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Abstract: Until now, no third gradient theory has been proposed to describe the homogenized energy associ-
ated with a microscopic structure. In this paper, we prove that this is possible using pantographic-type struc-
tures. Their deformation energies involve combinations of nodal displacements having the form of second-
order or third-order finite differences. We establish the I'-convergence of these energies to second and third
gradient functionals. Some mechanical examples are provided so as to illustrate the special features of these
homogenized models.

Key Words: Second gradient theory, third gradient theory, homogenization, I'-convergence, finite differences,
modular truss beam, pantograph

1. INTRODUCTION

A formalized theory for constitutive equations in continuum mechanics was first developed
by Noll [1] (in particular papers 8 and 35). In the framework of the aforementioned
axiomatization it was proven by Eringen [2] and Gurtin [3] that — if Cauchy materials are
considered — the second principle of thermodynamics does not allow for any dependence of
stress tensor on the second gradient of placement so that — in order to formulate a purely
mechanical model in which constitutive equations involve such a second gradient — the
new concept of interstitial working has to be introduced [4]. Enlarging the scope of the
considered models, it has been possible to include the second gradient of placement in the set
of admissible independent variables for constitutive equations also by adding at the same time
further kinematical descriptors (e.g. directors modelling the microstructure or temperature)
for the state of material particles as done, for example, in [5], [6] and [7].

However, another equivalent formalization of continuum mechanics, based on the
principle of virtual power and stemming from the d’Alembert concept of mechanics, is
possible (for a modern description of such a point of view see, for instance, [8] and [9]).
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Following the classification formalized by Germain [10], the mechanical material
behaviour of bodies can be characterized by the expression of internal (deformation) energy
in terms of the displacement gradients. Cauchy three-dimensional (3D) materials coincide
with first gradient materials; their deformation is described by, and their deformation energy
depends on, the first gradient of displacement only.

The deformation energy of second gradient 3D materials, instead, depends also on the
second gradient of displacement. Let us call €(u) the symmetric part of the gradient Vu of
the displacement u and w(u) := Vu — &(u) its skew part. We say that a second gradient
3D material is incomplete if its internal energy depends only on Vu and Vw(u). These
materials are also called ‘3D materials with couple stresses’ (cf [5] and [11]): microrotations
in these bodies are modelled by introducing in the constitutive equations the aforementioned
dependence on Va(u). Such a modelling assumption has been subsequently improved by
introducing microstructural kinematical descriptors (for more details see, for example, [6]
and [12]).

Incomplete second gradient materials have been studied for a long time. The precursor
of incomplete second gradient models is the elastica introduced by Euler, Bernoulli and
Navier at the beginning of the eighteenth century: it is a one-dimensional (1D) model in
which: (i) the attitude of the beam sections is kinematically described by the gradient of the
vertical displacement field; (ii) the contact couple depends on the second derivative of the
vertical displacement; (iii) the deformation energy depends on the gradient of the attitude and
therefore on the second gradient of displacement.

Another example of a 1D model in which higher-order derivatives of displacement must
be introduced is given by the theory of Vlasov (see, for example, [13], [14] and [15])
describing the twist of thin-walled beams. In Vlasov’s homogenized model the phenomenon
at the micro-level to be accounted for is the warping of beam sections and the corresponding
deformation energy is shown to depend on the first and second gradients of the twist angle.

The first (incomplete) second gradient 3D model is due to E. Cosserat and F. Cosserat (at
the beginning of the nineteenth century): in [16] the deformation energy explicitly depends on
Vo(u). More recently, incomplete second gradient materials have been introduced to model
granular solids; for more details and for further references, see [17]. Complete 3D models
have been introduced for describing capillary phenomena [18], [19]. These have begun to be
extensively used in the theory of damage and plasticity (see [20], [21], [22] and [23]) as they
provide a more accurate description of transition zones (e.g. of shear bands [24]) and, from a
mathematical point of view, they lead to regularized well-posed problems. The regularizing
properties of second gradient models are also exploited in the description of the mechanical
behaviour of elastic crystals (see, for instance, [25]).

Complete and incomplete second gradient materials have fundamentally different
behaviours. While, in incomplete models, boundary conditions fix the displacement and the
rotation w(u) (or their dual quantities of force and moment), in complete models one also
has to fix &(u) or its dual quantity called double force [10] to which not all mechanicians
are accustomed. Indeed, the only widely used double contact action is Vlasov’s bimoment
(see, for example, [15] and [26]) needed for describing the external action at the extremities
of thin-walled twisted tubes.

It is remarkable that the mathematically established relationships between 1D or two-
dimensional (2D) second gradient models and Cauchy materials have been investigated only
when the dependence of deformation energy on the second gradient of displacement can
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be related, at the micro-level, to variations of attitude. Indeed, the limit analysis 3D-1D
or 2D-1D of plates or beams leads only to such types of second gradient model. Is there
any fundamental physical reason for this? In our opinion, this is probably due to the desire
to remain in a standard framework. For more details about these rigorous results, we cite
[27], [28], [29], [30], [31], [32] and [33]. In technical theories of beams, which supply
the mechanical grounds for the aforementioned mathematical results, the macro-models are
related to micro-models using several identification procedures; for an extensive historical
discussion we refer to Benvenuto [34], who traces back to Maxwell and de Saint-Venant
[35] the first of these analyses. That which seems to be more encompassing is based on
identification in expended power; one postulates a macroscopic and a microscopic model,
a kinematic correspondence between the two deformations and assumes that the power
expended in corresponding motions coincides. In this way one obtains, in terms of micro
properties of the beam, the coefficients of the macro constitutive equations, the form of which
has been postulated at the beginning (see, in particular, for truss modular beams [36] and [37]).
The very nature of this procedure shows how the properties of the macro model, in general,
are not obtained as a result of the homogenization process but are, instead, assumed a priori.

Here we present a microscopic model which leads to the simplest macroscopic second
gradient model: the 1D planar beam already studied by Casal [19]. The structure we consider,
i.e. the pantographic structure, is simple and the reader may have already experimented with
it when handling a corkscrew. We assume that the considered pantograph is made of a very
large number 7 of small modules and we study its limit behaviour when 7 tends to infinity.
In other words, we study the homogenized model for the pantograph. The computation of
the equilibrium state is straightforward and we prove rigorously, using the technique of I'-
convergence, that the homogenized model is really a second gradient model (section 3).

Considering different equilibrium situations, we recall in section 4.1 the principal features
of this model and we obtain an evident and self-explanatory interpretation for its special
features, in particular for the notion of double force.

Even though the general properties of third gradient materials have been studied by
Mindlin and Tiersten [5] and Dillon and Perzyna [38], to our knowledge no homogenized
third gradient model has been recognized as necessary for describing the behaviour of a truss
structure. To find such a structure is a problem closely related to the previous problem.
Indeed, once one has obtained a complete second gradient body, it is relatively easy to
construct a third gradient body. We do this and describe a structure, based on the pantograph,
which we call the Warren-type pantographic structure. Its homogenized energy is rigorously
proven to correspond to the bending of a third gradient beam. This beam has an unusual
behaviour which we describe briefly in section 4.2.

As the theorems and proofs are quite similar in both cases, we have decided to group
them in a single theorem (section 3). This states that, for any £ > 0, a quadratic functional
of finite differences of order k converges to a quadratic functional of the kth derivative. This
convergence is proven in the sense of I'-convergence with respect to the weak* topology
of measures. In this way, our result does not depend on the choice of any interpolation of
displacements which have physical meaning at nodes only. We identify the external forces
which are admissible for the considered structure; it is a class of distributions of order & which
contains, in particular, any distribution of order k — 1. For instance, for a second gradient
beam (k = 2), the derivative of a Dirac distribution is admissible. This corresponds to the
notion of punctual double force [10].
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In the mathematical literature, the problem of rigorous proof of convergence from refined
models to homogenized models is widely addressed. The results we present in this paper are
close to those found in [28], [39, [40] and [41].

2. TRUSS BEAMS WITH PANTOGRAPHIC SUBSTRUCTURES

In this section, we develop the mechanical heuristic considerations leading us to formulate
the mathematical problem to be solved in the subsequent section. We introduce a modular
pantographic structure and a Warren-type pantographic structure. We describe these at a
micro-level as a truss constituted by Euler beams and find the deformation energy for it in
terms of displacements of a finite set of nodes. The obtained expression is strongly suggestive
from a mechanical point of view. Indeed, it has induced us to conjecture the following. If the
dimension of the structure module dimension tends to zero and the number of beams tends
to infinity, a macro model can be introduced in which (i) the displacements of the nodes are
characterized by a (suitably regular) field and (ii) the deformation energy depends on second
or third derivatives of thus introduced displacement field.

This conjecture, although mechanically well grounded, needs a mathematical proof. For
a discussion on the relationship between the discrete and the homogenized models we refer
to [27] and [28].

2.1. The pantograph

Let us consider a plane modular structure the module of which is constructed as shown in
Figure 1.

We consider inextensible but flexible beams and refer to these by their endpoints. We call
a structure made by two such beams (B;, D;y, ) and (D;, B;y ), connected by a pivot at their
common centre C;, the ith module. We consider the simplest possible geometry assuming
that (D;, B, Biy1, Diy1) is a square.

The periodic structure (shown in Figure 2) made by # such modules, the size of which is
n~1, is called the pantographic structure. The ith module is connected to the i — 1th module by
two pivots at B; and D;. We assume that external forces and external constraints are applied
at nodes C; only. Thus we need to express the deformation energy of the structure in terms of
the displacement of the nodes C;. We study the behaviour of the structure in the framework of
linear elasticity. The deformation energy of an inextensible but flexible beam depends only
on its transverse displacement. This energy is proportional to the square of the curvature. The
computation of the equilibrium energy of a beam of length ¢ and flexural stiffness K, subject
to given transverse displacements a, b at the endpoints and c at the centre is standard [14]. It
reads

min /%{Z” (x)dx;z(0) = a, z (g) =bz(l)=cp = %(a —2c+b)>.

0
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Figure 1. Module of the pantograph.

The length of all considered beams is £ = V/2nt. We assume that all beams (Biy Diy1)
(or (D;, B;1)) have the same flexural stiffness denoted by K;r (or K7).

Let us fix some notations adapted to the considered geometry. In the orthonormal basis
(x,¥), x is the direction of the vector C;C;;; (see Figure 2). We denote by u(M) the
displacement of a generic node M with respect to an unstressed reference configuration and
by (v(M), w(M)) its components in the basis (x, ). Then the transverse displacement for
the beam (B;, D11 ) is (v — w)/+/2 while it is (v + w)/v/2 for the beam (D;, B;; 1 ).

The equilibrium energy of each beam of the structure is then given by

EBi,Dip1) = K'n*[(v—w)(B;)+ (v—w)(Dy1) — 2(v — w)(C)]?
E(D;,Bi1) = K7 [(v4+w)(Bia) + (v+w) (D) =200+ w)(C) (1)

where K+ = (3 /22 ) K, . As beams are not extensible, the displacement of nodes B; and
D; is determined by the dlsplacement of nodes C; and C;_;. We have forall i = 2, .

2v(B;)) = (v+w)(G)+(v—w)(C)
2w(B;)) = (w+v)(G)+ (w—v)(C1)
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Figure 2. The pantographic structure.

2v(D;)) = (v—=w)(C)+ (v+w)(C_y)
2w(D;) = (w—v)(C)+ (w+v)(Ci_y). ()

Substituting Equations (2) into (1) we obtain fori = 2,...,n — 1:

K+ 2
E(Bi,Diy1) = — (n* (v=w) (Ci1) + (v =w) (Cp1) —2(v—w) (C}))) ",
E(D:,Biy1) = % (1 (v w) (Cor) + (VW) (Ca) —2(v+ ) (G))) - )

We note that, due to our preceding assumptions, the endpoints D, By, D, and B, ., are
free. We conclude that the first and the last two beams are undeformed. Their flexural energy
vanishes so that the expression for the total deformation energy of the pantographic structure
is

n—1
E="Y (E(B;,Di1) +E(Di, Biy1)) . “4)
i=2

In the previous equations the reader can recognize the finite difference expressions for the
second-order derivatives of v — w and v + w. Therefore we can expect that, in the 1D
beam model for a pantographic structure, the deformation energy is a quadratic functional
of these derivatives. This statement is substantiated mathematically in section 3. Indeed
we establish that the homogenized continuum model for the pantographic structure has the
following deformation energy:

5:/1 [K+ (cfx—Z(v—w))2+K (i—i(v—kw))Q] . )

In section 4.1 we discuss the mechanical implications of the model.
Let us determine the set of neutral displacements of the structure, i.e. displacements
associated with the vanishing deformation energy. It is a four-dimensional vector space (in
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Figure 3. The pantographic truss structure.

such a circumstance one says that the structure has four degrees of freedom). Indeed, the
structure is statically determined when the displacements of nodes C; and C, are prescribed.
This can easily be checked by noting that no rigid displacement is allowed by applied
constraints and that the number of constraint equations (6n) coincides with the degrees of
freedom of constituting elements. The neutral set is generated by three rigid displacements
and the uniform extension (v(C;) = i, w(C;) = 0).

We finally establish that a pantographic structure can be realized using a truss (i.e. a
structure made only with extensible bars connected only through endpoints). Indeed each
beam can be replaced by a shed truss; consider the modular truss, the module of which
is presented in Figure 3 where all bars are inextensible except for bars (D,- T Di+1) and

(Bi+% ,Birq ) If their extensible rigidities are chosen to be 4K "n? and 4K ~n? respectively,
then the deformation energy of the considered truss is again given by Equation (4).

2.2. Warren-type pantographic structure

Let us now consider a Warren-type structure in which all upper bars are replaced by a unique
pantographic structure. We study a plane modular structure, the module of which is shown
in Figure 4.

This module is based on a pantographic module as described in the preceding section with
the addition of four inextensible bars (C,-, Ciys ), (CH% , A,-), (C,-Jr% , A,»H) and (A4;, Aiy1).
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Di Di+1

Ci+1/2

Ai+l

Figure 4. The Warren-type pantographic module.

For the sake of simplicity, we assume that all flexible beams have the same flexural rigidity,
K = K~ = Kn®. We consider the simplest possible geometry assuming that 4,C; = B;D;

and B; 4 C,-Jr% = %B,»Di. The periodic structure made by n — 1 such modules, the size of
which is 71, is called the Warren-type pantographic structure. The ith module is connected
to the i — 1th module by pivots at B;, D; and A4, . The first two modules are reinforced by two
inextensible bars connecting the nodes 4, C; and A,C; (see Figure 5).

We assume that external forces and external constraints are applied at nodes A; only. Thus
we need to express the deformation energy of the structure in terms of the displacement of
these nodes.

We use same notations as in the preceding section. Equations (2) are still valid. As the
bars are not extensible, we have foralli =1,...,n+ 1

v(4;) =v(4,). (6)

The displacement of node Cj, 1 is determined by those of 4; and 4;,;: foralli=1,...,n
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Figure 5. The Warren-type pantographic structure.

v(Ciry) = v(di) —w(di) + w(di), (7)
1
W(Cﬂré) -3 (W(Ais1) + w(4:)) . ®)
We also have, foralli=1,...,n
V(Cl') = V(Ci+l ) (9)

Moreover, in the first two modules, due to the added reinforcing bars

w(Ci) = w(dr), w(Cy) = w(4a). (10)
As the bars are not extensible, the deformation energy of the structure is concentrated in the
substructure coinciding with a pantographic structure analogous to that studied in the previous
section. This substructure is only subjected to constraints (9) and (10); the displacement of

nodes Cj, C; and the displacement components v(C;) (i = 3,...n — 1) are assigned. At
equilibrium, v(C; ) and w(C;) minimize the energy

2Kni |:(V(Ci—1) —2v(G;) + v(C,-H))2 + W(C_y) —2w(C;) + W(Ci+1))2

under the constraints (9) and (10). Thus we have
w(Gi) = w(dy) + (i = 1) (w(d2) — w(4y)) (1)

and the equilibrium deformation energy reduces to
F=2KnY " (n* (v(Ciy) — 20(Ciyy) +(Ciy3))) "

Using Equation (7) we obtain
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n—2
2

F=2Kn""> " (n" (W(Aip2) = 3w (Aip1) + 3w (4;) — w(4i1))) " (12)

=2

Here we can recognize the finite difference expression for the third-order derivatives
of deflection and we expect that the 1D beam model for such a structure is described by a
deformation energy which is a quadratic functional of this derivative. Indeed we establish,
in section 3, that the homogenized continuum model for this structure has the following

deformation energy:
1
dBw\ >
0

In section 4.2 we discuss the mechanical implications of the model.

The set of neutral displacements of the structure is again a four-dimensional vector
space. Indeed, the structure is statically determined when the displacement of node A; and
the displacement components w(A5), w(43) are imposed. This can easily be checked by
considering that no rigid displacement is allowed by applied constraints and that the number
of constraint equations coincides with the degrees of freedom of constituting elements. The
neutral set is generated by three rigid displacements and the uniform flexion (w(4;) =
i2,v(4;) = 0).

The remark at the end of the previous section shows that the Warren-type pantographic
structure can also be regarded as a truss modular beam.

3. HOMOGENIZATION OF PANTOGRAPHIC STRUCTURES: MATHEMATICAL
RESUITS

In this section we prove that the sequence of discrete models (parameterized by » in
the previous section) for pantographic structures does converge to a continuous model
generalizing Euler’s elastica in the sense of De Giorgi’s I'-convergence (see [42], [43] and
[44]). Thus, we establish a correspondence between the homogenized model and every
element of the sequence of discrete models; when 7 is suitably large the deformation energy in
the limit model (corresponding to a fixed external action) is close to the corresponding energy
for the discrete systems. The I'-convergence, although involving rather abstract functional
analysis concepts, supplies a convergence criterion having a clear mechanical basis.

3.1. Mathematical formulation

When a periodic structure is made of a large number 7 of modules, it is natural to study the
limit behaviour as » tends to infinity. This is the homogenization procedure. We first need
a functional framework in which we can define the displacement fields of the considered
structures for all i, as well as their continuous limits. A displacement field for the pantograph
or for the Warren-type structure (i.e. the displacement of each node C; or 4;) can clearly be
identified with a vector valued function (v, w) defined at points i/n fori = 1...n. In order
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to obtain a functional framework which does not depend on 7 one could extend this function
over the whole interval [0, 1] by considering, for instance, a piecewise linear extension or
a piecewise constant extension [45]. Such extensions have no physical meaning and may
influence the results. This is the reason why we prefer to associate to each component v
or w (let us call it u) of the discrete displacement field, the discrete measure uv, where
v, = n ! Z?Zl 0;/» and d,/, denotes the Dirac mass concentrated at point i /n. Our
problem is then naturally set in the space M of bounded Borel measures on the interval
[0, 1].

For any positive integer k, let us denote by 4* the set of those functions u defined v,
almost everywhere (i.e. at points i/n, for i = 1...n) which satisfy

u<i):o, i=1,... k. (14)

n

We also denote by H,ﬁf, the set of those functions in the usual Sobolev space H* (0, 1) which
satisfies u(0) = #/(0) = ... = %=1 (0) = 0. It is a Hilbert space endowed with the norm:
ual e, = ( fol u® (x)2dx)1/ 2. We denote by (Hj, )'its topological dual space and by (., .)
the corresponding duality bracket. Note that, so that no confusion arises, we also denote by
(., .) the distribution bracket.

For any function of one of these spaces, we define the ‘finite differentiation operator’ D,
by setting

n(u(x)—u(x—1)) ifx

nu(x) if x

Dyu(x) = {

> 1
7 (15)

and the operators of higher-order D? by setting D%u := u and, for every positive integer p,
Dru:=D,Dr tu.

Using these notations, the deformation energies £ or /' (given by Equations (4) or (12))
of a pantograph or of a Warren-type pantographic structure can be written as

£ = w0y (mie- (1)) a3 (pieem (1))

i=1

F o= 21(% 3 (Dj(w) (é))z

i=1

Then the convergence of the total energy of a pantograph or of a Warren-type
pantographic structure can easily be deduced from the convergence in M of the general
functional:

FS (08 (1) (2) 0 (2)) i = vy withu e 4]

400 otherwise.

Ef(u) = (16)
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Here f, is defined v, almost everywhere and corresponds to a component of external forces.
To deal with these external forces, we need to introduce the operators I* by setting for every

function f'defined v, a.e.:
nr(2) =i s(2 a7
“\n) n"\n

I°f:=f,and I**1 f:= I, I*f. Then, for every u € A, we have

1 ¢ i i 1¢ i i

— — - == Il =) DFu (= ). 18

206 () =iz () e ) &
Note that this equality holds also for u € C>°(0, 1] and n large enough.

Using the Riesz representation theorem, for every f € H/;ﬁ !, there exists a unique
Ve H/;ﬁ such that, for any u € Hféﬁ

1

<ﬁu%=/%“®uwwmx

0
By setting 1 := v we define an operator /* from Hy;, "onto L?(0,1) (when k = 1 we
simply denote it by /). For any u € H/jﬁ , we have

1

mw:/ﬁmwwwm. (19)

0

Note that ||f||H,@/ =1 20 -
With these notations, our convergence result is:
Theorem 1 Assume that the sequence ( f,v,, ) converges weakly to somefin (Hjy, ) and

i

Then the sequence of functionals (E,/f ) I-converges to the functional E k¥ defined by

n

. 1
Jim =

i=1

_ / 11 f(x)]” dx. (20)

0

1
J(@® ) dx = (fyu) if g = udx withu € H, on
0

+00 otherwise.

More precisely, for the weak* topology of M, the following three statements hold.
() If () is a sequence in M such that (EX (w,,)) is bounded, then (,,) is relatively compact.
(i) Moreover, for any sequence (i, ) converging to u, the following lower-bound inequality holds:

lim inf £} () > E*(u). (22)

n—uoo
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(iii) Conversely, for every p in M, there exists a sequence (L, ) converging to u and satisfying
the upper-bound inequality:

limsup Ey (1) < E* (). (23)

n—-so0

The I'-convergence is the mathematical notion which corresponds to the intuitive notion
of convergence of state equations. It implies in particular the convergence of equilibrium
solutions. Indeed (cf [46]) the following holds:

Corollary 1 Let z, be the minimizer of EX then any weak* limit of the sequence ()
minimizes E£*.

3.2. Proof of theorem 1

We start this section with two auxiliary lemmas.
Lemma 1 (i) For every integer k > 0 and every u € A%, the following inequality holds

(<15 ()

(ii) For every ¢ € C>°(0, 1], the following inequality holds

i () < [

(iii) If (u, v, ) converges to p in M then Dn u, Vv, converges to the kth derivative of [t in the
sense of distributions on (0, 1).

Proof: Let k' > 0. As D u(2) =0, forj = 1,...,n, we have
i\ 1< i
DFu(%) ==Y DF+tu(-).
Ye(i) =i u(n)
N (2 .
D u (L DF 1y (L
" n " n
D"’ ! DE iy (L
g n

This last inequality, together with Equation (26) in the case k' = 0, leads to assertion (i).
Now let y € C>°(0, 1], by the Jensen inequality, we have

2 n 2

1
<->.

i=1

Ssup
j=1l...n

24)

Hence

1 n 2
< =
- nz

=1

(26)

and taking the sum over j

2 2

1}1
<->.

=1
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/|Dw 2dx</ /Iw )2 = / /1W> W () Par

which gives

1 1
/ Doy (0)Pdx < / Iy (o).
0 0

As the operator D, and the differentiation operator commute, a simple induction argument
leads, for any positive integer £, to

1 1
/ Dy () Pelx < / 1y (x) . @7)
0 0

Again, the Jensen inequality implies

i 2
. 2 n n L
i 1 , ,
Do (3)] =3 [ v < [
=S 0

To prove Equation (25), we use the last inequality with y = Df~1¢p:

l. 2
DFp [ =
ot (1)

Now applying inequality (27) with v = ¢’ and k' = k — 1, we obtain

1
< / D} (x)|dx.
0

1 1

[l wpar< [Py
0 0
which completes the proof of assertion (ii).

Let us consider a sequence (u, v, ) converging to u in M. Letting ¢ € C>(0, 1), we
have

Il
Tb—‘
g E
~—~
[—
=
| —
<
=
/N
S|~
~_
S
%
VRS
S|
=~
N~~~
|
T
—
=
=
S
=
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Since sup; ‘D,{‘ <p(%) — " (;—) ‘ tends to zero as 7 tends to infinity, the last limit converges
to zero. Assertion (iii) is proved. [

The following lemma collects some preliminary results for operators /¥ .

Lemma 2 For any ® € C>[0, 1], we have

FORNE

Let (f,v,) be a sequence converging to fweakly in H/;f, " and satisfying

I, (i)
n

Then, for any ¢ € C°(0, 1], we have

2

=0. (28)

n

. 1
Jim =

i=1

n

.1
lim —
n—oo N

=1

- / |1 £ ()| . (29)

im S (3)e (7) = [ 1w o)

Proof: For a regular function ®, /®(x) coincides with the integral | ' ®(#)dt. Then, for

some constant C, we have
[,® (i) — 1D (i)‘ << 31)
n n n

which proves Equation (28) in the particular case of £ = 1. On the other hand, for all &

defined v, a.e.,
I I
1,® (—) ’ < sup ’q) (—) ’ . (32)
n i n

Applying inequality (32) to = I*® — [*® and inequality (31) to =k (®), we obtain

sup [[FT1 @ (i) — "' (i>‘
i n n

< sup|l (I"® — [*®) (i)' + sup
i n i

I,(I"® (%) — I(I*®) (%)‘
< sup I*o (%) A (é)' + %

Proof of Equation (28) is then obtained by an induction argument.
Letting y € C>(0, 1] such that ¢ = ™, we have

sup
i

sup
i
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L () () o
_ %gm ()t (5) - / 1)y ® (s
S Q) () ()
= (ava —£y) = %i;ffﬁ (—) (Df v (‘) v (‘)) |

These last two terms tend to zero since (f,v,) converges weakly to f, the quantity
LS HE £y (£)]? is bounded and the function D) — ¢® converges uniformly to zero.
Hence, Equation (30) is proved. [J

Proof of theorem 1:

(i) Relative compactness. Let (u, v, ) be a sequence of bounded energy. Using the Cauchy—
Schwarz inequality and Equation (18), we have

1 ¢ i i IR i i
- n - n - = - [k n - Dk n -
20 () (B) = % (5)ore ()

1 n 2 % 1 n .
(3lend] ) (33fer (3)
n“ n - n

i=1 i=1
Then the boundedness of Ef (1, v, ) and = " | |I¥ £, (£)|? imply that
1 n .
2P (7)
n 4 n

for some constant M. Lemma 1(i) implies that u, is uniformly bounded by M. So is the total
variation of the measure u, v,,. Then the sequence (u, v, ) is relatively compact with respect
to the weak* topology of M.

[SIE

IN

I £ (=)

i
n

) . (33)

2
<M?

(ii) Lower bound. Let (u, v, ) be a sequence of bounded energy converging to some x in M
and consider ® € C0, 1]. Using Lemma 2, we can write

2
1< i i
d®V2 —  lim |= =)W (=
@) =t 03 ()2 (3
| i i
= lim |- Dfu, (=) 1Fo® (=

2
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Dhu (X N (L5 (D)
Du, (%) 2) /(P(x)zdx.

This last inequality implies the existence of a unique u € H,’;ﬂ such that 4 = udx. Moreover,

it implies that
i\|* /
DFu, <;) ) > /|u(k) (x)]?dx. (34)
0

Forany &€ > 0, let F, € C>°(0, 1) be such that fol [I*f(x) — F. (x)]?dx < €2. We have

IN

N 5 I
hﬁigf(;Z

i=1

I
llgglf(;Z

i=1

IN

N IR
fm of (zz

=1

1 1

o) — / F()u® (x)dx| = / (IFf— F)ou® (x)dx| <eM (35)
0 0
Moreover, by Lemma 1(iii), we have

1

_ IS i i

0

and by Lemma 2
1 n . . . 2
. 1 k Yy i k i
lim sup ( 2 (5 (7) - () ot (n)>
< M?limsu lzn: I*f, ! - F, ‘ 2
>~ ng’ocpnl:l nJn n € n
< Mhmsup—z Lifa = 2L (= )Fe| =)+ |F (=
n—oo nl:l n n n n
1
< a2 [ (1] - 2R 0 + R0 ) v
0
1
< w7 [ |10 - R ar < b G7)

As ¢ is arbitrary, collecting Equations (35), (36) and (37) gives
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Jim ann ( ) u, (—) = lim nzlkfn ( )D"un (—) = (fu) (9

which, together with Equation (34), proves the lower-bound inequality.

(iii) Upper bound. Now consider u € M such that E* (u) < oo. Then there exists u € Hy,
such that 4 = u dx. Using a density argument we can assume that u belongs to C>(0, 1]. For
n large enough, let us define u, € A* by setting, foralli € {1,...,n}, u, (;—) =u ( )

k !/
Clearly u, v, converges in M to udx. Since f, v, converges to fin H,, , we have

ngrgan() () (f.u). (39)

Moreover, using Lemma 1(ii), we have

D" ! 2< | ® (x)|” dx 40
w ()] = [l wf (0
0

The upper-bound inequality results from Equations (39) and (40). [J

n—o0o

4. MECHANICS OF HIGHER GRADIENT BEAMS

For the considered pantographic structures, we have established mathematically the validity
of the continuous models introduced by functionals (13) and (5). In this section we briefly
discuss the mechanical properties of such limit models paralleling the treatment developed in
[47]. Some new boundary conditions have to be given for determining uniquely the solution
of the corresponding Euler—Lagrange equations. We interpret these in terms of the underlying
discrete models, double (or triple) forces, which can be hardly understood in the context of
homogenized models. We find easily a microscopic counterpart and their physical meaning
is clarified.

4.1. Second gradient beams

Let us call pantographic beam the homogenized model for the pantographic structure. Its
reference unstressed configuration is a straight segment of length one. Owing to Theorem 1
we can write its deformation energy in the following form

1
a

Elv,w) = B / ((v”)2 —2v"'w" + (w")2> dx (41)
0

where v, w correspond respectively to the axial displacement and deflection, a := 2(K* +
K ™) isapositive parameter and f := (K~ —K ")(K " +K ) ! satisfies | | < 1. Moreover,
the beam is clamped at x = 0; the displacement (v, w) and its first derivative (v', w') vanish
at that point.
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Clearly, as the energy depends on the second gradient of the displacement, this is a 1D
model of a second gradient material body. The fact that no classical elastic term (involving
the first derivatives of the displacement) appears in the energy is due to our choice of a very
particular structure — the pantograph. It could have been easy to get such terms by adding
extensible bars linking nodes C;, C;;. The term (w”)? describes the standard bending
behaviour of the beam while the terms involving v” are less usual; these were first studied
by Casal [19] (see also [20]). Our example of the homogenized pantographic beam gives a
possible microscopic interpretation for Casal’s second gradient extensible beam.

We start considering the case f = 0 where axial deformation and deflection are
uncoupled and we focus on purely axial displacements (w = 0). The beam is statically
determined due to the boundary conditions

v(0) =0, v'(0) = 0. (42)

Example 1. Let us assume that the beam is subjected to a continuous linear density of
external axial forces f'and a concentrated axial force F at endpoint x = 1. At equilibrium,
the displacement field minimizes

1

/ (% (v")? —fv> dx — Fy(1) (43)
0
under the constraints (42). Then it satisfies
av"" = fon (0, 1), v(0) =v'(0) =0, v7’ (1) =0, —av'""(1)=FE

If we assume that F = 0 and that f'is vanishing in, say, (1/2, 1) and /> 0 elsewhere, then
the solution v satisfies v > 0 and v’ is a positive constant in (1/2, 1). Let us interpret this
situation by considering the original pantograph; its nodes i < n/2 are submitted to external
forces f(i/n), the pantograph is extended and has the peculiar property that this extension
propagates in the free part i > n/2 of the pantograph. If f = 0 and F is non-vanishing then
the constitutive relation for contact forces and the extensible displacement field are quite
different from the classical extensible bar. Indeed we find that axial contact forces fix the
third derivative of the displacement field; moreover, the displacement is a cubic function
while it is linear in the classical case.

Example 2. Let us assume now that the pantograph is only subject to two opposite axial
forces nG and —nG applied respectively at nodes C, and C,_; . The resulting force and the
moment of this ‘pair of forces’ (or, to avoid confusion, of this double force [10] or double
traction [19]) vanish. However, this double force has a great influence upon the equilibrium
state. It expends work on any variation of the distance C,_; C,. The extension of the last
pantographic module tends to propagate in the whole pantograph and is only limited by the
clamping constraints at the other endpoint. The correspondence with the homogenized point
of view is clear. The applied forces converge in the sense of Theorem 1 to the distribution of
order one —G9d' and the equilibrium displacement field of the homogenized beam minimizes
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1

/a(v”)gdx—Gv'(l) (44)

0

under the constraints (42). Then it satisfies
av"" =0on (0, 1), v(0) =v'(0) =0, v"(1) =0, av’(1)=G

the solution of which is v(x) = Gx?/2a. This example enlightens the physical meaning of
the unusual boundary condition av” (1) = G which naturally appears in any second gradient
theory [10]. It becomes clear why, in such a boundary condition, G is called a ‘double force’.

Inthe case f # 0 the axial deformation and the deflection are coupled but the equilibrium
state is still easy to compute. Let us reconsider Example 2 in this case.

Example 3. § # 0 and the pantograph is still only subject to two opposite traction forces
nG and —nG applied respectively at nodes C, and C,_; . The equilibrium displacement field
(v, w) of the homogenized beam minimizes

1

g/ ((v")2 —26v"'w" + (w”)2> dx — Gv'(1) (45)
under the constraints v(0) = v'(0) = w(0) = w’(0) = 0. Then we have
wx) o Gx?
T = V()C) = m on (0, 1) (46)

The double force applied at endpoint x = 1 is able to bend and extend the beam even if the
applied resultant force and moment vanish.

4.2. Third gradient beams

Let us now consider a Warren-type pantographic structure of length one. The associated
homogenized beam is inextensible (v = 0), its reference unstressed configuration is a straight
segment of length one and, as a consequence of Theorem 1, its deformation energy has the
following form

1

Evyw) == [ (W)’ dx (47)
|

where w corresponds the deflection, and a := 4K is a positive parameter. Moreover, as we
have assumed that the beam is clamped at x = 0, the displacement and its first two derivatives
vanish at this point (w(0) = w’(0) = w”(0) = 0). This is a 1D model of a third gradient
material body.

Example 4. Let us assume that the pantographic Warren-type structure is subject either

to a single transverse force / at node A4, or to two transverse forces nG, —nG at nodes 4,,,
A,_, or to three transverse forces n>H, —2n?H, n’H at nodes A, , A,_1, A,_», or eventually
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to the sum of these different actions. F is a shear force which tends to displace the endpoint
v of the structure while G is a couple which tends to rotate this extremity. H could be called
either triple force or double couple; it tends to curve the extremity of the structure. From the
point of view of the homogenized beam, one has to minimize

1

%/(w’”)zdx—Fw(l) — Gw'(1) — Hw"(1) (48)

under the constraint w(0) = w'(0) = w”(0) = 0. The corresponding Euler-Lagrange
equation is a sixth-order differential equation which, together with the boundary conditions,
reads

—aw'® = Oon (0, 1),
w(0) = w'(0)=w"(0)=0, “49)
O!Vm(l) _ [_]’ —(ZV(4)(1) = G’ aV(B)(l) =F

H is a special feature of third gradient models. It represents a new kind of contact action.
Note that at the other endpoint the kinematic dual condition w”(0) = 0 fixes locally the
curvature of the beam.

Example 5. Let us assume that only the first nodes i < 7/2 of the pantographic Warren-
type structure are subject to transverse external forces f(i/n), where fis a given continuous
function vanishing on (1/2, 1). From the point of view of the homogenized beam, one has
to solve the following differential equation:

—an® = Son (0, 1),
W0) = w(0) = w'(0) =0, 60)
V(1) = vW(1) = v®(1) = 0.

We note that the free part x > 1/2 of the beam has a constant, generally non-vanishing,
curvature.
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