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We use a semi-inverse method to study deformations of a straight, prismatic, homogeneous body made of a porous, linear elastic, and isotropic material and loaded only at its end faces by self equilibrated forces. As in the classical theory, the problem is reduced to solving plane elliptical problems. It is shown that the Clebsch/Saint-Venant and Voigt hypotheses are not valid for this problem.

Introduction

Since Saint-Venant [START_REF] Batra | Mémoire sur la torsion des prismes[END_REF][START_REF] Saint-Venant | Mémoire sur la f exion des prismes[END_REF] solved the problem of extension, bending, torsion, and fl xure of a prismatic body made of a homogeneous and isotropic linear elastic material and loaded at its end faces only, there has been considerable interest in generalizing it [START_REF] Clebsch | Theorie der Elasticität fester Körper[END_REF][START_REF] Voigt | Theoretische studien über die elasticitätverhältnisse der krystalle[END_REF][START_REF] Voigt | Lehrbuch der Krystallphysik (mit anschluss der krystalloptik)[END_REF][START_REF] Iesan | Saint-Venant's Problem for inhomogeneous and anisotropic elastic bodies[END_REF][START_REF] Iesan | On Saint-Venant's Problem for elastic dielectrics[END_REF][START_REF] Iesan | Saint-Venant's Problem[END_REF][START_REF] Iesan | Saint-Venant's Problem for microstretch elastic solids[END_REF][START_REF] Dell'isola | Saint-Venant Problem in linear piezoelectricity[END_REF][START_REF] Daví | Saint-Venant's Problem for linear piezoelectric bodies[END_REF][START_REF] Dell'isola | Almansi-type boundary conditions for electric potential inducing f exure in linear piezoelectric beams[END_REF]. Clebsch [START_REF] Clebsch | Theorie der Elasticität fester Körper[END_REF] observed that in Saint-Venant's solutions the surface tractions on a plane passing through the axis of the prismatic body are parallel to the axis. Voigt [START_REF] Voigt | Theoretische studien über die elasticitätverhältnisse der krystalle[END_REF][START_REF] Voigt | Lehrbuch der Krystallphysik (mit anschluss der krystalloptik)[END_REF] hypothesized that the stress tensor is either constant along the axis or depends linearly upon the axial coordinate. Other investigators [START_REF] Iesan | Saint-Venant's Problem for inhomogeneous and anisotropic elastic bodies[END_REF][START_REF] Iesan | On Saint-Venant's Problem for elastic dielectrics[END_REF][START_REF] Iesan | Saint-Venant's Problem[END_REF][START_REF] Iesan | Saint-Venant's Problem for microstretch elastic solids[END_REF][START_REF] Dell'isola | Saint-Venant Problem in linear piezoelectricity[END_REF][START_REF] Daví | Saint-Venant's Problem for linear piezoelectric bodies[END_REF][START_REF] Dell'isola | Almansi-type boundary conditions for electric potential inducing f exure in linear piezoelectric beams[END_REF] have analysed the problem for inhomogeneous and anisotropic linear elastic bodies, elastic dielectrics, microstretch elastic solids, and piezoelectric materials.

Here we study the Saint-Venant problem for a linear elastic porous material. The theory for such materials has been developed by Nunziato and Cowin [START_REF] Nunziato | A nonlinear theory of elastic materials with voids[END_REF] who have also studied the bending of a beam [START_REF] Cowin | Linear elastic materials with voids[END_REF] made of this material. They applied surface tractions equipollent to a bending moment only at the end faces of the beam and found that surface tractions were also required on its lateral walls. Batra and Yang [START_REF] Batra | Saint-Venant's Principle linear elastic porous materials[END_REF] have proved Toupin's version of the Saint-Venant principle for linear elastic porous materials.

The solution for the Saint-Venant problem has been reduced to that of solving two plane elliptic problems; their solutions will give the warping of the cross-section and in-plane displacements as a function of the axial and in-plane coordinates. It is also shown that the Saint-Venant/Clebsch and Voigt hypotheses are not valid for this problem. An appropriate criterion is that the second derivative with respect to the axial coordinate of the in-plane components of the stress tensor must vanish. Moreover, the vanishing of the f rst derivative with respect to the axial coordinate of the in-plane components of the stress tensor is not equivalent to the vanishing of these components as is the case in classical linear elasticity [START_REF] Voigt | Theoretische studien über die elasticitätverhältnisse der krystalle[END_REF][START_REF] Voigt | Lehrbuch der Krystallphysik (mit anschluss der krystalloptik)[END_REF].

Formulation of the Problem

Equations governing quasistatic deformations of a linear elastic, porous, isotropic, and homogeneous material in the absence of body forces and extrinsic equilibrated forces are Div T = 0; Div h + g = 0;

(1)

where

T = (tr E)1 + 2E + 1 ; h=Grad ; g = ( tr E): (2) 
Here T is a stress tensor, h the f ux of porosity , g the density of self-equilibrated body forces for the porous material, Div the three-dimensional divergence operator, and Lamé's constants, ; and are material constants that characterize the effect of porosity, tr is the trace operator, E the inf nitesimal strain tensor, 1 the threedimensional identity tensor, and Grad the three-dimensional gradient operator.

Let e be a unit vector along the axis of the prismatic body. We set u = we + v; h = ( 0 e + grad ); T = e e + t e + e t + T; E = Sym Grad u = "e e + e + e + Ê;

(

where

" = w 0 @ w @ z ; = 1 2 (v 0 +gradw); Ê = Sym grad v = 1 2 (gradv + ( grad v) T ); (4) 
u is the displacement f eld, and grad (div) is the two-dimensional gradient (divergence) operator with respect to coordinates in the cross-section A. Thus w gives the displacement and z the coordinate of a point along the axis of the prismatic body, v the components of displacement in the plane of the body, " the axial strain, the axial stress, T the in-plane stress tensor, Ê the in-plane infin tesimal strain tensor, t the shear stress on the cross-section A, the shear strain corresponding to the shear stress t, and the tensor product between two vectors a and b is defi ed by (a b)c = (b c)a for every vector c. The constitutive relations (2) and the decompositions (3) yield T = [ ( tr Ê + ") + ] 1+2 Ê; = (tr Ê + ") + 2 " + ; t= (v 0 +gradw); [START_REF] Voigt | Lehrbuch der Krystallphysik (mit anschluss der krystalloptik)[END_REF] where 1 is the two-dimensional identity tensor. Substitution from ( 3) and ( 4) into (1) yields

( + )div v 0 + ( + 2 ) w 00 + 0 + R w=0 ; v 00 + ( + ) grad w 0 + grad + 2 R v + ( + ) grad div v = 0; 00 + R ( div v + w 0 ) = 0 ; ( 6 
)
where R is the 2-dimensional Laplace operator in A. Equations ( 6) are the f eld equations for the determination of v; w , and , and correspond to Navier's equations in elastostatics; the latter are obtained by setting = 0 in (6) 1;2 . This form of the equations exploits the geometry of the prismatic body (e.g. see DiCarlo [START_REF] Dicarlo | Lecture Notes, Dottorato per la ricerca in meccanica teorica ed applicata, Facolt á di Ing[END_REF]). We assume that the strain energy density is positive defi ite; thus [START_REF] Nunziato | A nonlinear theory of elastic materials with voids[END_REF] >

0; + 2 3 > 0; > 0; > 0; ( + ) 4 2 > 0: (7) 
For the prismatic body A [ 0 ; l ] of axial length l, we assume that its mantle @A [ 0 ; l ] is traction free and it is loaded at the ends. Thus pertinent boundary conditions are Tn = 0; t n = 0; grad n = 0; on @A [ 0 ; l ] ;

Z A Tn dA = F; Z A r Tn dA = M; Z A h n dA = H: (8)
Here F and M are the resultant force and resultant moment applied at the end faces A f 0 g and A f l g , H is the resultant fl x of porosity, and n is the outward directed unit normal to the surface.

A Saint-Venant/Almansi Solution

Following Saint-Venant [START_REF] Batra | Mémoire sur la torsion des prismes[END_REF][START_REF] Saint-Venant | Mémoire sur la f exion des prismes[END_REF] and Almansi [START_REF] Almansi | Sopra la deformazione dei cilindri sollecitati lateralmente[END_REF], we assume

w = w 0 + zw 1 + z 2 2 w 2 + z 3 6 w 3 ; (9) 
and similar expressions for v and , where w 0 ; w 1 ; : : : ; 3 are functions define on the plane A. For the mantle to be free of surface tractions and moments per unit length, we must have w 3 = 3 = 0. Henceforth, we assume that w 3 and 3 vanish identically. From ( 9), ( 4) and (3) 3 we obtain

T = T0 + z T1 + z 2 2 T2 + z 3 3 T3 ; (10) 
and, by equating like powers of z on both sides of ( 6) and ( 8) 1 , the following partial differential equations:

Fv 3 = 0; (11) 
Fv 2 + grad 2 = 0;

(12)

Fv 1 + grad 1 + ( + ) grad w 2 + v 3 = 0; (13) 
Fv 0 + grad 0 + ( + ) grad w 1 + v 2 = 0; (14) 
R w 2 + ( + ) div v 3 = 0; (15) 
R w 1 + ( + ) div v 2 + 2 =0; (16) 
R w 0 + ( + ) div v 1 + 1 + ( + 2 ) w 2 = 0 ; (17) 
div v 3 = 0; (18) R 2 2 div v 2 = 0; (19) R 1 1 ( div v 1 + w 2 ) = 0 ; (20) 
R 0 0 + 2 (div v 0 + w 1 ) = 0 ; (21) 
in A, and the following boundary conditions on @A: (v i+1 + grad w i ) n = 0; i = 0; 1; 2;

(22)

(2Sym grad v i + (div v i ) 1 + i 1)n=0; i=0 ;1 ;2 ; ( 23 
) (2Sym grad v 3 + (div v 3 ) 1)n = 0; (24) 
grad i n = 0; i = 0; 1; 2;

(25

)
where F = [ 2 R + ( + 2 ) grad div] is the differential operator appearing in Navier's equations.

On recalling that the solution of Navier's equations subjected to null tractions is a rigid body motion, Equations ( 11) and ( 24) have the solution

v 3 = v 0 3 + ! 3 e r,
where v 0 3 and ! 3 are constants. Since the mantle is traction free, the torque on every cross-section is the same. It requires that ! 3 = 0. Thus

v 3 = v 0 3 ; T3 = 0; (26) 
and Equation ( 18) is identically satisfi d. Equation ( 15) now implies that w 2 is a harmonic function, and ( 22) with i = 2 gives (gradw

2 ) n = v 0 3 n. Thus w 2 = w 0 2 v 0 3 r: (27)
In ( 27) and below, quantities with superscript zero denote constants.

Scarpetta [START_REF] Scarpetta | Well posedness theorems for linear elastic materials with voids[END_REF] and Iesan [START_REF] Iesan | Some theorems in the theory of elastic materials with voids[END_REF] have shown that the boundary-value problem define by Equations ( 12), ( 19), (23), and (25) (for i = 2) has a unique solution for v 2 and 2 to within a rigid body motion. Since null f elds satisfy these equations, therefore,

2 = 0; v 2 (r) = v 0 2 + ! 2 e r (28) 
give every solution of the problem. The reasoning given above to conclude ! 3 = 0 also gives ! 2 = 0. From ( 16) and (28) we conclude that w 1 is a harmonic function, and the boundary condition ( 22) with i = 1 requires that

w 1 = w 0 1 v 0 2 r: (29) 
Equations ( 13), ( 20), (23), and (25) (for i = 1) can be simplif ed to

Fv 1 + grad 1 = v 0 3 ; R 1 1 div v 1 = (w 0 2 v 0
3 r); in A T1 n = 0; (grad 1 ) n = 0; on @A:

(30) Scarpetta's [START_REF] Scarpetta | Well posedness theorems for linear elastic materials with voids[END_REF] and Iesan's [START_REF] Iesan | Some theorems in the theory of elastic materials with voids[END_REF] theorems imply that the boundary-value problem (30) has a unique solution which must depend linearly upon v 0 3 and w 0 2 . From Equations (1) 1 , (3) 3 , (8) 1 we conclude that

Z A 0 dA = Z A (divt)dA = Z @A t n ds = 0;
(31) and, therefore,

( + 2)w 0 2 A = Z A 1 dA Z A (div v 1 )dA + v 3 0 rA( + 2) (32) v 3 0 r B A( + 2); ( 33 
)
where r is the position vector of the centroid of the cross-section of area A, and r B is define by Equations ( 32) and (33). We also note that T1 may not vanish, but t 1 = t 2 = 0.

Once w 0 and 0 are found by solving the elliptic problem define by ( 17), ( 21), ( 23) and (25) (for i = 0), the complete solution to the Saint-Venant problem is determined. Because of the presence of 0 and 1 in these equations, the porosity will infl ence the warping of the cross-section.

Clebsch/Saint-Venant and Voigt Hypotheses

The Clebsch/Saint-Venant hypothesis in classical linear elasticity is T = 0 and the Voigt hypothesis is T 0 = 0 or T1 = 0. Podio-Guidugli [START_REF] Podio-Guidugli | Load symmetry and energy minimization in Saint-Venant's Problem[END_REF] has proved the equivalence of these two hypotheses. We show here that these hypotheses are not valid for a linear elastic porous material. We f rst recall the following result:

if f 2 C 2 (A)
and there exists a function u such that f 1 = Sym grad u, then R f = 0. We now prove that T2 = 0 if and only if v 2 = constant. T2 = 0 implies that tr T2 = 0, or div v 2 = (=(+)) 2 ;

(

Sym grad v 2 = 2 1=2(+):

Because of the above stated result, R 2 = 0. Now recalling (7) 3 , Equations (34) and ( 19) yield 2 = 0. Thus Equation (35) gives

v 2 = v 0 2 + ! 2 e r; (36) 
and because the mantle is traction free, therefore ! 2 = 0, which proves the result since the converse is trivial.

The second result of this section is that T1 = 0 rules out fl xure. We fi st note that

T1 = 2 Sym grad v 1 + (divv 1 ) 1 + ( w 2 + 2 ) 1: (37) 
T1 = 0 implies tr T1 = 0 which gives div v 1 = (w 2 + 1 )=(+), and, therefore,

2 Sym grad v 1 = (w 2 + 1 ) 1=(+); R 1 =0; (38) 
where we have used the aforestated result, and w 2 is harmonic (cf. the line following Equation ( 26)). From [START_REF] Podio-Guidugli | Load symmetry and energy minimization in Saint-Venant's Problem[END_REF] we now conclude that

2 + ! 1 + w 2 =0: (39) 
Recalling ( 27), ( 33) and (25) with i = 1, we conclude that v 0 3 = 0 which rules out fl xure.

We remark that T1 = f(r) 1 also rules out fl xure. Indeed, from (30) 1 and (30) 3 , one again gets f = 0.

Following reasoning similar to that given above, one can prove that T0 = 0 implies v 0 2 = 0 and hence no bending. It explains why Cowin and Nunziato [START_REF] Cowin | Linear elastic materials with voids[END_REF] imposed nonzero tractions on the lateral surface of the porous beam deformed in bending.

Thus the Clebsch/Saint-Venant and Voigt hypotheses must be relaxed for studying the Saint-Venant problem for linear elastic porous materials.

Summary

The Saint-Venant problem for a prismatic body of cross-section A has been reduced to fi ding a solution of the following two elliptic problems in the cross-section A: the f rst define by Equation (30) and the second by Equations ( 14), ( 17), ( 21), ( 22), ( 23) and ( 25) with i = 0 and

w 2 = v 0 3 (r r B ); v 2 (r) = v 0 2 ;w 1 = w 0 1 v 0 2 r : (40) 
Let v 1 (r) and 1 (r) be a solution of the boundary-value problem define by Equa-

tions (30) with v 0 3 = 1, then v 1 (r) = v 0 3 v 1 ( r ) + ! 1 e r ; 1 ( r ) = 1 ( r ) v 0 3 ; (41) 
where v 0 3 is the magnitude of v 0 3 and ! 1 is an arbitrary constant. The six constants v 0 3 , v 0 2 , ! 1 , and w 0 1 characterize, respectively, the f exure, bending, torsion, and extension of the prismatic porous body as discussed below.

Extension:

The only nonvanishing constant is ! 0 1 and the solution of the second plane elliptic problem to within a rigid body motion is

w 0 = 0; v 0 = 2 2 ( + ) 2 w 0 1 ! r ; 0 = ( 2 +2 ) 2( + ) 2 w 0 1 : (42) 
For 6 = 0, the porosity affects noticeably the Poisson effect. Note that the denominator in (42) is positive because of inequalities [START_REF] Iesan | Saint-Venant's Problem for inhomogeneous and anisotropic elastic bodies[END_REF].

Torsion: The only nonzero constant is ! 1 , and there is no coupling between the displacement and porosity fie ds. When either nonzero tractions or nonvanishing flu of porosity is prescribed on the mantle, then the two f elds will be coupled with each other.

Bending:

The only nonvanishing constant is v 0 takes v 0 and 0 to be polynomials of degree 2 and 1 in r respectively, (in classical linear elasticity v 0 is a polynomial of degree 2 in r), then Equations ( 14), (21), and (23) are satisfie but (25) is not. Cowin and Nunziato [START_REF] Cowin | Linear elastic materials with voids[END_REF] studied bending of a porous beam and found that v 0 and 0 are not polynomials in r. For their solution, tractions on the lateral walls do not vanish and h n = 0 on the end faces where normal tractions equipollent to a moment only are applied.

In general, the axial stress = div v 0 + ( + 2 )( v 0 2 r) + 0 , and the locus of points in A where vanishes may not be a straight line.

Flexure: Here the only nonzero constant is v 0 3 . We recall that the point with the position vector r B in (40) 1 and define by (33) need not coincide with the centroid of the cross-section. Equations (30) determine v 1 , the part of the displacement fiel u that is linear in z. However, v 1 need not be quadratic in r. Consequently, Equation [START_REF] Almansi | Sopra la deformazione dei cilindri sollecitati lateralmente[END_REF] for warping function w 0 has a source term not necessarily affin in r. Equations ( 14) and ( 21) with boundary conditions ( 23) and ( 25) with i = 0 have a rigid motion solution as in classical linear elasticity. Thus warping of the cross-section and the Poisson effect are influence by the porosity.

We note that the flu of double forces at the terminal faces of the cylinder has no effect on the Saint-Venant solutions away from these faces. An analysis of the corresponding one-dimensional problem indicated that the porosity decays exponentially away from the loaded ends. However, the deformation f elds in the prismatic body and in particular the warping of the cross-section are influence by the porosity.

, and w 0 = 0. The functions 0 and v 0 are solutions of Equations (14), (21), (40), (23) and (25) with i = 0. If one
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