
HAL Id: hal-00497325
https://hal.science/hal-00497325v1

Submitted on 4 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhanced Gaussian processes and applications
Laure Coutin, Nicolas Victoir

To cite this version:
Laure Coutin, Nicolas Victoir. Enhanced Gaussian processes and applications. ESAIM: Probability
and Statistics, 2009, 13, pp.247-260. �10.1051/ps:2008007�. �hal-00497325�

https://hal.science/hal-00497325v1
https://hal.archives-ouvertes.fr


ENHANCED GAUSSIAN PROCESSES AND APPLICATIONS

L. COUTIN AND N. VICTOIR

Abstract. We propose some construction of enhanced Gaussian processes
using Karhunen-Loeve expansion. We obtain a characterization and some
criterion of existence and uniqueness. Using rough-path theory, we derive
some Wong-Zakai theorem.

1. Generalities

In [17] Lyons developed a general theory of differential equations of the form

(1.1) dyt = f(yt)dxt.

Classical integration/ODE theory gives a meaning to such differential equations
when x has bounded variation. Lyons extended this notion to the case when x is a
path with values in a Banach space B, and of finite p-variation, p ≥ 1. To do so, one
needs first to lift x to a path of finite p-variation in the free nilpotent group of B. In
other words, one needs to define and make a choice for the ”iterated integrals” of
order less than or equal to [p] of x. We refer the reader to, for example, [15, 17, 18].

In this paper, our aim is to work towards the study of a ”natural” p-rough path
process lying above an arbitrary Gaussian process. We simplify the problem by
only looking at lift in the free nilpotent group of step 2, i.e. we are just looking at
the Lévy area of Gaussian processes. This was already done by Lévy in 1950 for
Brownian motion, see [16] or more recently [14] and [6], and for fractional Brownian
motion, see [7]or [23]. Moreover, Biane and Yor, in [1] have constructed the Lévy
area using the expansion of Brownian motion in the basis of Legendre polynoms.

Karhunen- Loeve expansion Theorem provide a natural way to approximate
paths of a Gaussian process by a smooth process. This paper is devoted to study
how its expansion allow to lift Rd-valued Gaussian process x to a path x with values
in some free nilpotent of step 2 group over Rd (or in other words, how to construct
the Lévy area of x, i.e. the second iterated integral of x). We also show that if
the process x with some area process satisfies some quite natural conditions, then
x will be the limit of the lift of the Karhunen-Loeve approximations of x.

The proof of the convergence of Karhunen- Loeve expansion Theorem or of some
properties on Gaussian processes relies on the convex property of the vector spaces.
The free nilpotent group of step 2 do not share this property. In the first part of this
paper, we give a proof of a weak version the Karhunen- Loeve expansion Theorem
using a discrete martingale. Some basic results on the free nilpotent group of step
2 are given. Then, in the second part, using again some martingales, we lift the
process x to a path x with values in some free nilpotent of step 2 group over Rd. A
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2 L. COUTIN AND N. VICTOIR

characterisation and a result of uniqueness is also given. For the Brownian motion
and the fractional Brownian motion, this definition coincides with the one obtained
by dyadic linear approximation as in [7]. In the third part the case of Volterra
Gaussian processes is studied. We conclude with a Wong-Zakai Theorem.

1.1. Gaussian Processes. We define on the measure space Ω = C0

(
[0, 1] , Rd

)
and its Borel σ-algebra denoted by F, the probability measure P corresponding to
the law of a d-dimensional centered Gaussian process with covariance function C.
We let (H, 〈, 〉) the associated Cameron-Martin space associated to P. We assume
that the process has continuous sample paths, then it is continuous in L2(Ω, F, P)
and the covariance function is continuous. Following [10] Theorem 2.8.2, the space
(H, 〈, 〉) is separable. Let e = (ei)i∈N be an orthonormal basis on (H,<, >). One
can always represents X under P with the formula

(1.2) Xk =
∞∑

i=0

(Ne
i )kek

i

where Ne
i = 〈X, ei〉 are independent standard d dimensional normal random vari-

ables. Here <,> is the duality bracket. We let Fe
n = σ (Ne

i , 0 ≤ i ≤ n) .
We warm up with the following two propositions. Their results (and stronger

results) are well known, see Theorem 2.4.2 of [10] , but the proof given here allow
us to generalize in the next section to the ”natural lift” of X to a process with
values in some free nilpotent group.

Proposition 1. For all t ∈ [0, 1],

Xe
n(t) := E (X(t) |Fe

n ) =
n∑

i=0

Ne
i ei(t).

Proof. It is just the observation that
∑∞

i=n+1 Ne
i ei is mean 0 and independent of

Fe
n. �

Proposition 2. For all q ≥ 1, and for all t ∈ [0, 1], Xe
n (t) converges to X (t)

almost surely and in Lq.

Proof. Since X has continuous sample paths, then almost surely
‖X‖∞ := supt∈[0,1] ‖X(t)‖ < ∞. Note that ‖X‖∞ < ∞ a.s. implies that the r.v.
‖X‖∞ has a Gaussian tail (from Borell’s inequality), and therefore is in Lq for all
1 ≤ q < ∞. For all t ∈ [0, 1]

|Xe
n(t)| = |E (X(t) |Fe

n )|
≤ E (‖X‖∞ |Fe

n ) .

Taking the suppremum over all t, we obtain that ‖Xe
n‖∞ ≤ E (‖X‖∞ |Fe

n ). There-
fore, by Doob’s inequality, supn ‖Xe

n‖∞ is in Lq for all 1 ≤ q < ∞. By the
martingale convergence theorem, Xe

n(t) → X(t) for all t, where the convergence is
in Lq and a.s. �

1.2. Free Nilpotent Group of Step 2.
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1.2.1. Definitions. We define G2
(
Rd
)

to be the space
{
(x, y) ∈ Rd ⊕Md (R) , yi,j + yj,i = xixj

}
together with the product

(x1, y1)⊗ (x2, y2) =
(

x1 + x2, y1 + y2 +
(
xi

1x
j
2

)
i,j

)
.

Indeed,
(
G2
(
Rd
)
,⊗
)

is the free nilpotent group of step 2 over Rd.

We define for a Rd-valued path x of finite q-variation for q < 2, the canonical
lift of x to a G2

(
Rd
)
-valued path:

S (x)t =
(

xt,

∫ t

0

xi
udxj

u

)
, t ∈ [0, 1].

Observe that G2
(
Rd
)

=
{
S (x)1 , x smooth Rd-valued path

}
. That allows us to

define a homogeneous norm on G2
(
Rd
)
:

‖g‖ = sup
x smooth
S(x)1=g

∫ 1

0

∣∣ .
xu

∣∣ du,

and from this homogeneous norm, a left invariant distance on G2
(
Rd
)

:

d (g, h) =
∥∥g−1 ⊗ h

∥∥ .

If g = (x, y) ∈ G2
(
Rd
)
, we define πi(g) to be the projection of x on the ith

component of Rd, and πj,k(g) the (j, k)th component of y on Rd×Rd. In particular,
if x is a smooth Rd-valued path then πi (S (x)1) = xi

1 and πj,k (S (x)1) =
∫ 1

0
xj

udxk
u.

We have an equivalence of homogeneous norm result: there exists some constant
c, C > 0 such that for all g ∈ G2(Rd),

(1.3) c ‖g‖ ≤ max
i,j,k

{
|πi (g)| ,

√
|πj,k (g)|

}
≤ C ‖g‖ .

1.2.2. Paths with Values in G2
(
Rd
)
. When x is a path in C0

(
[0, 1], G2(Rd)

)
, the

space of continuous functions from [0, 1] into G2
(
Rd
)

starting at 0, we let as a
notation

xs,t = x−1
s ⊗ xt, (s, t) ∈ [0, 1]2.

On C0

(
[0, 1], G2(Rd)

)
, we define the following distances:

d∞ (x, y) = sup
0≤t≤1

d (xt, yt) ,

‖x‖∞ = d∞ (0, x) .

For a given control1 ω and p ≥ 1, we define

dp,ω (x, y) = sup
0≤s<t≤1

d (xs,t, ys,t)

ω (s, t)1/p
,

‖x‖p,ω = dp,ω (0, x) .

The applications ‖.‖∞ and ‖.‖p,ω are not some pseudo norms since x, y ∈ C0

(
[0, 1], G2(Rd)

)
does not imply x⊗ y ∈ C0

(
[0, 1], G2(Rd)

)
.

1i.e. a continuous map from {s ≤ t, s, t ∈ [0, 1]} such that ω(t, s)+ ω(s, u) ≤ ω(t, u), ∀ t ≤ s ≤
u, null on the diagonal
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1.2.3. Translation operator on Path Space. We will want to ”add” two paths with
values in G2

(
Rd
)
. This can be done when between these two paths make sense.

This addition or translation operation will be denoted T .
The map T can be understood in the following way: for some smooth paths x

and h, we define
Th(S(x)) := S(x + h).

Then if (S(xn)) converges to X in the uniform topology associated to d∞ and hn

converges to h in bounded variation, then (Thn (S (xn))) converges in the uniform
topology to a continuous G2

(
Rd
)
-valued path denoted Th (X) . One can check that

Th (X) satisfies

πi(Th (X)) = hi + xi,

πi,j(Th (X)) = πi,j (X) +
∫ .

0

hi
udhj

u +
∫ .

0

xi
udhj

u(1.4)

+hi
.x

j
. − hi

0x
j
0 −

∫ .

0

xj
udhi

u.

2. Natural Lift of a Gaussian Process to a G2
(
Rd
)
-valued process

2.1. Definition and First Property. We denote by BV the set of continuous
paths of bounded variation.

Assumption 1. (1) There exists an orthonormal basis e = (ei)i≥0 of
(H,<, >) which is in H ∩BV ;

(2) the components of X are independent.

Example 1. Point (1) of Assumption 1 is fulfilled if C is continuous for the usual
distance on [0, 1]2, and for all t ∈ [0, 1], C(t, .) ∈ BV. Indeed, the vector space
generated by {C(t, .), t ∈ [0, 1]} is dense in (H,<, >) and Assumption 1 follows
from an orthonormalisation procedure.

Example 2. In particular, Assumption 1 is satisfied for fractional Brownian mo-
tion, for any Hurst parameter h > 0.

All the orthonormal basis (ei)i∈N of H that we will consider will be implicitly
assumed to be in BV .

Definition 1. We say that X : [0, 1] → G2
(
Rd
)

defines a natural lift of the

Gaussian process X, associated to the orthonormal basis e (to a G2
(
Rd
)
-

valued process) if
(1) S

(
Xe

0,n

)
t
converges in probability to Xt for all t ∈ [0, 1],

(2) X has a continuous sample paths.

Note from the definition of the canonical lift on smooth Rd valued path and
Proposition 2, that

πi (X) = Xi, i ∈ {1, ..., d}(2.1)

πi,i (X) =
(Xi)2

2
.

Lemma 1. Let e be an orthonormal basis on H, such that en ∈ BV for n ∈ N. Let
t ∈ [0, 1], The random variable (S (Xe

n)t) converges almost surely if and only if
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max
i,j

∑
0≤l<k<∞

[∫ t

0

(
ei
l(s)ė

j
k(s)− ej

k(s)ėi
l(s)
)

ds

]2
< +∞.

Proof. From equality (2.1) and Proposition 2, we only have to study the conver-
gence of ((πi,j − πj,i) (S(Xe

n)t)). First observe that ((πi,j − πj,i) (S(Xe
n)t)) is Fe

n-
martingale. Moreover, because its belongs to the second Wiener chaos, the con-
vergence of ((πi,j − πj,i) S(Xe

n)t) in probability is equivalent to the convergence in
L2. By martingale convergence theorem, ((πi,j − πj,i) S(Xe

n)t) converges in L2 and

almost surely if and only if limn→∞ E
(
|(πi,j − πj,i) S(Xe

n)t|2
)

< ∞. But

E
(
|(πi,j − πj,i) (S(Xe

n)t)|2
)

= E


∣∣∣∣∣∣
∑

0≤l,k≤n

(
N i

l N
j
k

)∫ t

0

(
ei
l(s)ė

j
k(s)− ej

k(s)ėi
l(s)
)

ds

∣∣∣∣∣∣
2


=
∑

0≤l,k≤n

[∫ t

0

(
ei
l(s)ė

j
k(s)− ej

k(s)ėi
l(s)
)

ds

]2
.

Observe that we have used the independence of the coordinates of the Gaussian
process X. �

A kind of 0− 1 law is also available.

Lemma 2. Let e be an orthonormal basis on H, such that en ∈ BV for n ∈ N. Let
t ∈ [0, 1]. If P({ω, (S(Xe

n)t(ω))n∈N converges }) > 0, then P({ω, (S(Xe
n)t(ω))n∈N converges }) =

1.

Proof. Assume that P({ω, (S(Xe
n)t(ω))n∈N converges }) > 0, and denote for i, j ∈

{1, ..., d}

Γi,j = {ω, (S(Xe
n)i,j

t (ω)− S(Xe
n)t(ω)j,i)n∈N converges }.

For i ∈ {1, .., d}, observe that S(Xe
n)i

t = (Xe
n(t)i)2

2 . Theorem 1.1.1 of [10] applied to
the Gaussian vector (Xe

n(t)i)n∈N yields

P({(Xe
n(t)i)n∈N and (Xe

n(t)i,i)n∈N converge}) = 1.

For i 6= j, conditionally to σ(N i
l , l ∈ N), (S(Xe

n)i,j
t − S(Xe

n)t)j,i)n∈N is a Gaussian
vector, and using the same arguments, almost surely

E(1Γi,j /σ(N i
l , l ∈ N)) = 1Γi,j .

But the role of i and j in the conditioning are symmetric and the following equality
holds

E(1Γi,j /σ(N i
l , l ∈ N)) = 1Γi,j = E(1Γi,j /σ(N j

l , l ∈ N)).(2.2)

Since the σ fields σ(N j
l , l ∈ N) and σ(N i

l , l ∈ N) are independant, conditionning
all terms of equality (2.2) by σ(N j

l , l ∈ N) yields

1Γi,j
= P(Γi,j) > 0.

Then, 1Γi,j = 1 almost surely. This achieves the proof, since

S(Xe
n)i,j =

1
2
[
(Xe

n)i(Xe
n)j + S(Xe

n)i,j − S(Xe
n)j,i

]
.
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�

2.2. A Characterization of a Natural Lift, and a Uniqueness Result. We
will use the maps

φi : C0

(
[0, 1], Rd

)
→ C0

(
[0, 1], Rd

)
(x1, ..., xd) → (x1, .., xi−1,−xi, xi+1, .., xd) .

Observe that P ◦ φi = P for all i. (P is the probability measure introduced in the
previous section).

Theorem 1. Assume that Assumption 1 is fulfilled.

The path X : [0, 1] → G2
(
Rd
)

is a natural lift of X for some orthonormal basis
e, if and only if there exists a measurable map

Ψ : C0

(
[0, 1], Rd

)
→ C0

(
[0, 1], G2

(
Rd
))
∪ {δ}

( where δ is a cimentary point) such that

Definition 2. (1) X =Ψ(X) a.s.and Ψ(X) 6= δ a.s.
(2) The projection of Ψ(X) onto Rd is equal to X a.s.. (Lifting property)

(3)
{

πj,kΨ(φi (X)) = −πj,kΨ(X) if i ∈ {j, k} ,
πj,kΨ(φi (X)) = πj,kΨ(X) if i /∈ {j, k} .

(Symmetry property)

(4) For all path h ∈ H ∩BV , Ψ(h) = S (h) (Definition on ”smooth” paths).
(5) For all path h ∈ H ∩ BV , Ψ(X + h) = ThΨ(X) almost surely. (Stability

of translations property).
(6) The r.v. ‖Xs,t‖ is in L2(Ω, F, P) for 0 ≤ s < t ≤ 1.(Integrability property)

Proof. If X is a natural lift (associated to an orthonormal basis f), it is easy to
check that it satisfies properties (1) to (6).

Conversely, we want to check that if Ψ is a measurable map satisfying the above
condition, then Ψ (X) is the natural lift associated to e. The proof will be complete
once we prove that for all n, for all 0 ≤ s ≤ t ≤ 1,

(2.3) E
(
log Ψ (X)s,t |F

e
n

)
= log S (Xe

n)s,t .

Indeed, the martingale log S
(
Xe

0,,n

)
s,t

converges to log Xs,t, and the above equal-
ity plus the fact that log Ψ (X)s,t is Fe

0,∞-measurable would prove that Xs,t =
Ψ(X)s,t . Here, log is defined by its power serie.

The first level of equality (2.3) was proved in Proposition 1. We therefore only
need to prove that for i 6= j, 0 ≤ s ≤ t ≤ 1, n ∈ N using (1.4),

E
(
(πi,j − πj,i)

(
Ψ(X)s,t

)
|Fe

n

)
= (πi,j − πj,i)

(
S (Xe

n)s,t

)
.
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From the stability of translations property, Ψ (X) = TXe
n

(Ψ (X −Xe
n)) . In partic-

ular, for all 0 ≤ s < t ≤ 1, and 1 ≤ i < j ≤ d,

(πi,j − πj,i)
(
Ψ(X)s,t

)
= (πi,j − πj,i)

(
Ψ(X −Xe

n)s,t

)
+ (πi,j − πi,j)

(
S (Xe

n)s,t

)
+
∫ t

s

(X −Xe
n)i

s,u d (Xe
n)j

u −
∫ t

s

(X −Xe
n)j

s,u d (Xe
n)i

u(2.4)

−
∫ t

s

(X −Xe
n)j

s,u d (Xe
n)i

u +
∫ t

s

(X −Xe
n)i

s,u d (Xe
n)j

u

+(Xe
n)i

s,t (X −Xe
n)j

s,t − (Xe
n)j

s,t (X −Xe
n)i

s,t .

It is easy to check that all the expressions in equality (2.4) are in L2(Ω, F, P). As
(X −Xe

n) is independent of Fe
n while Ne

k is Fe
n-measurable,

E

(∫ t

s

(X −Xe
n)i

s,u d (Xe
n)j (u) |Fe

n

)
=

n∑
k=0

N j
k

∫ t

s

E
(
(X −Xe

n)i
s,u |F

e
n

)
dej

k(u)

=
n∑

k=0

N j
k

∫ t

s

E
(
(X −Xe

n)i
s,u

)
dej

k(u)

= 0.

The same equality and argument applies to
∫ t

s
(X −Xe

n)j
s,u d (Xe

n)i
u and to (Xe

n)i
s,t (X −Xe

n)j
s,t

and the reverse expressions. Therefore,

E
(
(πi,j − πj,i)

(
Ψ(X)s,t

)
|Fe

n

)
= (πi,j − πj,i)

(
S (Xe

n)s,t

)
+E

(
(πi,j − πj,i)

(
Ψ(X −Xe

n)s,t

)
|Fe

n

)
.

From the symmetry assumption, (πi,j − πj,i)
(
Ψ(X −Xe

n)s,t

)
= − (πi,j − πj,i)

(
Ψ ◦ Φi (X −Xe

n)s,t

)
.

Since X and φi(X) has the same law, (πi,j − πj,i)
(
Ψ(X −Xe

n)s,t

)
is a centered

random variable. Hence, as X −Xe
n is independent of Fe

n, we obtain,

E
(
(πi,j − πj,i)

(
Ψ(X −Xe

n)s,t

)
|Fe

n

)
= 0.

Therefore,

E
(
(πi,j − πj,i)

(
Ψ(X)s,t

)
|Fe

n

)
= (πi,j − πj,i)

(
S (Xe

n)s,t

)
.

�

As a simple corollary of the previous result, we obtain the important result of
uniqueness of the natural lift.

Corollary 1. Let X be a Gaussian process, and assume that there exists a natural
lift X of X associated to some orthonormal basis e of H in BV . Then, for all
orthonormal basis f of H in BV , there exists a natural lift Xf associated to X.
Moreover, almost surely, for all such orthonormal basis, Xf = Xe.

2.3. Other Constructions.

Theorem 2. Assume that there exists linear measurable maps ∆n : C0

(
[0, 1] , Rd

)
→

H ∩BV such that
(1) Almost surely, S ◦∆n (X) converges in uniform topology.
(2) ∆n(h) converges pointwise to h and supn |∆n(h)|BV < ∞ ∀h ∈ H ∩BV ;
(3) For all 1 ≤ i ≤ d, ∆n ◦ φi = φi ◦∆n.
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Then, there exists a (unique up to indistingability) natural lift of X, and it is
X := limn→∞ S ◦∆n (X) .

Proof. We define Ψ(X) = limn→∞ S ◦ ∆n (X). Condition 1 clearly implies that
Ψ(X) has almost surely continuous paths. Hence, Th(Ψ(X)) exists for all h ∈ BV .
Moreover,

S ◦∆n(X + h) = S (∆n(X) + ∆n(h))
= T∆n(h) (S ◦∆n(X)) ,

and by property of the translation operator, we see that T∆n(h) (S ◦∆n(X)) con-
verges in uniform topology to variation topology to Th (Ψ(X)). Hence, Ψ(X + h)
is well defined a.s. and equal a.s. to Th(Ψ(X)). The other conditions of theorem 1
are easily checked to be true. �

Corollary 2. The level n dyadic piecewise linear approximation of a continuous
path, i.e.

∆n (x)t = x k
2n

+ (2nt− k)
(
x k+1

2n
− x k

2n

)
for t ∈

[
k

2n
,
k + 1
2n

]
.

Assume that S◦∆n (X) converges almost in uniform topology. Then, X := limn→∞ S◦
∆n (X) is the unique natural lift associated to X.

The above corollary is obvious. It proves in particular that the lift of fractional
Brownian motion constructed in [7] is a natural one.

2.4. Convergence in dp,ω topology.

Theorem 3. Assume that there exists a natural lift associated X to a Gaussian
process X, and assume that for some control ω, such that ‖X‖p,ω is in Lq(Ω, F, R)
for q ≥ 2. Let us fix a orthonormal basis e of H which in BV . Then,

sup
n

∥∥S(Xe
0,n)
∥∥

p,ω

is in Lq. In particular, for all p′ > p, dp′,ω

(
S(Xe

0,n),X
)

converges to 0 almost
surely and in Lq.

Proof. We define A = ((πi,j − πj,i)(X))(i,j)∈{1,...,d} to be the area of X. For all
s < t ∈ [0, 1],

∥∥S(Xe
0,n)s,t

∥∥ ≤ C |E (Xs,t|Fe
n)|+ C

√
|E (As,t|Fe

n)|

≤ 2C

√
E
(
‖Xs,t‖2 |Fe

n

)
≤ 2ω(s, t)1/p

√
E
(
‖X‖2

p,ω |Fe
n

)
.

Hence, since q ≥ 2,

sup
n

∥∥S(Xe
0,n)
∥∥

p,ω
≤ C sup

n
E
(
‖X‖q

p,ω |F
e
0,n

)1/q

,

which in Lq by Doob’s inequality. By interpolation, we obtain the convergence of
dp′,ω

(
S(Xe

0,n),X
)

to 0 both almost surely and in Lq. �
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3. The Particular Case of a Volterra Gaussian process

This section is devoted to apply the previous results to Volterra Gaussian pro-
cesses. There are a lot of work about integration with respect to these processes see
[9], [4] or [5] for more details and references therein. Since we are only interesting
in the construction of enhanced Gaussian Volterra processes, we work in a more
simpler framework.
Let K be a mesurable kernel K : [0, 1]2 → R such that for all t ∈ [0, 1], K(t, .) ∈
L2([0, 1], R, dr), and for all 0 ≤ t ≤ s ≤ 1, K(t, s) = 0. Let B = (B1, ..., Bd) be a d
dimensional Brownian motion, then the Gaussian Volterra process associated to B
and K is the process (X(t), t ∈ [0, 1]) defined by :

Xi(t) =
∫ t

0

K(t, s)dBi
s, t ∈ [0, 1], i = 1, ..., d.

Its covariance function is

C(t, s) = c(t, s)Id
R, (s, t) ∈ [0, 1]

where Id
R is the identity matrix and

c(t, s) =
∫ 1

0

K(t, u)K(s, u)du.

In order to construct the natural lift we may assume the following

Assumption 2. (1) There exists α > 0 such that the map t 7→ K(t, .) is α
Hölder continuous from [0, 1] to L2([0, 1], R, dr),

(2) The function t 7→
∫ t

0
K(t, s)ds is of bounded variation.

(3) The function t 7→ K(t, s) has a differential with respect to t on ]s, 1] denoted
by ∂K(t, s), ∂K(t, .) belongs to L1

loc(]0, t[, R, du) and
sup0≤s<t≤1 |∂K(t, s)|(t− s)

3
2 < +∞.

Under point (1) of Assumption 2, X has a modification with β Hölder continuous
sample path for any β < α. In the sequel, we only consider this modification.
Indeed, the variance of the increments is

d∑
i=1

E(|Xi(t)−Xi(s)|2) = d

∫ 1

0

[K(t, u)−K(s, u)]2du.

Therefore using (1) of Assumption 2 there exists a constant Cα such that
d∑

i=1

E(|Xi
t −Xi

s|2) ≤ Cα|t− s|2α,

and the existence of a continuous modification is a consequence of the Kolmogorov
Theorem.

The Cameron-Martin space associated to X, is

H = {h, h(t) =
∫ t

0

K(t, s)ḣ(s)ds, t ∈ [0, 1], ḣ ∈ L2([0, 1], Rd, ds)},

endowed with the scalar product 〈h, g〉 = 〈ḣ, ġ〉L2([0,1],Rd,ds). Let us recall the proof
given in [8]. Indeed, in one hand, if h(t) =

∫ t

0
K(t, s)ḣ(s)ds, ḣ ∈ L2([0, 1], Rd, ds),
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t ∈ [0, 1], then for any n ∈ N∗, αi ∈ R, ti ∈ [0, 1], i = 1, ..., n,∥∥∥∥∥
n∑

i=1

αih(ti)

∥∥∥∥∥
2

=

∥∥∥∥∥
∫

[0,1]

n∑
i=1

αiK(ti, s)ḣ(s)ds

∥∥∥∥∥
2

≤ ‖ḣ‖2
L2([0,1],Rd,ds)

 n∑
i,j=1

αiαjc(ti, tj)

 ,

that means that h belongs to H and |h|H ≤ ‖ḣ‖L2([0,1],Rd,ds). 0n the other hand,
let h, g ∈ H, there exists two Gaussian random vectors Φh, Φg, belonging to the
Gaussian space associated to X such that for all t ∈ [0, 1], j = 1, ..., d, hj(t) =
E(Φj

hXj(t)) and gj(t) = E(Φj
gX

j(t)). Then, Φh and Φg belong to the Gaussian
space associated to B and there exists ḣ and ġ in L2([0, 1], Rd, ds) such that Φj

h =∫ 1

0
ḣj(s)dBj

s and Φj
g =

∫ 1

0
ġj(s)dBj

s for j = 1, ..., d. We derive that, for t ∈ [0, 1],
h(t) =

∫ 1

0
K(t, s)ḣ(s)ds, g(t) =

∫ t

0
ġ(s)K(t, s)ds and

〈h, g〉 = E(〈Φh,Φg〉Rd) = 〈ḣ, ġ〉L2([0,1],Rd,ds).

Let (hn)n∈N be an orthonormal basis of L2([0, 1], R, dr) belonging to C∞([0, 1], R),
and set

en(t) =
∫ t

0

K(t, s)hn(s)ds, t ∈ [0, 1].(3.1)

Then under Assumption 2, (2) and (3), (en) is an orthonormal basis of (H,<, >)
which is H ∩BV. Indeed, for n ∈ N, t ∈ [0, 1],

en(t) =
∫ 1

0

K(t, s)dshn(t) +
∫ 1

0

K(t, s)(hn(s)− hn(t))ds

is the sum of a function in VB and a function absolutely continuous with respect
to the Lebesgue measure with derivative given by∫ t

0

∂K(t, s)(hn(s)− hn(t))ds−
∫ t

0

K(t, s)dsḣn(t), t ∈ [0, 1].

Let us introduce some notation: for Π = (ti)
|Π|
i=0 a subdivision of [0, 1], and

t ∈ [0, 1],

KΠ
2 (t, u, v) =

∑
ti∈Π, ti≤t

(K(ti, u)[K(ti+1, v)−K(ti, v)]−K(ti, v)[K(ti+1, u)−K(ti, u)]) ,

(3.2)

and

K2(t, u, v) = 2
∫ t

u

K(r, u)∂K(r, v)dr −K(t, u)K(t, v) if u > v,

= −2
∫ t

v

K(r, v)∂K(r, u)dr + K(t, u)K(t, v) if v > u.

Lemma 3. Let K be a mesurable kernel fulfilling Assumption 2. The sequel
(St(Xe

n))n∈N converges in probability if and only if K2(t, ., .) belongs to L2([0, 1], dudv).
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Proof. Let k, l ∈ N, since ek and el have finite variation, the integral of el with
respect to ek is limit of the Riemann sums. Then using the integral representation
given in (3.1), Fubini’s lemma and the definition of KΠn

2 (t, ., .) given in (3.2), we
have ∫ t

0

(el(s)ėk(s)− ek(s)ėl(s)) ds = lim
n→∞

〈hl ⊗ hk,KΠn

2 (t, ., .)〉.(3.3)

Note that (u, v) 7→ KΠ
2 (t, u, v) is antisymmetric, so we deal only with u > v. Then

using a change of variable, with tit ≤ t < tit+1,

KΠ
2 (t, u, v) = −K(tit+1, u)K(tit+1, v) +

∑
ti∈Π, ti≤t

2K(ti, u)[K(ti+1, v)−K(ti, v)]

+
∑

ti∈Π, ti≤t

[K(ti+1, u)−K(ti, u)] [K(ti+1, v)−K(ti, v)] .

Since (hn)n∈N is an orthonormal basis of L2([0, 1], R, du), then (hk ⊗ hl)(l,k)∈N2

is an orthonormal basis of L2([0, 1]2, R, dudv). According Lemma 1, the sequence
of random variables (S (Xe

n)t)n converges almost surely if and only if∑
0≤l<k<∞

[∫ t

0

(el(s)ėk(s)− ek(s)ėl(s)) ds

]2
< +∞.

In other words, ∑
0≤k<l<∞

lim
n→∞

〈hk ⊗ hl,K
Πn

2 (t, ., .)〉2 < ∞.

If under Assumption 2, (KΠn

2 (t, ., .))n converges to K2(t, ., .) in L1([0, 1]2, dudv)
then using the fact that the function hk are bounded on [0, 1] for all k ∈ N,
limn→∞〈hk ⊗ hl,K

Πn

2 (t, ., .)〉 = 〈hk ⊗ hl,K2(t, ., .)〉 for all l, k ∈ N; and (S (Xe
n)t)n

converges almost surely if and only if K2(t, ., .) belongs to L2([0, 1], dudv).

Then, it remains to prove that (KΠn

2 (t, ., .))n converge to K2(t, ., .) in L1([0, 1]2, dudv).

We split KΠn

2 (t, ., .) − K2(t, ., .) = SΠn

1 (t, ., .) + 2SΠn

2 (t, ., .) + SΠn

3 (t, ., .), where
for 0 ≤ v < u ≤ 1,

SΠn

1 (t, u, v) = K(t, v)K(t, u)−K(tit+1, u)K(tit , v),

SΠn

2 (t, u, v) =
∑

ti∈Πn, ti≤t

K(ti, u) (K(ti+1, v)−K(ti, v))−
∫ t

u

K(r, u)∂K(r, v)dr,

and

SΠn

3 (t, ., .) =
∑

ti∈Π, ti≤t

[K(ti+1, u)−K(ti, u)] [K(ti+1, v)−K(ti, v)] .

First, observe that for v < u∣∣∣SΠn

1 (t, u, v)
∣∣∣ ≤ |K(tit+1, u)| |K(tit

, v)−K(t, v)|+ |K(t, u)−K(tit+1, u)| |K(t, v)|

and use Fubini’s Theorem and Cauchy Scwhartz inequality to derive :

‖SΠn

1 (t, ., .)‖L1([0,1]2,R,dudv) ≤ 2

(√
E((X1

tit+1
)2)E(

(
X1

tit
−X1

t

)2

) +

√
E((X1

t )2)E(
(
X1

tit+1
−X1

t

)2

)

)
.
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Since X is a Gaussian process with continuous sample path ‖SΠn

1 (t, ., .)‖L1([0,1]2,R,dudv)

converge to 0 when n goes to infinity.
Second, we observe that for 0 ≤ v < u ≤ 1,

SΠn

2 (t, u, v)) =
∫ t

tiu+1

(K(tir , u)−K(r, u)) ∂K(r, v)dr(3.4)

−
∫ tiu+1

u

K(r, u)∂K(r, v)dr + K(tit
, u) (K(tit+1, v)−K(t, v)) .

The convergence of the last term of the right member of (3.4) to 0 in L1([0, 1]2, dudv)
follows the same lines as the convergence of ‖SΠn

1 (t, ., .)‖L1([0,1]2,R,dudv) to 0.
For the first term of the right member of (3.4) note that∫

0≤v≤u≤1

dudv

∫ t

tiu+1

|K(tir , u)−K(r, u)||∂K(r, v)|dr

=
∫ t

t1

dr

∫ tir

0

dv|∂K(r, v)|
∫ tir

v

|K(tir
, u)−K(r, u)|du.

Using Cauchy Schwarz inequality in the integral with respect to du and

E((Xz −Xy)2) =
∫ 1

0

[K(z, r)−K(y, r)]2dr

we derive∫
0≤v≤u≤1

dudv

∫ t

tiu+1

|K(tir , u)−K(r, u)||∂K(r, v)|dr

≤
√

Cα

∫ 1

0

dr

∫ tir

0

|∂K(r, v)|
√

tir − v|r − tir |αdv.

Then
∫
0≤v≤u≤1

dudv
∫ t

tiu+1
|K(tir , u)−K(r, u))||∂K(r, v)|dr converges to 0 when n

goes to ∞ since tr ≤ r. For the second term of the right member of (3.4), the same
kind of computations yields∫

0≤v≤u≤1

dudv

∫ tiu+1

u

|K(r, u)||∂K(r, v)|dr

≤
∫ 1

0

dr

∫ r

0

|∂K(r, v)|dv

∫ r

max(v,tr)

|K(r, u)|du

≤
√

Cα

∫ 1

0

dr

∫ r

0

|∂K(r, v)||r −max(v, tr)|1/2|r − v|αdv.

We conclude that ‖SΠn

2 (t, ., .)‖L1([0,1]2,R,dudv) converge to 0 when n goes to in-
finity. Using the same arguments, ‖SΠn

3 (t, ., .)‖L1([0,1]2,R,dudv) converge to 0 when
n goes to infinity.

�

Corollary 3. Let K be a mesurable kernel fulfilling Assumption 2. Assume that
• (KΠn

2 (t, ., .))n∈N converges in L2([0, 1]2, dudv) to K2(t, ., .),
• t 7→ K2(t, ., .) is β Hölder continous in L2([0, 1]2, R, dudv),

then X is natural lift of X.
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Proof. We define A = ((πi,j − πj,i)(X))(i,j)∈{1,..,d}2 to be the area of X. For all
s < t ∈ [0, 1],

In order to establish the continuity of the paths of X, according to the expression
of πi,i(X) given in (2.1) it only remainds to prove that A has a continuous version.
Just observe that for t, s ∈ [0, 1]2

E((Ai,j
t −Ai,j

s )2) = ‖K2(t, ., .)−K2(s, ., .)‖2
L2([0,1],R,dudv)

≤ |t− s|2β .

Then using the fact (see [2]) that there exists a constant Cp such that for all variable
Y in the second Wiener chaos of X,

E(Y p) ≤ CpE(Y 2)p/2

and the Kolmogorov Lemma we obtain the continuity of Ai,j and then of X in
G2
(
Rd
)
.

�

As it is pointed out in the pioneering paper of Decreusefond-Üstünel, [8], a now
celebrate example of Volterra process which satisfies the previous assumptions is
the fractional Brownian motion with Hurst parameter h ∈ (0, 1]. The associated
kernel is ( [24]) : for s < t,

Kh(t, s) = chs
1
2−h

∫ t

s

(u− s)h− 3
2 uh− 1

2 du, for h >
1
2
,

= ch

[
(t− s)h− 1

2 th−
1
2

h− 1
2

−
∫ t

s

(u− s)h− 1
2 uh− 3

2 du

]
s

1
2−h, for h <

1
2
,

= 1[0,t](s) for h =
1
2

where ch is a suitable constant such that the covariance function is

c(t, s) =
1
2
[
s2h + t2h − |t− s|2h

]
.

Remark 1. As it pointed out in Proposition 32 of [7], fractional Brownian motion
fulfills the existence condition of Corollary 3 if and only if is h > 1

4 .

4. Application: a Generalised Wong-Zakai theorem

For simplicity, we will work with the Gaussian process Brownian Motion B,
together with its natural lift Bt =

(
Bt,
∫ t

0
Bu ◦ dBu

)
(it is a natural lift from

theorem 2 for example). It is clear that we can extend the following result to
more general Gaussian processes. We fix a orthonormal basis e of the Cameron-
Martin space of B, i.e.

( .
en

)
n

is a orthonormal basis of L2 ([0, 1] , du) . Then, Bt =∑∞
i=0 Ne

i ei (t) , and define Be
0,n (t) =

∑n
i=0 Ne

i ei (t) . Then, from the continuity of
the Ito map and the results in this paper, we obtain the following theorem:

Theorem 4. Assume that p ∈ [2, 3). Let V = (Vi)1≤i≤d be some vector fields on
Rn which are Cp+ε, ε > 0. Define Y0,n to be the solution of the ODE{

dY0,n (t) =V (Y0,n (t))dB0,n (t)
Y0 = y0.
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Almost surely, Y0,n converges in p-variation topology to the solution of the Stratonovich
SDE {

dY (t) =V (Y (t)) ◦ dB (t)
Y0 = y0.

Observe that if we take the Haar basis for the orthonormal basis e of L2 ([0, 1] , du) ,
then we fall back on the classical Wong-Zakai theorem.

5. Direction of Further Research

It would be nice to extend our result to lift to the free nilpotent group of step 3,
or to a general step n. Things there get harder, as the martingale arguments fails
to work for integrals of the type

∫ ∣∣B1
u

∣∣2 dB2
u. The condition to check whether we

can have a lift is quite neat and easy to read on Volterra process.
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