, the sequence (aν(i))i∈{1,...,n} has ever been used
in some mixture density estimation problems. See e.g. Maiboroda (1996),
Pokhyl’ko (2005) and Prakasa Rao (2010).
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3 Wavelets and Besov balls

Wavelet basis. Let N ∈ N∗, φ be a father wavelet of a multiresolution
analysis on R and ψ be the associated mother wavelet. Assume that
– supp(φ) = supp(ψ) = [1−N,N ],

–
∫ N
1−N φ(x)dx = 1,

– for any v ∈ {0, . . . , N − 1},
∫ N
1−N x

vψ(x)dx = 0.
For instance, the Daubechies wavelets satisfy these assumptions. Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ satisfying 2τ ≥ 2N such that the collection

B = {φτ,k(.), k ∈ {0, . . . , 2τ−1}; ψj,k(.); j ∈ N−{0, . . . , τ−1}, k ∈ {0, . . . , 2j−1}},

(with an appropriate treatments at the boundaries) is an orthonormal basis
of L2([0, 1]), the set of square-integrable functions on [0, 1]. We refer to
Cohen (1993).
For any integer ` ≥ τ , any h ∈ L2([0, 1]) can be expanded on B as

h(x) =

2`−1∑
k=0

α`,kφ`,k(x) +

∞∑
j=`

2j−1∑
k=0

βj,kψj,k(x),

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =

∫ 1

0

h(x)φj,k(x)dx, βj,k =

∫ 1

0

h(x)ψj,k(x)dx. (6)

Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to
Bsp,r(M) if and only if there exists a constant M∗ > 0 (depending on M)
such that the associated wavelet coefficients (6) satisfy ∞∑

j=τ−1

2j(s+1/2−1/p)

2j−1∑
k=0

|βj,k|p
1/p


r

1/r

≤M∗.

(We set βτ−1,k = ατ,k). In this expression, s is a smoothness parameter
and p and r are norm parameters. For a particular choice of s, p and r,
Bsp,r(M) contain the Hölder and Sobolev balls. See Meyer (1990).

4 Estimators

Wavelet coefficient estimators. The first step to estimate fν consists in
expanding fν on B and estimating its unknown wavelet coefficients.
For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1},
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– we estimate αj,k =
∫ 1

0
fν(x)φj,k(x)dx by

α̂j,k =
1

n

n∑
i=1

aν(i)Yiφj,k(Xi), (7)

– we estimate βj,k =
∫ 1

0
fν(x)ψj,k(x)dx by

β̂j,k =
1

n

n∑
i=1

Zi1{|Zi|≤γn}, (8)

where, for any i ∈ {1, . . . , n},

Zi = aν(i)Yiψj,k(Xi),

aν(i) is defined by (3), for any random event A, 1A is the indicator
function on A, the threshold γn is defined by

γn = θ

√
nzn

ln(n/zn)
, (9)

zn is defined by (5), θ =
√
C2
∗ + E(ξ21) and C∗ is the one in (2).

Remark 1. Mention that α̂j,k is an unbiased estimator of αj,k, whereas

β̂j,k is not an unbiased estimator of βj,k. However (1/n)
∑n
i=1 Zi is an

unbiased estimator of βj,k. The proofs are given in (14) and (19).
Remark 2. The ”observations thresholding technique” used in (8) has
been firstly introduced by Delyon and Juditsky (1996) for (1) in the clas-
sical case (i.e. V1 = . . . = Vn = 1). In our general setting, this allows us to
provide a good estimator of βj,k under mild assumptions on
– (aν(i))i∈{1,...,n} and a fortiori the distributions of V1, . . . , Vn (only zn <
n/e is required),

– ξ1, . . . , ξn (only finite moments of order 2 are required).

Linear estimator. Assuming that fν ∈ Bsp,r(M) with p ≥ 2, we define the

linear estimator f̂L by

f̂L(x) =

2j0−1∑
k=0

α̂j0,kφj0,k(x), (10)

where α̂j,k is defined by (7) and j0 is the integer satisfying

1

2

(
n

zn

)1/(2s+1)

< 2j0 ≤
(
n

zn

)1/(2s+1)

.

The definition of j0 is chosen to minimize the MISE of f̂L. Note that it is
not adaptive since it depends on s, the smoothness parameter of fν .
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Hard thresholding estimator. We define the hard thresholding estimator
f̂H by

f̂H(x) =

2τ−1∑
k=0

α̂τ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

β̂j,k1{|β̂j,k|≥κλn}ψj,k(x), (11)

where α̂j,k is defined by (7), β̂j,k by (8), j1 is the integer satisfying

n

2zn
< 2j1 ≤ n

zn
,

κ ≥ 8/3 + 2 + 2
√

16/9 + 4 and λn is the threshold

λn = θ

√
zn ln(n/zn)

n
. (12)

Further details on the hard thresholding wavelet estimator for the standard
nonparametric regression model can be found in Donoho and Johnstone
(1994, 1995, 1998) and Delyon and Juditsky (1996).
Note that the choice of γn in (9) depends on λn in (12): we have λn =
θ2zn/γn. The definitions of γn and λn are based on theoretical considera-
tions.

5 Results

Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that

fν ∈ Bsp,r(M) with s > 0, p ≥ 2 and r ≥ 1. Let f̂L be (10). Then there exists
a constant C > 0 such that

E
(∫ 1

0

(
f̂L(x)− fν(x)

)2
dx

)
≤ C

(zn
n

)2s/(2s+1)

.

The proof of Theorem 1 uses moment inequalities on (7) and (8), and a suitable
decomposition of the MISE.

Due to our weak assumptions on V1, . . . , Vn, ξ1, . . . , ξn, the optimal lower
bound of (1) seems difficult to determine (see Tsybakov (2004)). However,

since f̂L is constructed to be the linear estimator which optimizes the MISE,
our benchmark will be the rate of convergence vn = (zn/n)2s/(2s+1).

Remark that, in the case V1 = . . . = Vn = 1 and ξ1 ∼ N (0, 1), we have
zn = 1 and vn (= n−2s/(2s+1)) is the optimal rate of convergence (see Tsybakov
(2004)).

Theorem 2 Consider (1) under the assumptions of Section 2. Let f̂H be (11).
Suppose that fν ∈ Bsp,r(M) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and
s > 1/p}. Then there exists a constant C > 0 such that

E
(∫ 1

0

(
f̂H(x)− fν(x)

)2
dx

)
≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.
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The proof of Theorem 2 is based on several probability results (moment in-
equalities, concentration inequality,. . . ) and a suitable decomposition of the
MISE.

Theorem 2 proves that f̂H attains vn = (zn/n)2s/(2s+1) up to the logarith-
mic term (ln(n/zn))2s/(2s+1).

Naturally, when V1 = . . . = Vn = 1 and ξ1 ∼ N (0, 1), f̂H attains the same
rate of convergence than the standard hard thresholding estimator adapted
to the classical nonparametric regression model (see Donoho and Johnstone
(1994, 1995, 1998)). And this one is optimal in the minimax sense up to a
logarithmic term.

Conclusions and perspectives. We construct an adaptive wavelet estimator
to estimate the function fν from the sophisticated regression model (1). Under
mild assumptions, we prove that it attains a sharp rate of convergence for a
wide class of functions.

Possible perspectives are to

– investigate the estimation of f in (1) when X1 has a more complex distri-
bution than the random uniform one. In this case, the warped wavelet basis
introduced in the nonparametric regression estimation by Kerkyacharian
and Picard (2004) seems to be an adapted powerful tool.

– consider the case where the distributions of V1, . . . , Vn are unknown.
– potentially improve the estimation of fν (and remove the extra logarithmic

term). The thresholding rule named BlockJS developed in wavelet estima-
tion by Cai (1999, 2002) seems to be a good alternative.

All these aspects need further investigations that we leave for a future work.

6 Proofs

In this section, we consider (1) under the assumptions of Section 2. Moreover,
C represents a positive constant which may differ from one term to another.

6.1 Auxiliary results

Proposition 1 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let αj,k be
the wavelet coefficient (6) of fν and α̂j,k be (7). Then there exists a constant
C > 0 such that

E
(

(α̂j,k − αj,k)
2
)
≤ C zn

n
.

Proof of Proposition 1. First of all, we prove that α̂j,k is an unbiased
estimator of αj,k. For any i ∈ {1, . . . , n}, set

Wi = aν(i)Yiφj,k(Xi).
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Since Xi, Vi and ξi are independent, and E(ξi) = 0, we have

E(Wi) = E(aν(i)Yiφj,k(Xi)) = E(aν(i)(fVi(Xi) + ξi)φj,k(Xi))

= aν(i)E(fVi(Xi)φj,k(Xi)) + aν(i)E(ξi)E(φj,k(Xi))

= aν(i)E(fVi(Xi)φj,k(Xi))

= aν(i)

m∑
d=1

wd(i)

∫ 1

0

fd(x)φj,k(x)dx. (13)

It follows from (13) and (4) that

E(α̂j,k) =
1

n

n∑
i=1

E(Wi) =
1

n

n∑
i=1

(
aν(i)

m∑
d=1

wd(i)

∫ 1

0

fd(x)φj,k(x)dx

)

=

m∑
d=1

∫ 1

0

fd(x)φj,k(x)dx

(
1

n

n∑
i=1

aν(i)wd(i)

)

=

∫ 1

0

fν(x)φj,k(x)dx = αj,k. (14)

So α̂j,k is an unbiased estimator of αj,k. Therefore

E
(

(α̂j,k − αj,k)
2
)

= V (α̂j,k) = V

(
1

n

n∑
i=1

Wi

)
=

1

n2

n∑
i=1

V(Wi)

≤ 1

n2

n∑
i=1

E
(
W 2
i

)
. (15)

For any i ∈ {1, . . . , n}, we have

E
(
W 2
i

)
= E(a2ν(i)Y 2

i φ
2
j,k(Xi)) = a2ν(i)E

(
(fVi(Xi) + ξi)

2φ2j,k(Xi)
)
. (16)

Since Xi, Vi and ξi are independent, E
(
φ2j,k(Xi)

)
=
∫ 1

0
φ2j,k(x)dx = 1 and, by

(2), supd∈{1,...,m} supx∈[0,1] |fd(x)| ≤ C∗, we have

E
(
(fVi(Xi) + ξi)

2φ2j,k(Xi)
)

= E
(
f2Vi(Xi)φ

2
j,k(Xi)

)
+ 2E(ξi)E(fVi(Xi)φ

2
j,k(Xi)) + E

(
ξ2i
)
E
(
φ2j,k(Xi)

)
= E

(
f2Vi(Xi)φ

2
j,k(Xi)

)
+ E

(
ξ21
)
≤ C2

∗E
(
φ2j,k(Xi)

)
+ E

(
ξ21
)

= C2
∗ + E

(
ξ21
)

= θ2. (17)

Putting (16) and (17) together, we obtain

E
(
W 2
i

)
≤ θ2a2ν(i). (18)

It follows from (15) and (18) that

E
(

(α̂j,k − αj,k)
2
)
≤ 1

n

(
θ2

1

n

n∑
i=1

a2ν(i)

)
= C

zn
n
.
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�

Proposition 2 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let βj,k be

the wavelet coefficient (6) of fν and β̂j,k be (8). Then there exists a constant
C > 0 such that

E
((

β̂j,k − βj,k
)4)

≤ C (zn ln(n/zn))2

n2
.

Proof of Proposition 2. Taking ψ instead of φ in (14), we obtain

βj,k =

∫ 1

0

fν(x)ψj,k(x)dx =
1

n

n∑
i=1

E (Zi)

=
1

n

n∑
i=1

E(Zi1{|Zi|≤γn}) +
1

n

n∑
i=1

E(Zi1{|Zi|>γn}). (19)

Therefore, by the elementary inequality (x+ y)4 ≤ 8(x4 + y4), (x, y) ∈ R2, we
have

E
((

β̂j,k − βj,k
)4)

= E

( 1

n

n∑
i=1

(
Zi1{|Zi|≤γn} − E

(
Zi1{|Zi|≤γn}

))
− 1

n

n∑
i=1

E
(
Zi1{|Zi|>γn}

))4


≤ 8(A+B), (20)

where

A = E

( 1

n

n∑
i=1

(
Zi1{|Zi|≤γn} − E(Zi1{|Zi|≤γn})

))4


and

B =

(
1

n

n∑
i=1

E(|Zi|1{|Zi|>γn})

)4

.

Let us bound A and B, in turn.
Upper bound for A. Let us present the Rosenthal inequality (see Rosenthal

(1970)).

Lemma 1 (Rosenthal’s inequality) Let n ∈ N∗, p ≥ 2 and (Ui)i∈{1,...,n} be
n zero mean independent random variables such that supi∈{1,...,n} E(|Ui|p) <
∞. Then there exists a constant C > 0 such that

E

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
p)
≤ C max

 n∑
i=1

E (|Ui|p) ,

(
n∑
i=1

E
(
U2
i

))p/2 .
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Applying the Rosenthal inequality with p = 4 and, for any i ∈ {1, . . . , n},

Ui = Zi1{|Zi|≤γn} − E
(
Zi1{|Zi|≤γn}

)
,

we obtain

A =
1

n4
E

( n∑
i=1

Ui

)4
 ≤ C 1

n4
max

 n∑
i=1

E
(
U4
i

)
,

(
n∑
i=1

E
(
U2
i

))2
 .

Using (18) (with ψ instead of φ), we have, for any a ∈ {2, 4} and any i ∈
{1, . . . , n},

E (Uai ) ≤ 2aE
(
Zai 1{|Zi|≤γn}

)
≤ 2aγa−2n E

(
Z2
i

)
≤ 2aγa−2n θ2a2ν(i).

Hence, using zn < n/e,

A ≤ C
1

n4
max

γ2n n∑
i=1

a2ν(i),

(
n∑
i=1

a2ν(i)

)2


= C
1

n4
max

(
n2

ln(n/zn)
z2n, n

2z2n

)
= C

z2n
n2
. (21)

Upper bound for B. Using again (18) (with ψ instead of φ), for any i ∈
{1, . . . , n}, we obtain

E
(
|Zi|1{|Zi|>γn}

)
≤

E
(
Z2
i

)
γn

≤ 1

θ

√
ln(n/zn)

nzn
θ2a2ν(i) = θ

√
ln(n/zn)

nzn
a2ν(i).

Therefore

B =

(
1

n

n∑
i=1

E(|Zi|1{|Zi|>γn})

)4

≤ θ4 (ln(n/zn))2

n2z2n

(
1

n

n∑
i=1

a2ν(i)

)4

= θ4
(ln(n/zn))2

n2z2n
z4n = θ4

(zn ln(n/zn))2

n2
. (22)

Combining (20), (21) and (22) and using zn < n/e, we have

E
((

β̂j,k − βj,k
)4)

≤ C
(

1

n2
z2n +

(zn ln(n/zn))2

n2

)
≤ C (zn ln(n/zn))2

n2
.

�

Proposition 3 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let βj,k be

the wavelet coefficient (6) of fν and β̂j,k be (8). Then, for any κ ≥ 8/3 + 2 +

2
√

16/9 + 4,

P
(
|β̂j,k − βj,k| ≥ κλn/2

)
≤ 2

(zn
n

)2
.
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Proof of Proposition 3. By (19) we have

|β̂j,k − βj,k|

=

∣∣∣∣∣ 1n
n∑
i=1

(
Zi1{|Zi|≤γn} − E

(
Zi1{|Zi|≤γn}

))
− 1

n

n∑
i=1

E
(
Zi1{|Zi|>γn}

)∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(
Zi1{|Zi|≤γn} − E

(
Zi1{|Zi|≤γn}

))∣∣∣∣∣+
1

n

n∑
i=1

E
(
|Zi|1{|Zi|>γn}

)
.

Using (18) (with ψ instead of φ), we obtain

1

n

n∑
i=1

E
(
|Zi|1{|Zi|>γn}

)
≤ 1

γn

(
1

n

n∑
i=1

E
(
Z2
i

))
≤ 1

γn

(
θ2

1

n

n∑
i=1

a2ν(i)

)

=
1

γn
θ2zn =

1

θ

√
ln(n/zn)

nzn
θ2zn

= θ

√
zn ln(n/zn)

n
= λn.

Hence

S = P
(
|β̂j,k − βj,k| ≥ κλn/2

)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

(
Zi1{|Zi|≤γn} − E

(
Zi1{|Zi|≤γn}

))∣∣∣∣∣ ≥ (κ/2− 1)λn

)
.

Now we need the Bernstein inequality presented in the lemma below (see
Petrov (1995)).

Lemma 2 (Bernstein’s inequality) Let n ∈ N∗ and (Ui)i∈{1,...,n} be n zero
mean independent random variables such that there exists a constant M > 0
satisfying supi∈{1,...,n} |Ui| ≤M <∞. Then, for any λ > 0,

P

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣ ≥ λ
)
≤ 2 exp

(
− λ2

2 (
∑n
i=1 E (U2

i ) + λM/3)

)
.

Let us set, for any i ∈ {1, . . . , n},

Ui = Zi1{|Zi|≤γn} − E
(
Zi1{|Zi|≤γn}

)
.

For any i ∈ {1, . . . , n}, we have E(Ui) = 0,

|Ui| ≤ |Zi|1{|Zi|≤γn} + E
(
|Zi|1{|Zi|≤γn}

)
≤ 2γn

and, using again (18) (with ψ instead of φ),

E
(
U2
i

)
= V

(
Zi1{|Zi|≤γn}

)
≤ E

(
Z2
i 1{|Zi|≤γn}

)
≤ E

(
Z2
i

)
≤ θ2a2ν(i).
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So
n∑
i=1

E
(
U2
i

)
≤ θ2

n∑
i=1

a2ν(i) = θ2nzn.

It follows from the Bernstein inequality that

S ≤ 2 exp

(
− n2(κ/2− 1)2λ2n

2 (θ2nzn + 2n(κ/2− 1)λnγn/3)

)
.

Since

λnγn = θ

√
zn ln(n/zn)

n
θ

√
nzn

ln(n/zn)
= θ2zn, λ2n = θ2

zn ln(n/zn)

n
,

we have, for any κ ≥ 8/3 + 2 + 2
√

16/9 + 4,

S ≤ 2 exp

(
− (κ/2− 1)2 ln(n/zn)

2 (1 + 2(κ/2− 1)/3)

)
= 2

(
n

zn

)− (κ/2−1)2

2(1+2(κ/2−1)/3)

≤ 2
(zn
n

)2
.

�

6.2 Proofs of the main results

Proof of Theorem 1. We expand the function fν on B as

fν(x) =

2j0−1∑
k=0

αj0,kφj0,k(x) +

∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x).

We have

f̂L(x)− fν(x) =

2j0−1∑
k=0

(α̂j0,k − αj0,k)φj0,k(x)−
∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x).

Hence

E
(∫ 1

0

(
f̂L(x)− fν(x)

)2
dx

)
= A+B,

where

A =

2j0−1∑
k=0

E
(

(α̂j0,k − αj0,k)
2
)
, B =

∞∑
j=j0

2j−1∑
k=0

β2
j,k.

Proposition 1 gives

A ≤ 2j0
zn
n
≤
(zn
n

)2s/(2s+1)

.

Since p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Hence

B ≤ C2−2j0s ≤ C
(zn
n

)2s/(2s+1)

.
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So

E
(∫ 1

0

(
f̂L(x)− fν(x)

)2
dx

)
≤ C

(zn
n

)2s/(2s+1)

.

The proof of Theorem 1 is complete.

�

Proof of Theorem 2. We expand the function fν on B as

fν(x) =

2τ−1∑
k=0

ατ,kφτ,k(x) +

∞∑
j=τ

2j−1∑
k=0

βj,kψj,k(x).

We have

f̂H(x)− fν(x)

=

2τ−1∑
k=0

(α̂τ,k − ατ,k)φτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

(
β̂j,k1{|β̂j,k|≥κλn} − βj,k

)
ψj,k(x)

−
∞∑

j=j1+1

2j−1∑
k=0

βj,kψj,k(x).

Hence

E
(∫ 1

0

(
f̂H(x)− fν(x)

)2
dx

)
= R+ S + T, (23)

where

R =

2τ−1∑
k=0

E
(

(α̂τ,k − ατ,k)
2
)
, S =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k1{|β̂j,k|≥κλn} − βj,k
)2)

and

T =

∞∑
j=j1+1

2j−1∑
k=0

β2
j,k.

Let us bound R, T and S, in turn.

By Proposition 1 and the inequalities: zn < n/e, zn ln(n/zn) < n and 2s/(2s+
1) < 1, we have

R ≤ C zn
n
≤ C zn ln(n/zn)

n
≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

. (24)
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For r ≥ 1 and p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Using zn < n/e,
zn ln(n/zn) < n and 2s/(2s+ 1) < 2s, we obtain

T ≤ C

∞∑
j=j1+1

2−2js ≤ C2−2j1s ≤ C
(
n

zn

)−2s
≤ C

(
zn ln(n/zn)

n

)2s

≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1 and p ∈ [1, 2), we have Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M). Since s > 1/p,

we have s+ 1/2− 1/p > s/(2s+ 1). So, by zn < n/e and zn ln(n/zn) < n, we
have

T ≤ C

∞∑
j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ C

(
n

zn

)−2(s+1/2−1/p)

≤ C
(
zn ln(n/zn)

n

)2(s+1/2−1/p)

≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

T ≤ C
(
zn ln(n/zn)

n

)2s/(2s+1)

. (25)

The term S can be decomposed as

S = S1 + S2 + S3 + S4, (26)

where

S1 =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k|≥κλn}1{|βj,k|<κλn/2}
)
,

S2 =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k|≥κλn}1{|βj,k|≥κλn/2}
)
,

S3 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κλn}1{|βj,k|≥2κλn}

)
and

S4 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κλn}1{|βj,k|<2κλn}

)
.

Upper bounds for S1 and S3. We have{
|β̂j,k| < κλn, |βj,k| ≥ 2κλn

}
⊆
{
|β̂j,k − βj,k| > κλn/2

}
,
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|β̂j,k| ≥ κλn, |βj,k| < κλn/2

}
⊆
{
|β̂j,k − βj,k| > κλn/2

}
and {

|β̂j,k| < κλn, |βj,k| ≥ 2κλn

}
⊆
{
|βj,k| ≤ 2|β̂j,k − βj,k|

}
.

So

max(S1, S3) ≤ C
j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k−βj,k|>κλn/2}

)
.

It follows from the Cauchy-Schwarz inequality and Propositions 2 and 3 that

E
((

β̂j,k − βj,k
)2

1{|β̂j,k−βj,k|>κλn/2}

)
≤
(
E
((

β̂j,k − βj,k
)4))1/2 (

P
(
|β̂j,k − βj,k| > κλn/2

))1/2
≤ C

z2n ln(n/zn)

n2
.

Hence, using zn < n/e, zn ln(n/zn) < n and 2s/(2s+ 1) < 1, we have

max(S1, S3) ≤ C
z2n ln(n/zn)

n2

j1∑
j=τ

2j ≤ C z
2
n ln(n/zn)

n2
2j1

≤ C
zn ln(n/zn)

n
≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

. (27)

Upper bound for S2. Using Proposition 2 and the Cauchy-Schwarz inequality,
we obtain

E
((

β̂j,k − βj,k
)2)

≤
(
E
((

β̂j,k − βj,k
)4))1/2

≤ C zn ln(n/zn)

n
.

Hence

S2 ≤ C
zn ln(n/zn)

n

j1∑
j=τ

2j−1∑
k=0

1{|βj,k|>κλn/2}.

Let j2 be the integer defined by

1

2

(
n

zn ln(n/zn)

)1/(2s+1)

< 2j2 ≤
(

n

zn ln(n/zn)

)1/(2s+1)

. (28)

We have

S2 ≤ S2,1 + S2,2,
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where

S2,1 = C
zn ln(n/zn)

n

j2∑
j=τ

2j−1∑
k=0

1{|βj,k|>κλn/2}

and

S2,2 = C
zn ln(n/zn)

n

j1∑
j=j2+1

2j−1∑
k=0

1{|βj,k|>κλn/2}.

We have

S2,1 ≤ C
zn ln(n/zn)

n

j2∑
j=τ

2j ≤ C zn ln(n/zn)

n
2j2 ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M),

S2,2 ≤ C
zn ln(n/zn)

nλ2n

j1∑
j=j2+1

2j−1∑
k=0

β2
j,k ≤ C

∞∑
j=j2+1

2j−1∑
k=0

β2
j,k ≤ C2−2j2s

≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1, p ∈ [1, 2) and s > 1/p, since Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M) and

(2s+ 1)(2− p)/2 + (s+ 1/2− 1/p)p = 2s, we have

S2,2 ≤ C
zn ln(n/zn)

nλpn

j1∑
j=j2+1

2j−1∑
k=0

|βj,k|p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2 ∞∑
j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C
(
zn ln(n/zn)

n

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

S2 ≤ C
(
zn ln(n/zn)

n

)2s/(2s+1)

. (29)

Upper bound for S4. We have

S4 ≤
j1∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλn}.

Let j2 be the integer (28). We have

S4 ≤ S4,1 + S4,2,
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where

S4,1 =

j2∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλn}, S4,2 =

j1∑
j=j2+1

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλn}.

We have

S4,1 ≤ Cλ2n
j2∑
j=τ

2j ≤ C zn ln(n/zn)

n
2j2 ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M), we have

S4,2 ≤
∞∑

j=j2+1

2j−1∑
k=0

β2
j,k ≤ C

∞∑
j=j2+1

2−2js ≤ C2−2j2s ≤ C
(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1, p ∈ [1, 2) and s > 1/p, since Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M) and

(2− p)(2s+ 1)/2 + (s+ 1/2− 1/p)p = 2s, we have

S4,2 ≤ Cλ2−pn

j1∑
j=j2+1

2j−1∑
k=0

|βj,k|p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2 ∞∑
j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C
(
zn ln(n/zn)

n

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

S4 ≤ C
(
zn ln(n/zn)

n

)2s/(2s+1)

. (30)

It follows from (26), (27), (29) and (30) that

S ≤ C
(
zn ln(n/zn)

n

)2s/(2s+1)

. (31)

Combining (23), (24), (25) and (31), we have, for r ≥ 1, {p ≥ 2 and s > 0}
or {p ∈ [1, 2) and s > 1/p},

E
(∫ 1

0

(
f̂H(x)− fν(x)

)2
dx

)
≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

The proof of Theorem 2 is complete.

�
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