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Adaptive wavelet estimation of a function in an indirect regression model

(The distribution of ξ 1 can be unknown). We suppose that V 1 , . . . , V n , X 1 , . . . , X n , ξ 1 , . . . , ξ n are independent. For a fixed ν ∈ {1, . . . , m}, we want to estimate f ν from (X 1 , Y 1 ), . . . , (X n , Y n ). An application of this estimation problem is the following: m noise-perturbed signals f 1 , . . . , f m are randomly observed and only f ν is of interest.

To estimate f ν , various methods can be investigated (Kernel, Spline, . . . ) (see e.g. Prakasa [START_REF] Rao | Nonparametric functional estimation[END_REF][START_REF] Rao | Nonparametric functional estimation: an overview, Asymptotics, Nonparametrics and Time Series[END_REF] and [START_REF] Tsybakov | Introduction a l'estimation non-paramtrique[END_REF]). In this study, we focus our attention on the wavelet methods. They are attractive for nonparametric function estimation because of their spatial adaptivity, computational efficiency and asymptotic optimality properties. They can achieve near optimal convergence rates over a wide range of function classes (Besov balls, . . . ) and enjoy excellent mean integrated squared error (MISE) properties when used to estimate spatially inhomogeneous function. Details on the basics on wavelet methods in function estimation can be found in [START_REF] Antoniadis | Wavelets in statistics: a review (with discussion)[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

When (1) is considered with V 1 = . . . = V n = 1, it becomes the classical nonparametric regression model. In this case, to estimate f 1 = f , numerous wavelet methods have been developed. See e.g. [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF][START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF], 1998), Donoho et al (1995), [START_REF] Delyon | On minimax wavelet estimators[END_REF], Antoniadis et al. (1999), [START_REF] Cai | Wavelet estimation for samples with random uniform design[END_REF], [START_REF] Zhang | Nonlinear wavelet estimation of regression function with random design[END_REF], [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF][START_REF] Cai | On block thresholding in wavelet regression: adaptivity, block size and threshold level[END_REF], [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF], [START_REF] Chicken | Block thresholding and wavelet estimation for nonequispaced samples[END_REF], [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF], [START_REF] Chesneau | Wavelet block thresholding for samples with random design: a minimax approach under the L p risk[END_REF] and Pham [START_REF] Pham Ngoc | Regression in random design and Bayesian warped wavelets estimators[END_REF]. However, to the best of our knowledge, there is no adaptive wavelet estimator for f ν in the general case.

In this paper, we develop an adaptive wavelet estimator for f ν using the hard thresholding rule. It has the originality to combine an "observations thresholding technique" introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] with some technical tools taking into account the distributions of V 1 , . . . , V n . We evaluate its performance via the minimax approach under the MISE over Besov balls B s p,r (M ) (to be defined in Section 3). Under mild assumptions on the distributions of V 1 , . . . , V n , we prove that our estimator attains the rate of convergence

v n = z n ln(n/z n ) n 2s/(2s+1)
, where z n depends on the distributions of V 1 , . . . , V n (see ( 5)). This rate is "near optimal" in the sense that it is the one attained by the best nonadaptive linear wavelet estimator (the one which minimizes the MISE) up to a logarithmic term.

The paper is organized as follows. Assumptions on the model and some notations are introduced in Section 2. Section 3 briefly describes the wavelet basis on [0, 1] and the Besov balls. The estimators are presented in Section 4. The results are set in Section 5. Section 6 is devoted to the proofs.

Assumptions

Additional assumptions on the model (1) are presented below.

Assumption on (f d ) d∈{1,...,m} . We suppose that there exists a known constant C * > 0 such that sup d∈{1,...,m}

sup x∈[0,1] |f d (x)| ≤ C * .
(2)

Assumptions on V 1 , . . . , V n . Recall that V 1 , .
. . , V n are unobserved and, for any i ∈ {1, . . . , n}, we know

w d (i) = P(V i = d), d ∈ {1, . . . , m}.
We suppose that the matrix

Γ n = 1 n n i=1 w k (i)w (i) (k, )∈{1,...,m} 2 is nonsingular i.e. det(Γ n ) > 0.
For the considered ν (the one which refers to the estimation of f ν ) and any i ∈ {1, . . . , n}, we set

a ν (i) = 1 det(Γ n ) m k=1 (-1) k+ν γ n ν,k w k (i), (3) 
where γ n ν,k denotes the determinant of the minor (ν, k) of the matrix Γ n . Then, for any d ∈ {1, . . . , m},

1 n n i=1 a ν (i)w d (i) =            1 if d = ν, 0 otherwise, (4) and (a ν (1), . . . , a ν (n)) = argmin (b1,...,bn)∈R n 1 n n i=1 b 2 i .
Technical details can be found in [START_REF] Maiboroda | Estimators of components of a mixture with varying concentrations[END_REF]. We set

z n = 1 n n i=1 a 2 ν (i) (5) 
and we suppose that z n < n/e.

In nonparametric statistics, the sequence (a ν (i)) i∈{1,...,n} has ever been used in some mixture density estimation problems. See e.g. [START_REF] Maiboroda | Estimators of components of a mixture with varying concentrations[END_REF][START_REF] Pokhyl'ko | Wavelet estimators of a density constructed from observations of a mixture[END_REF] and Prakasa [START_REF] Rao | Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions[END_REF].

Wavelets and Besov balls

Wavelet basis. Let N ∈ N * , φ be a father wavelet of a multiresolution analysis on R and ψ be the associated mother wavelet. Assume that

-supp(φ) = supp(ψ) = [1 -N, N ], - N 1-N φ(x)dx = 1, -for any v ∈ {0, . . . , N -1}, N 1-N x v ψ(x)dx = 0.
For instance, the Daubechies wavelets satisfy these assumptions. Set

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then there exists an integer τ satisfying 2 τ ≥ 2N such that the collection

B = {φ τ,k (.), k ∈ {0, . . . , 2 τ -1}; ψ j,k (.); j ∈ N-{0, . . . , τ -1}, k ∈ {0, . . . , 2 j -1}},
(with an appropriate treatments at the boundaries) is an orthonormal basis of L 2 ([0, 1]), the set of square-integrable functions on [0, 1]. We refer to [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF].

For any integer ≥ τ , any h ∈ L 2 ([0, 1]) can be expanded on B as

h(x) = 2 -1 k=0 α ,k φ ,k (x) + ∞ j= 2 j -1 k=0 β j,k ψ j,k (x),
where α j,k and β j,k are the wavelet coefficients of h defined by

α j,k = 1 0 h(x)φ j,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx. (6) 
Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to B s p,r (M ) if and only if there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients (6) satisfy

   ∞ j=τ -1   2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    r    1/r ≤ M * .
(We set β τ -1,k = α τ,k ). In this expression, s is a smoothness parameter and p and r are norm parameters. For a particular choice of s, p and r, B s p,r (M ) contain the Hölder and Sobolev balls. See [START_REF] Meyer | Ondelettes et Opérateurs[END_REF].

Estimators

Wavelet coefficient estimators. The first step to estimate f ν consists in expanding f ν on B and estimating its unknown wavelet coefficients.

For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1},

-we estimate α j,k = 1 0 f ν (x)φ j,k (x)dx by α j,k = 1 n n i=1 a ν (i)Y i φ j,k (X i ), (7) 
we estimate

β j,k = 1 0 f ν (x)ψ j,k (x)dx by β j,k = 1 n n i=1 Z i 1 {|Zi|≤γn} , (8) 
where, for any i ∈ {1, . . . , n},

Z i = a ν (i)Y i ψ j,k (X i ),
a ν (i) is defined by (3), for any random event A, 1 A is the indicator function on A, the threshold γ n is defined by

γ n = θ nz n ln(n/z n ) , (9) 
z n is defined by ( 5), θ = C 2 * + E(ξ 2 1 ) and C * is the one in (2). Remark 1. Mention that α j,k is an unbiased estimator of α j,k , whereas β j,k is not an unbiased estimator of β j,k . However (1/n) n i=1 Z i is an unbiased estimator of β j,k . The proofs are given in ( 14) and ( 19). Remark 2. The "observations thresholding technique" used in (8) has been firstly introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] for (1) in the classical case (i.e. V 1 = . . . = V n = 1). In our general setting, this allows us to provide a good estimator of β j,k under mild assumptions on -(a ν (i)) i∈{1,...,n} and a fortiori the distributions of V 1 , . . . , V n (only z n < n/e is required), ξ 1 , . . . , ξ n (only finite moments of order 2 are required).

Linear estimator. Assuming that f ν ∈ B s p,r (M ) with p ≥ 2, we define the linear estimator f L by

f L (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x), (10) 
where α j,k is defined by ( 7) and j 0 is the integer satisfying

1 2 n z n 1/(2s+1) < 2 j0 ≤ n z n 1/(2s+1)
.

The definition of j 0 is chosen to minimize the MISE of f L . Note that it is not adaptive since it depends on s, the smoothness parameter of f ν .

Hard thresholding estimator. We define the hard thresholding estimator f H by

f H (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + j1 j=τ 2 j -1 k=0 β j,k 1 {| β j,k |≥κλn} ψ j,k (x), (11) 
where α j,k is defined by ( 7), β j,k by ( 8), j 1 is the integer satisfying

n 2z n < 2 j1 ≤ n z n ,
κ ≥ 8/3 + 2 + 2 16/9 + 4 and λ n is the threshold

λ n = θ z n ln(n/z n ) n . ( 12 
)
Further details on the hard thresholding wavelet estimator for the standard nonparametric regression model can be found in [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF][START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF], 1998) and [START_REF] Delyon | On minimax wavelet estimators[END_REF].

Note that the choice of γ n in (9) depends on λ n in ( 12): we have λ n = θ 2 z n /γ n . The definitions of γ n and λ n are based on theoretical considerations.

Results

Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that f ν ∈ B s p,r (M ) with s > 0, p ≥ 2 and r ≥ 1. Let f L be (10). Then there exists a constant C > 0 such that

E 1 0 f L (x) -f ν (x) 2 dx ≤ C z n n 2s/(2s+1)
.

The proof of Theorem 1 uses moment inequalities on ( 7) and ( 8), and a suitable decomposition of the MISE. Due to our weak assumptions on V 1 , . . . , V n , ξ 1 , . . . , ξ n , the optimal lower bound of (1) seems difficult to determine (see [START_REF] Tsybakov | Introduction a l'estimation non-paramtrique[END_REF]). However, since f L is constructed to be the linear estimator which optimizes the MISE, our benchmark will be the rate of convergence v n = (z n /n) 2s/(2s+1) .

Remark that, in the case V 1 = . . . = V n = 1 and ξ 1 ∼ N (0, 1), we have z n = 1 and v n (= n -2s/(2s+1) ) is the optimal rate of convergence (see [START_REF] Tsybakov | Introduction a l'estimation non-paramtrique[END_REF]).

Theorem 2 Consider (1) under the assumptions of Section 2. Let f H be (11). Suppose that f ν ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}. Then there exists a constant C > 0 such that

E 1 0 f H (x) -f ν (x) 2 dx ≤ C z n ln(n/z n ) n 2s/(2s+1)
.

The proof of Theorem 2 is based on several probability results (moment inequalities, concentration inequality,. . . ) and a suitable decomposition of the MISE.

Theorem 2 proves that f H attains v n = (z n /n) 2s/(2s+1) up to the logarithmic term (ln(n/z n )) 2s/(2s+1) .

Naturally, when V 1 = . . . = V n = 1 and ξ 1 ∼ N (0, 1), f H attains the same rate of convergence than the standard hard thresholding estimator adapted to the classical nonparametric regression model (see [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF][START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF], 1998)). And this one is optimal in the minimax sense up to a logarithmic term.

Conclusions and perspectives. We construct an adaptive wavelet estimator to estimate the function f ν from the sophisticated regression model (1). Under mild assumptions, we prove that it attains a sharp rate of convergence for a wide class of functions.

Possible perspectives are to investigate the estimation of f in (1) when X 1 has a more complex distribution than the random uniform one. In this case, the warped wavelet basis introduced in the nonparametric regression estimation by [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] seems to be an adapted powerful tool. consider the case where the distributions of V 1 , . . . , V n are unknown.

potentially improve the estimation of f ν (and remove the extra logarithmic term). The thresholding rule named BlockJS developed in wavelet estimation by [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF][START_REF] Cai | On block thresholding in wavelet regression: adaptivity, block size and threshold level[END_REF] seems to be a good alternative.

All these aspects need further investigations that we leave for a future work.

Proofs

In this section, we consider (1) under the assumptions of Section 2. Moreover, C represents a positive constant which may differ from one term to another.

Auxiliary results

Proposition 1 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let α j,k be the wavelet coefficient (6) of f ν and α j,k be (7). Then there exists a constant C > 0 such that

E ( α j,k -α j,k ) 2 ≤ C z n n .
Proof of Proposition 1. First of all, we prove that α j,k is an unbiased estimator of α j,k . For any i ∈ {1, . . . , n}, set

W i = a ν (i)Y i φ j,k (X i ).
Since X i , V i and ξ i are independent, and E(ξ i ) = 0, we have

E(W i ) = E(a ν (i)Y i φ j,k (X i )) = E(a ν (i)(f Vi (X i ) + ξ i )φ j,k (X i )) = a ν (i)E(f Vi (X i )φ j,k (X i )) + a ν (i)E(ξ i )E(φ j,k (X i )) = a ν (i)E(f Vi (X i )φ j,k (X i )) = a ν (i) m d=1 w d (i) 1 0 f d (x)φ j,k (x)dx. ( 13 
)
It follows from ( 13) and ( 4) that

E( α j,k ) = 1 n n i=1 E(W i ) = 1 n n i=1 a ν (i) m d=1 w d (i) 1 0 f d (x)φ j,k (x)dx = m d=1 1 0 f d (x)φ j,k (x)dx 1 n n i=1 a ν (i)w d (i) = 1 0 f ν (x)φ j,k (x)dx = α j,k . (14) 
So α j,k is an unbiased estimator of α j,k . Therefore

E ( α j,k -α j,k ) 2 = V ( α j,k ) = V 1 n n i=1 W i = 1 n 2 n i=1 V(W i ) ≤ 1 n 2 n i=1 E W 2 i . (15) 
For any i ∈ {1, . . . , n}, we have 

E W 2 i = E(a 2 ν (i)Y 2 i φ 2 j,k (X i )) = a 2 ν (i)E (f Vi (X i ) + ξ i ) 2 φ 2 j,k (X i ) . (16) Since X i , V i and ξ i are independent, E φ 2 j,k (X i ) = 1 0 φ 2 j,k ( 
E (f Vi (X i ) + ξ i ) 2 φ 2 j,k (X i ) = E f 2 Vi (X i )φ 2 j,k (X i ) + 2E(ξ i )E(f Vi (X i )φ 2 j,k (X i )) + E ξ 2 i E φ 2 j,k (X i ) = E f 2 Vi (X i )φ 2 j,k (X i ) + E ξ 2 1 ≤ C 2 * E φ 2 j,k (X i ) + E ξ 2 1 = C 2 * + E ξ 2 1 = θ 2 . ( 17 
)
Putting ( 16) and ( 17) together, we obtain

E W 2 i ≤ θ 2 a 2 ν (i). ( 18 
)
It follows from ( 15) and ( 18) that

E ( α j,k -α j,k ) 2 ≤ 1 n θ 2 1 n n i=1 a 2 ν (i) = C z n n .
Proposition 2 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (6) of f ν and β j,k be (8). Then there exists a constant C > 0 such that

E β j,k -β j,k 4 ≤ C (z n ln(n/z n )) 2 n 2 .
Proof of Proposition 2. Taking ψ instead of φ in ( 14), we obtain

β j,k = 1 0 f ν (x)ψ j,k (x)dx = 1 n n i=1 E (Z i ) = 1 n n i=1 E(Z i 1 {|Zi|≤γn} ) + 1 n n i=1 E(Z i 1 {|Zi|>γn} ). ( 19 
)
Therefore, by the elementary inequality (x + y) 4 ≤ 8(x 4 + y 4 ), (x, y) ∈ R 2 , we have

E β j,k -β j,k 4 = E   1 n n i=1 Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} - 1 n n i=1 E Z i 1 {|Zi|>γn} 4   ≤ 8(A + B), (20) 
where

A = E   1 n n i=1 Z i 1 {|Zi|≤γn} -E(Z i 1 {|Zi|≤γn} ) 4   and B = 1 n n i=1 E(|Z i |1 {|Zi|>γn} ) 4 .
Let us bound A and B, in turn.

Upper bound for A. Let us present the Rosenthal inequality (see [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]).

Lemma 1 (Rosenthal's inequality) Let n ∈ N * , p ≥ 2 and (U i ) i∈{1,...,n} be n zero mean independent random variables such that sup i∈{1,...,n} E(|U i | p ) < ∞. Then there exists a constant C > 0 such that

E n i=1 U i p ≤ C max   n i=1 E (|U i | p ) , n i=1 E U 2 i p/2   .
Applying the Rosenthal inequality with p = 4 and, for any i ∈ {1, . . . , n},

U i = Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} , we obtain A = 1 n 4 E   n i=1 U i 4   ≤ C 1 n 4 max   n i=1 E U 4 i , n i=1 E U 2 i 2   .
Using (18) (with ψ instead of φ), we have, for any a ∈ {2, 4} and any i ∈ {1, . . . , n},

E (U a i ) ≤ 2 a E Z a i 1 {|Zi|≤γn} ≤ 2 a γ a-2 n E Z 2 i ≤ 2 a γ a-2 n θ 2 a 2 ν (i).
Hence, using

z n < n/e, A ≤ C 1 n 4 max   γ 2 n n i=1 a 2 ν (i), n i=1 a 2 ν (i) 2   = C 1 n 4 max n 2 ln(n/z n ) z 2 n , n 2 z 2 n = C z 2 n n 2 . ( 21 
)
Upper bound for B. Using again (18) (with ψ instead of φ), for any i ∈ {1, . . . , n}, we obtain

E |Z i |1 {|Zi|>γn} ≤ E Z 2 i γ n ≤ 1 θ ln(n/z n ) nz n θ 2 a 2 ν (i) = θ ln(n/z n ) nz n a 2 ν (i). Therefore B = 1 n n i=1 E(|Z i |1 {|Zi|>γn} ) 4 ≤ θ 4 (ln(n/z n )) 2 n 2 z 2 n 1 n n i=1 a 2 ν (i) 4 = θ 4 (ln(n/z n )) 2 n 2 z 2 n z 4 n = θ 4 (z n ln(n/z n )) 2 n 2 . ( 22 
)
Combining ( 20), ( 21) and ( 22) and using z n < n/e, we have

E β j,k -β j,k 4 ≤ C 1 n 2 z 2 n + (z n ln(n/z n )) 2 n 2 ≤ C (z n ln(n/z n )) 2 n 2 .
Proposition 3 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (6) of f ν and β j,k be (8). Then, for any κ ≥ 8/3 + 2 + 2 16/9 + 4,

P | β j,k -β j,k | ≥ κλ n /2 ≤ 2 z n n 2 .
Proof of Proposition 3. By ( 19) we have

| β j,k -β j,k | = 1 n n i=1 Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} - 1 n n i=1 E Z i 1 {|Zi|>γn} ≤ 1 n n i=1 Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} + 1 n n i=1 E |Z i |1 {|Zi|>γn} .
Using (18) (with ψ instead of φ), we obtain

1 n n i=1 E |Z i |1 {|Zi|>γn} ≤ 1 γ n 1 n n i=1 E Z 2 i ≤ 1 γ n θ 2 1 n n i=1 a 2 ν (i) = 1 γ n θ 2 z n = 1 θ ln(n/z n ) nz n θ 2 z n = θ z n ln(n/z n ) n = λ n .
Hence

S = P | β j,k -β j,k | ≥ κλ n /2 ≤ P 1 n n i=1 Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} ≥ (κ/2 -1)λ n .
Now we need the Bernstein inequality presented in the lemma below (see [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF]).

Lemma 2 (Bernstein's inequality) Let n ∈ N * and (U i ) i∈{1,...,n} be n zero mean independent random variables such that there exists a constant M > 0 satisfying sup i∈{1,...,n} |U i | ≤ M < ∞. Then, for any λ > 0,

P n i=1 U i ≥ λ ≤ 2 exp - λ 2 2 ( n i=1 E (U 2 i ) + λM /3) .
Let us set, for any i ∈ {1, . . . , n},

U i = Z i 1 {|Zi|≤γn} -E Z i 1 {|Zi|≤γn} .
For any i ∈ {1, . . . , n}, we have E(U i ) = 0,

|U i | ≤ |Z i | 1 {|Zi|≤γn} + E |Z i |1 {|Zi|≤γn} ≤ 2γ n
and, using again (18) (with ψ instead of φ),

E U 2 i = V Z i 1 {|Zi|≤γn} ≤ E Z 2 i 1 {|Zi|≤γn} ≤ E Z 2 i ≤ θ 2 a 2 ν (i). So n i=1 E U 2 i ≤ θ 2 n i=1 a 2 ν (i) = θ 2 nz n .
It follows from the Bernstein inequality that

S ≤ 2 exp - n 2 (κ/2 -1) 2 λ 2 n 2 (θ 2 nz n + 2n(κ/2 -1)λ n γ n /3) .
Since

λ n γ n = θ z n ln(n/z n ) n θ nz n ln(n/z n ) = θ 2 z n , λ 2 n = θ 2 z n ln(n/z n ) n ,
we have, for any κ ≥ 8/3 + 2 + 2 16/9 + 4,

S ≤ 2 exp - (κ/2 -1) 2 ln(n/z n ) 2 (1 + 2(κ/2 -1)/3) = 2 n z n - (κ/2-1) 2 2(1+2(κ/2-1)/3) ≤ 2 z n n 2 .

Proofs of the main results

Proof of Theorem 1. We expand the function f ν on B as

f ν (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x) + ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x). 
We have

f L (x) -f ν (x) = 2 j 0 -1 k=0 ( α j0,k -α j0,k ) φ j0,k (x) - ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x) 
.

Hence

E 1 0 f L (x) -f ν (x) 2 dx = A + B,
where

A = 2 j 0 -1 k=0 E ( α j0,k -α j0,k ) 2 , B = ∞ j=j0 2 j -1 k=0 β 2 j,k .
Proposition 1 gives

A ≤ 2 j0 z n n ≤ z n n 2s/(2s+1)
.

Since p ≥ 2, we have

B s p,r (M ) ⊆ B s 2,∞ (M ). Hence B ≤ C2 -2j0s ≤ C z n n 2s/(2s+1)
.

So E 1 0 f L (x) -f ν (x) 2 dx ≤ C z n n 2s/(2s+1)
.

The proof of Theorem 1 is complete.

Proof of Theorem 2. We expand the function f ν on B as

f ν (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + ∞ j=τ 2 j -1 k=0 β j,k ψ j,k (x).
We have

f H (x) -f ν (x) = 2 τ -1 k=0 ( α τ,k -α τ,k )φ τ,k (x) + j1 j=τ 2 j -1 k=0 β j,k 1 {| β j,k |≥κλn} -β j,k ψ j,k (x) - ∞ j=j1+1 2 j -1 k=0 β j,k ψ j,k (x).
Hence

E 1 0 f H (x) -f ν (x) 2 dx = R + S + T, (23) 
where

R = 2 τ -1 k=0 E ( α τ,k -α τ,k ) 2 , S = j1 j=τ 2 j -1 k=0 E β j,k 1 {| β j,k |≥κλn} -β j,k 2 and T = ∞ j=j1+1 2 j -1 k=0 β 2 j,k .
Let us bound R, T and S, in turn.

By Proposition 1 and the inequalities: z n < n/e, z n ln(n/z n ) < n and 2s/(2s + 1) < 1, we have

R ≤ C z n n ≤ C z n ln(n/z n ) n ≤ C z n ln(n/z n ) n 2s/(2s+1) . ( 24 
)
For r ≥ 1 and p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Using z n < n/e, z n ln(n/z n ) < n and 2s/(2s + 1) < 2s, we obtain

T ≤ C ∞ j=j1+1 2 -2js ≤ C2 -2j1s ≤ C n z n -2s ≤ C z n ln(n/z n ) n 2s ≤ C z n ln(n/z n ) n 2s/(2s+1)
.

For r ≥ 1 and p ∈ [1, 2), we have

B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ ( 
M ). Since s > 1/p, we have s + 1/2 -1/p > s/(2s + 1). So, by z n < n/e and z n ln(n/z n ) < n, we have

T ≤ C ∞ j=j1+1 2 -2j(s+1/2-1/p) ≤ C2 -2j1(s+1/2-1/p) ≤ C n z n -2(s+1/2-1/p) ≤ C z n ln(n/z n ) n 2(s+1/2-1/p) ≤ C z n ln(n/z n ) n 2s/(2s+1)
.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

T ≤ C z n ln(n/z n ) n 2s/(2s+1) . (25) 
The term S can be decomposed as

S = S 1 + S 2 + S 3 + S 4 , (26) 
where

S 1 = j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k |≥κλn} 1 {|β j,k |<κλn/2} , S 2 = j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k |≥κλn} 1 {|β j,k |≥κλn/2} , S 3 = j1 j=τ 2 j -1 k=0 E β 2 j,k 1 {| β j,k |<κλn} 1 {|β j,k |≥2κλn}
and

S 4 = j1 j=τ 2 j -1 k=0 E β 2 j,k 1 {| β j,k |<κλn} 1 {|β j,k |<2κλn} .
Upper bounds for S 1 and S 3 . We have

| β j,k | < κλ n , |β j,k | ≥ 2κλ n ⊆ | β j,k -β j,k | > κλ n /2 , | β j,k | ≥ κλ n , |β j,k | < κλ n /2 ⊆ | β j,k -β j,k | > κλ n /2 and | β j,k | < κλ n , |β j,k | ≥ 2κλ n ⊆ |β j,k | ≤ 2| β j,k -β j,k | . So max(S 1 , S 3 ) ≤ C j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλn/2} .
It follows from the Cauchy-Schwarz inequality and Propositions 2 and 3 that

E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλn/2} ≤ E β j,k -β j,k 4 1/2 P | β j,k -β j,k | > κλ n /2 1/2 ≤ C z 2 n ln(n/z n ) n 2 .
Hence, using z n < n/e, z n ln(n/z n ) < n and 2s/(2s + 1) < 1, we have

max(S 1 , S 3 ) ≤ C z 2 n ln(n/z n ) n 2 j1 j=τ 2 j ≤ C z 2 n ln(n/z n ) n 2 2 j1 ≤ C z n ln(n/z n ) n ≤ C z n ln(n/z n ) n 2s/(2s+1) . (27) 
Upper bound for S 2 . Using Proposition 2 and the Cauchy-Schwarz inequality, we obtain

E β j,k -β j,k 2 ≤ E β j,k -β j,k 4 1/2 ≤ C z n ln(n/z n ) n .
Hence

S 2 ≤ C z n ln(n/z n ) n j1 j=τ 2 j -1 k=0 1 {|β j,k |>κλn/2} .
Let j 2 be the integer defined by

1 2 n z n ln(n/z n ) 1/(2s+1) < 2 j2 ≤ n z n ln(n/z n ) 1/(2s+1) . ( 28 
)
We have

S 2 ≤ S 2,1 + S 2,2 , where S 2,1 = C z n ln(n/z n ) n j2 j=τ 2 j -1 k=0 1 {|β j,k |>κλn/2} and S 2,2 = C z n ln(n/z n ) n j1 j=j2+1 2 j -1 k=0 1 {|β j,k |>κλn/2} .
We have

S 2,1 ≤ C z n ln(n/z n ) n j2 j=τ 2 j ≤ C z n ln(n/z n ) n 2 j2 ≤ C z n ln(n/z n ) n 2s/(2s+1) . For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), S 2,2 ≤ C z n ln(n/z n ) nλ 2 n j1 j=j2+1 2 j -1 k=0 β 2 j,k ≤ C ∞ j=j2+1 2 j -1 k=0 β 2 j,k ≤ C2 -2j2s
≤ C z n ln(n/z n ) n 2s/(2s+1)

. 

Combining ( 23), ( 24), ( 25) and (31), we have, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

E 1 0 f H (x) -f ν (x) 2 dx ≤ C z n ln(n/z n ) n 2s/(2s+1)
.

The proof of Theorem 2 is complete.

  x)dx = 1 and, by (2), sup d∈{1,...,m} sup x∈[0,1] |f d (x)| ≤ C * , we have

For.

  r ≥ 1, p ∈ [1, 2) and s > 1/p, since B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ (M ) and (2s + 1)(2 -p)/2 + (s + 1/2 -1/p)p = 2s, we have S 2,2 ≤ C z n ln(n/z n ) r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, S 2 ≤ C z n ln(n/z n ) n 1 {|β j,k |<2κλn} .Let j 2 be the integer (28). We haveS 4 ≤ S 4,1 + S 4For r ≥ 1, p ∈ [1,2) and s > 1/p, since B s p,r (M ) p)(2s + 1)/2 + (s + 1/2 -1/p)p = 2s, we have S 4,2 ≤ Cλ 2-p r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},
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